High-Resolution, Broad-Range Detection Setup for Polarimetric Optical Fiber Sensors
Abstract
:Featured Application
Abstract
1. Introduction
2. Materials and Methods
3. Results
3.1. Influence of the Quantization Errors
3.2. Range and Resolution
4. Discussion
5. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wuilpart, M.; Ravet, G.; Megret, P.; Blondel, M. Polarization mode dispersion mapping in optical fibers with a polarization-OTDR. IEEE Photon. Technol. Lett. 2002, 14, 1716–1718. [Google Scholar] [CrossRef]
- Caron, S.; Paré, C.; Paradis, P.; Trudeau, J.-M.; Fougères, A. Distributed fibre optics polarimetric chemical sensor. Meas. Sci. Technol. 2006, 17, 1075–1081. [Google Scholar] [CrossRef]
- Khomenko, A.; Shlyagin, M.; Miridonov, S.; Tentori, D. Wavelength-scanning technique for distributed fiber-optic sensors. Opt. Lett. 1998, 18, 2065–2067. [Google Scholar] [CrossRef] [PubMed]
- Palmieri, L.; Sarchi, D.; Galtarossa, A. Distributed measurement of high electric current by means of polarimetric optical fiber sensor. Opt. Express 2015, 23, 11073–11079. [Google Scholar] [CrossRef]
- Yu, Z.; Zhuang, Q.; Lin, Y.; Lin, Y.; Lin, C.; Rang, B.; Yuan, Y.; Yang, J.; Wen, K.; Xu, P.; et al. Optical frequency domain polarimetry for distributed polarization crosstalk measurement beyond a 110 dB dynamic range. Opt. Lett. 2022, 47, 4271–4274. [Google Scholar] [CrossRef]
- Mikhailov, S.; Matthes, A.; Bierlich, J.; Kobelke, J.; Wondraczek, K.; Berghmans, F.; Geernaert, T. Highly birefringent microstructured optical fiber for distributed hydrostatic pressure sensing with sub-bar resolution. Opt. Express 2022, 30, 19961–19973. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Yang, Z.; Szostkiewicz, Ł.; Markiewicz, K.; Mikhailov, S.; Geernaert, T.; Rochat, E.; Thévenaz, L. Long-distance distributed pressure sensing based on frequency-scanned phase-sensitive optical time-domain reflectometry. Opt. Express 2021, 29, 20487–20497. [Google Scholar] [CrossRef] [PubMed]
- Mikhailov, S.; Zhang, L.; Geernaert, T.; Berghmans, F.; Thevenaz, L. Distributed Hydrostatic Pressure Measurement Using Phase-OTDR in a Highly Birefringent Photonic Crystal Fiber. J. Light. Technol. 2019, 37, 4496–4500. [Google Scholar] [CrossRef]
- Ramakrishnan, M.; Rajan, G.; Semenova, Y.; Lesiak, P.; Domański, A.; Woliński, T.; Boczkowska, A.; Farrell, G. The influence of thermal expansion of a composite material on embedded polarimetric sensors. Smart Mater. Struct. 2011, 20, 125002. [Google Scholar] [CrossRef] [Green Version]
- Nikoniuk, D.; Bednarska, K.; Sienkiewicz, M.; Krzesiński, G.; Olszyna, M.; Dähne, L.; Woliński, T.R.; Lesiak, P. Polymer Fibers Covered by Soft Multilayered Films for Sensing Applications in Composite Materials. Sensors 2019, 19, 4052. [Google Scholar] [CrossRef] [Green Version]
- Torbus, S.A.; Michalski, J.A. Testing of a Polarimetric Current Sensor in the Frequency Domain. Sensors 2021, 21, 3008. [Google Scholar] [CrossRef]
- Nasilowski, T.; Skorupski, K.; Makara, M.; Statkiewicz-Barabach, G.; Mergo, P.; Marc, P.; Jaroszewicz, L. Very high polarimetric sensitivity to strain of second order mode of highly birefringent microstructured fibre. Proc. SPIE 2011, 7753, 77533O-1–77533O-4. [Google Scholar]
- Tenderenda, T.; Skorupski, K.; Makara, M.; Statkiewicz-Barabach, G.; Mergo, P.; Marc, P.; Jaroszewicz, L.R.; Nasilowski, T. Highly birefringent dual-mode microstructured fiber with enhanced polarimetric strain sensitivity of the second order mode. Opt. Express 2012, 20, 26996–27002. [Google Scholar] [CrossRef] [PubMed]
- Xu, S.; Li, W.; Xing, F.; Wang, Y. Polarimetric current sensor based on polarization division multiplexing detection. Opt. Express 2014, 22, 11985–11994. [Google Scholar] [CrossRef] [PubMed]
- Okda, H.A.; Rabia, S.I.; Shalaby, H.M.H. Sensitivity enhancement of a difference interferometer refractive index sensor based on a silicon-on-insulator hybrid plasmonic waveguide. JOSA 2021, 38, 1405–1415. [Google Scholar] [CrossRef]
