Comparative Studies of DPPH Radical Scavenging Activity and Content of Bioactive Compounds in Maca (Lepidium meyenii) Root Extracts Obtained by Various Techniques
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material—Origin and Composition
2.2. Extraction Techniques and Procedures
2.3. Analysis of the Antioxidant Activity
2.4. GC-MS Analyses
2.5. Statistical Analysis
3. Results and Discussion
3.1. Antioxidant Activity of Maca Extracts
3.2. GC-MS Analysis of Maca Extracts
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wang, S.; Zhu, F. Chemical composition and health effects of maca (Lepidium meyenii). Food Chem. 2019, 288, 422–443. [Google Scholar] [CrossRef]
- Żurawska, K. Ziołolecznictwo Amazońskie i Andyjskie; Tower Press: Gdańsk, Poland, 2001. [Google Scholar]
- da Silva Leitao Peres, N.; Cabrera Parra Bortoluzzi, L.; Medeiros Marques, L.L.; Formigoni, M.; Hernandez Barros Fuchs, R.; Drovald, A.A.; Reitz Cardoso, F.A. Medicinal effects of Peruvian maca (Lepidium meyenii): A review. Food Funct. 2020, 11, 83–92. [Google Scholar] [CrossRef]
- Valerio, L.G., Jr.; Gonzales, G.F. Toxicological aspects of the South American herbs cat’s claw (Uncaria tomentosa) and maca (Lepidium meyenii). A Critical Synopsis. Toxicol. Rev. 2005, 24, 11–35. [Google Scholar] [CrossRef] [PubMed]
- Kasprzak, D.; Jodlowska-Jedrych, B.; Borowska, K.; Wojtowicz, A. Lepidium meyenii (Maca)—Multidirectional health effects—Review. Curr. Issues Pharm. Med. Sci. 2018, 31, 107–112. [Google Scholar] [CrossRef]
- Ibrahim, R.M.; Elmasry, G.F.; Refaey, R.H.; El-Shiekh, R.A. Lepidium meyenii (maca) roots: UPLC-HRMS, molecular docking, and molecular dynamics. ACS Omega 2022, 7, 17339–17357. [Google Scholar] [CrossRef]
- Gonzales, G.F. Ethnobiology and ethnopharmacology of Lepidium meyenii (maca), a plant from the Peruvian Highlands. Evid.-Based Complement. Alternat. Med. 2012, 2012, 193496. [Google Scholar] [CrossRef] [Green Version]
- Lee, M.S.; Lee, H.W.; You, S.; Ha, K.-T. The use of maca (Lepidium meyenii) to improve semen quality: A systematic review. Maturitas 2016, 92, 64–69. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.W.; Lee, M.S.; Qu, F.; Lee, J.-W.; Kim, E. Maca (Lepidium meyenii Walp.) on semen quality parameters: A systematic review and meta-analysis. Front. Pharmacol. 2022, 13, 934740. [Google Scholar] [CrossRef]
- Chain, F.E.; Grau, A.; Martins, J.C.; Catalan, C.A.N. Macamides from wild ‘Maca’, Lepidium meyenii Walpers (Brassicaceae). Phytochem. Lett. 2014, 8, 145–148. [Google Scholar] [CrossRef]
- Kedare, S.D.; Singh, R.P. Genesis and development of DPPH method of antioxidant assay. J. Food Sci. Technol. 2011, 48, 412–422. [Google Scholar] [CrossRef] [Green Version]
- Prior, R.L.; Wu, X.; Schaich, K. Standardized methods for the determination of antioxidant capacity and phenolics in foods and dietary supplements. J. Agric. Food Chem. 2005, 53, 4290–4302. [Google Scholar] [CrossRef]
- Sandoval, M.; Okuhama, N.N.; Angeles, F.M.; Melchor, V.V.; Condezo, L.A.; Lao, J.; Miller, M.J.S. Antioxidant activity of the cruciferous vegetable Maca (Lepidium meyenii). Food Chem. 2002, 79, 207–213. [Google Scholar] [CrossRef]
- Lee, Y.-K.; Chang, Y.H. Physicochemical and antioxidant properties of methanol extract from Maca (Lepidium meyenii Walp.) leaves and roots. Food Sci. Technol. 2019, 39, 278–286. [Google Scholar] [CrossRef] [Green Version]