- Liu, Q.; Kim, K.W.; Gu, Z.; Kee, J.S.; Park, M.K. Single-channel Mach-Zehnder interferometric biochemical sensor based on two lateral-mode spiral waveguide. Opt. Express 2014, 22, 27910–27920. [Google Scholar] [CrossRef]
- Debackere, P.; Scheerlinck, S.; Bienstman, P.; Baets, R. Surface plasmon interferometer in silicon-on-insulator: Novel concept for an integrated biosensor. Opt. Express 2006, 14, 7063–7072. [Google Scholar] [CrossRef]
- Liang, Y.; Zhao, M.; Wu, Z.; Morthier, G. Bimodal waveguide interferometer RI sensor fabricated on low-cost polymer platform. IEEE Photon. J. 2019, 11, 6801108. [Google Scholar] [CrossRef]
- Irfan, M.; Khan, Y.; Rehman, A.U.; Butt, M.A.; Khonina, S.N.; Kazanskiy, N.L. Plasmonic Refractive Index and Temperature Sensor Based on Graphene and LiNbO3. Sensors 2022, 22, 7790. [Google Scholar] [CrossRef]
- Gasiora, K.; Martynkien, T.; Mergo, P.; Urbanczyk, W. Fiber-optic surface plasmon resonance sensor based on spectral phase shift interferometric measurements. Sens. Actuators Chem. 2018, 257, 602–608. [Google Scholar] [CrossRef]
- Hlubina, P.; Duliakova, M.; Kadulova, M.; Ciprian, D. Spectral interferometry-based surface plasmon resonance sensor. Opt. Commun. 2015, 354, 240–245. [Google Scholar] [CrossRef]
- Hlubina, P.; Ciprian, D. Spectral phase shift of surface plasmon resonance in the Kretschmann configuration: Theory and experiment. Plasmonics 2016, 12, 1071–1078. [Google Scholar] [CrossRef]
- Rifat, A.A.; Ahmed, R.; Yetisen, A.K.; Butt, H.; Sabouri, A.; Mahdiraji, G.A.; Yun, S.H.; Adikan, F.M. Photonic crystal fiber based plasmonic sensors. Sens. Actuators Chem. 2017, 243, 311–325. [Google Scholar] [CrossRef]
- Wang, D.; Yi, Z.; Ma, G.; Dai, B.; Yang, J.; Zhang, J.; Yu, Y.; Liu, C.; Wu, X.; Bian, Q. Two-channel photonic crystal fiber based on surface plasmon resonance for magnetic field and temperature dual-parameter sensing. Phys. Chem. Chem. Phys. 2022, 24, 21233–21241. [Google Scholar] [CrossRef]
- Zhu, W.; Yi, Y.; Yi, Z.; Bian, L.; Yang, H.; Zhang, J.; Yu, Y.; Liu, C.; Li, G.; Wu, X. High confidence plasmonic sensor based on photonic crystal fibers with a U-shaped detection channel. Phys. Chem. Chem. Phys. 2023, 25, 8583–8591. [Google Scholar] [CrossRef]
- Nielsen, M.D.; Mortensen, N.A. Photonic crystal fiber design based on the V–parameter. Opt. Express 2003, 11, 2762–2768. [Google Scholar] [CrossRef] [Green Version]
- Hlubina, P.; Ciprian, D. Spectral-domain measurement of phase modal birefringence in polarization-maintaining fiber. Opt. Express 2007, 15, 17019–17024. [Google Scholar] [CrossRef] [Green Version]
- Szczurowski, M.K.; Martynkien, T.; Statkiewicz-Barabach, G.; Urbanczyk, W.; Webb, D.J. Measurements of polarimetric sensitivity to hydrostatic pressure, strain and temperature in birefringent dual-core microstructured polymer fiber. Opt. Express 2010, 18, 12076–12087. [Google Scholar] [CrossRef]
- Anuszkiewicz, A.; Martynkien, T.; Olszewski, J.; Mergo, P.; Urbańczyk, W. Polarimetric sensitivity to hydrostatic pressure and temperature in a side-hole fiber with squeezed microstructure. J. Opt. 2015, 17, 125609. [Google Scholar] [CrossRef]
- De, M.; Gangopadhyay, T.K.; Singh, V.K. Prospects of Photonic Crystal Fiber as Physical Sensor: An Overview. Sensors 2019, 19, 464. [Google Scholar] [CrossRef] [Green Version]
- Liu, Z.; Htein, L.; Lee, K.-K.; Lau, K.-T.; Tam, H.-Y. Large dynamic range pressure sensor based on two semicircle-holes microstructured fiber. Sci. Rep. 2018, 8, 65. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zinoviev, K.E.; González-Guerrero, A.B.; Domínguez, C.; Lechuga, L.M. Integrated bimodal waveguide interferometric biosensor for label-free analysis. J. Light. Technol. 2011, 29, 1926–1930. [Google Scholar] [CrossRef] [Green Version]