- Wang, L.W.; Liang, J.; Wang, X.D.; Yuan, X.F.; Zhao, B.; Yang, Y.W. High efficient antioxidant activity of extracts from Lepidium meyenii Walp. Asian J. Chem. 2012, 24, 4795–4798. [Google Scholar]
- You, J.Y.; Joung, J.A.; Baek, S.J.; Chen, J.; Choi, J.H. Simultaneous extraction of proteins and carbohydrates, including phenolics, antioxidants, and macamide B from Peruvian maca (Lepidium meyenii Walp.). Korean J. Food Preserv. 2021, 28, 868–877. [Google Scholar] [CrossRef]
- Gan, J.; Feng, Y.; He, Z.; Li, X.; Zhang, H. Correlations between antioxidant activity and alkaloids and phenols of maca (Lepidium meyenii). J. Food Qual. 2017, 2017, 3185945. [Google Scholar] [CrossRef] [Green Version]
- Zha, S.; Zhao, Q.; Chen, J.; Wang, L.; Zhang, G.; Zhang, H.; Zhao, B. Extraction, purification and antioxidant activities of the polysaccharides from maca (Lepidium meyenii). Carbohydr. Polym. 2014, 111, 584–587. [Google Scholar] [CrossRef]
- Zhang, L.; Zhao, Q.; Wang, L.; Zhao, M.; Zhao, B. Protective effect of polysaccharide from maca (Lepidium meyenii) on Hep-G2 cells and alcoholic liver oxidative injury in mice. Int. J. Biol. Macromol. 2017, 99, 63–70. [Google Scholar] [CrossRef]
- Xia, C.; Deng, J.; Pan, Y.; Lin, C.; Zhu, Y.; Xiang, Z.; Li, W.; Chen, J.; Zhang, Y.; Zhu, G.; et al. Comprehensive profiling of macamides and fatty acid derivatives in maca with different postharvest drying processes using UPLC-QTOF-MS. ACS Omega 2021, 6, 24484–24492. [Google Scholar] [CrossRef] [PubMed]
- Esparza, E.; Hadzich, A.; Kofer, W.; Mithöfer, A.; Cosio, E.G. Bioactive maca (Lepidium meyenii) alkamides are a result of traditional Andean postharvest drying practices. Phytochemistry 2015, 116, 138–148. [Google Scholar] [CrossRef] [Green Version]
- Salehi, B.; Quispe, C.; Sharifi-Rad, J.; Cruz-Martins, N.; Nigam, M.; Mishra, A.P.; Konovalov, D.A.; Orobinskaya, V.; Abu-Reidah, I.M.; Zam, W.; et al. Phytosterols: From preclinical evidence to potential clinical applications. Front. Pharmacol. 2021, 11, 599959. [Google Scholar] [CrossRef] [PubMed]
- Niu, L.; Han, D. Chemical Analysis of Antioxidant Capacity: Mechanisms and Techniques; De Gruyter: Beijing, China; Berlin, Germany; Boston, MA, USA, 2020. [Google Scholar]
- Meissner, H.O.; Xub, L.; Wan, W.; Yi, F. Glucosinolates profiles in Maca phenotypes cultivated in Peru and China (Lepidium peruvianum syn. L. meyenii). Phytochem. Lett. 2019, 31, 208–216. [Google Scholar] [CrossRef]
- Yan, S.; Wei, J.; Chen, R. Evaluation of the biological activity of glucosinolates and their enzymolysis products obtained from Lepidium meyenii Walp. (Maca). Int. J. Mol. Sci. 2022, 23, 14756. [Google Scholar] [CrossRef] [PubMed]
- Zhao, L.; Chen, J.; Su, J.; Li, L.; Hu, S.; Li, B.; Zhang, X.; Xu, Z.; Chen, T. In vitro antioxidant and antiproliferative activities of 5-hydroxymethylfurfural. J. Agric. Food Chem. 2013, 61, 10604–10611. [Google Scholar] [CrossRef] [PubMed]
Extraction Process Conditions | DPPH Scavenging Activity | Total Phenolic Content | ||
---|---|---|---|---|
Solvent | Time (min) | Technique | TEAC [µM TE/L] | TPC [mg GAE/L] |
Ethanol | 15 | M | 16.3 ± 1.3 | 3.2 ± 0.9 |
30 | 25.4 ± 1.3 | 5.3 ± 0.9 | ||
60 | 37.7 ± 1.3 | 11.8 ± 0.7 | ||
15 | MSH | 71.8 ± 1.6 | 34.5 ± 1.1 | |
30 | 84.7 ± 1.3 | 39.8 ± 1.2 | ||
60 | 87.1 ± 1.7 | 44.2 ± 1.4 | ||
15 | UAE | 76.1 ± 2.1 | 41.6 ± 0.8 | |
30 | 89.3 ± 2.8 | 46.0 ± 1.1 | ||
60 | 112.6 ± 3.0 | 63.0 ± 1.2 | ||
15 | RE | 150.2 ± 2.5 | 83.8 ± 0.9 | |
30 | 148.8 ± 2.9 | 88.9 ± 1.2 | ||
60 | 149.5 ± 3.2 | 95.3 ± 1.4 | ||
Water | 15 | M | 147.0 ± 2.7 | 73.2 ± 1.1 |
30 | 159.0 ± 2.8 | 80.9 ± 1.1 | ||
60 | 191.0 ± 1.9 | 111.2 ± 1.2 | ||
15 | MSH | 192.8 ± 1.8 | 122.1 ± 2.1 | |
30 | 222.0 ± 2.0 | 124.8 ± 2.1 | ||
60 | 229.6 ± 2.0 | 128.2 ± 1.8 | ||
15 | UAE | 208.2 ± 2.4 | 123.2 ± 1.6 | |
30 | 212.9 ± 2.1 | 131.5 ± 1.4 | ||
60 | 217.0 ± 1.8 | 136.9 ± 1.4 | ||
15 | RE | 208.1 ± 2.5 | 133.2 ± 1.9 | |
30 | 199.0 ± 3.1 | 132.7 ± 2.3 | ||
60 | 197.3 ± 3.3 | 130.4 ± 1.1 |
Variables (n = 72) | Minimum | Maximum | Mean | Standard Deviation | Median | Lower Quartile | Upper Quartile |
---|---|---|---|---|---|---|---|
RSA [%] | 6.94 | 75.32 | 47.45 | 21.04 | 50.00 | 29.29 | 66.50 |
TEAC [µM TE/L] | 14.96 | 231.16 | 143.06 | 66.53 | 151.11 | 85.62 | 203.28 |
TPC [mg GAE/L] | 2.09 | 138.45 | 82.73 | 44.67 | 86.41 | 42.77 | 126.41 |
No. | Compound | RT (min) | MS Signals *, m/z | Content ** [%] | ||
---|---|---|---|---|---|---|
[M●]+ | Characteristic Fragment Ions | E | W | |||
1 | Benzyl nitrile | 5.82 | 117 | 90, 116, 89, 51, 63 | 8.1 | 6.3 |
2 | 5-Hydroxymethylfurfural | 8.49 | 126 | 97, 41, 43, 69, 29 | 2.6 | 6.6 |
3 | Benzyl isothiocyaniate | 10.66 | 149 | 91, 65, 92, 51, 39 | 0.2 | 0.2 |
4 | Unknown I | 14.20 | (?) | 57, 73, 31, 43, 86 | 28.0 | 38.4 |
5 | Unknown II | 18.50 | (?) | 117, 43, 75, 57, 132 | 20.8 | 39.6 |
6 | Hexadecanoic acid | 23.30 | 256 | 43, 73, 60, 41, 57 | 3.1 | nd |
7 | Linoleic acid | 26.54 | 280 | 67, 81, 82, 95, 55 | 3.8 | nd |
8 | Hexadecanamide | 27.32 | 255 | 59, 72, 43, 86, 41 | 1.1 | nd |
9 | (9Z)-Octadecenamide | 30.18 | 281 | 59, 72, 55, 41, 43 | 7.7 | nd |
10 | Octadecanamide | 30.66 | 283 | 59, 72, 43, 128, 86 | 1.3 | nd |
11 | N-Benzylhexadecanamide | 37.47 | 345 | 149, 91, 162, 106, 43 | 4.2 | nd |
12 | N-Benzyl-(9Z,12Z)-octadecadienamide | 39.84 | 369 | 91, 106, 149, 162, 67 | 1.3 | nd |
13 | N-Benzyl-(9Z)-octadecenamide | 39.99 | 371 | 91, 149, 106, 162, 79 | 1.6 | nd |
14 | Campesterol | 42.18 | 400 | 43, 55, 57, 81, 107 | 1.4 | 0.1 |
15 | β-Sitosterol | 43.27 | 414 | 43, 57, 55, 41, 107 | 5.2 | 0.2 |
16 | Unknown III | 51.46 | 505 | 55, 43, 57, 69, 41 | 3.0 | nd |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dzięcioł, M.; Wróblewska, A.; Janda-Milczarek, K. Comparative Studies of DPPH Radical Scavenging Activity and Content of Bioactive Compounds in Maca (Lepidium meyenii) Root Extracts Obtained by Various Techniques. Appl. Sci. 2023, 13, 4827. https://doi.org/10.3390/app13084827
Dzięcioł M, Wróblewska A, Janda-Milczarek K. Comparative Studies of DPPH Radical Scavenging Activity and Content of Bioactive Compounds in Maca (Lepidium meyenii) Root Extracts Obtained by Various Techniques. Applied Sciences. 2023; 13(8):4827. https://doi.org/10.3390/app13084827
Chicago/Turabian StyleDzięcioł, Małgorzata, Agnieszka Wróblewska, and Katarzyna Janda-Milczarek. 2023. "Comparative Studies of DPPH Radical Scavenging Activity and Content of Bioactive Compounds in Maca (Lepidium meyenii) Root Extracts Obtained by Various Techniques" Applied Sciences 13, no. 8: 4827. https://doi.org/10.3390/app13084827
APA StyleDzięcioł, M., Wróblewska, A., & Janda-Milczarek, K. (2023). Comparative Studies of DPPH Radical Scavenging Activity and Content of Bioactive Compounds in Maca (Lepidium meyenii) Root Extracts Obtained by Various Techniques. Applied Sciences, 13(8), 4827. https://doi.org/10.3390/app13084827