- Zhou, C.; Hedayati, M.K.; Kristensen, A. Multifunctional waveguide interferometer sensor: Simultaneous detection of refraction and absorption with size-exclusion function. Opt. Express 2018, 26, 24372–24383. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lukosz, W.; Stamm, C.; Moser, H.; Ryf, R.; Dübendorfer, J. Difference interferometer with new phase-measurement method as integrated-optical refractometer, humidity sensor and biosensor. Sens. Act. 1997, 39, 316–323. [Google Scholar] [CrossRef]
- Martynkien, T.; Statkiewicz-Barabach, G.; Olszewski, J.; Wojcik, J.; Mergo, P.; Geernaert, T.; Sonnenfeld, C.; Anuszkiewicz, A.; Szczurowski, M.K.; Tarnowski, K.; et al. Highly birefringent microstructured fibers with enhanced sensitivity to hydrostatic pressure. Opt. Express 2010, 18, 15113–15121. [Google Scholar] [CrossRef]
- Nakadate, S. High precision retardation measurement using phase detection of Young’s fringes. Appl. Opt. 1990, 29, 242–246. [Google Scholar] [CrossRef]
- Nakadate, S. Phase Detection of Equidistant Fringes for Highly Sensitive Optical Sensing. I. Principle and Error Analyses. J. Opt. Soc. Am. 1988, 5, 1258–1264. [Google Scholar] [CrossRef]
- Nakadate, S. Phase Detection of Equidistant Fringes for Highly Sensitive Optical Sensing. II. Experiments. J. Opt. Soc. Am. 1988, 5, 1265–1269. [Google Scholar] [CrossRef]
- Bock, W.J.; Urbanczyk, W. Coherence Multiplexing of Fiber-Optic Pressure and Temperature Sensors Based on Highly Birefringent Fibers. IEEE Trans. Instrum. Meas. 2000, 49, 392–397. [Google Scholar] [CrossRef]
- Lin, W.; Liu, Y.; Liu, Y.; Shum, P.P.; Vai, M.I. Fiber Temperature Sensor Based on Vernier Effect and Optical Time Stretching Method. Micromachines 2022, 13, 2215. [Google Scholar] [CrossRef]
- Mumtaz, F.; Roman, M.; Zhang, B.; Abbas, L.G.; Ashraf, M.A.; Dai, Y.; Huang, J. Highly Sensitive Strain Sensor by Utilizing a Tunable Air Reflector and the Vernier Effect. Sensors 2022, 22, 7557. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Zhao, L.; Hao, S.; Tang, J. Advanced Fiber Sensors Based on the Vernier Effect. Sensors 2022, 22, 2694. [Google Scholar] [CrossRef]
- Onsemi Datasheet, PYTHON 1.3/0.5/0.3 MegaPixels Global Shutter CMOS Image Sensors—NOIP1SN1300A, August 2021−Rev. 6. Available online: https://www.onsemi.com/download/data-sheet/pdf/noip1sn1300a-d.pdf (accessed on 11 April 2023).
- Sony Product Information, IMX461AQR Diagonal 55 mm (Type 3.4) CMOS Image Sensor with Square Pixel for Color Cameras, ver 1.0; Sony Semiconductor Solutions Corporation: Kanagawa, Japan, 2018.
- Hernández-Rodríguez, C.; Gómez-Garrido, P. Optical anisotropy of quartz in the presence of temperature-dependent multiple reflections using a high-accuracy universal polarimeter. J. Phys. Appl. Phys. 2000, 33, 2985. [Google Scholar] [CrossRef]
- Born, M.; Wolf, E. Principles of Optics, 7th ed.; Cambridge University Press: Cambridge, UK, 1999; pp. 348–352. [Google Scholar]
- Statkiewicz-Barabach, G.; Olszewski, J.; Mergo, P.; Urbanczyk, W. Hydrostatic Pressure and Temperature Measurements Using an In-Line Mach-Zehnder Interferometer Based on a Two-Mode Highly Birefringent Microstructured Fiber. Sensors 2017, 17, 1648. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, N.; Chang, M.; Lu, X.; Zhou, J.; Zhang, X. Numerical Analysis of Mid-infrared D-Shaped Photonic-Crystal-Fiber Sensor Based on Surface-Plasmon-Resonance Effect for Environmental Monitoring. Appl. Sci. 2020, 10, 3897. [Google Scholar] [CrossRef]
- Du, Z.; Liu, H. Mid-infrared refractive index photonic crystal fiber sensor based on surface plasmon resonance for ultra-high sensitivity. Laser Phys. 2023, 33, 016201. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wierzba, P. High-Resolution, Broad-Range Detection Setup for Polarimetric Optical Fiber Sensors. Appl. Sci. 2023, 13, 4849. https://doi.org/10.3390/app13084849
Wierzba P. High-Resolution, Broad-Range Detection Setup for Polarimetric Optical Fiber Sensors. Applied Sciences. 2023; 13(8):4849. https://doi.org/10.3390/app13084849
Chicago/Turabian StyleWierzba, Paweł. 2023. "High-Resolution, Broad-Range Detection Setup for Polarimetric Optical Fiber Sensors" Applied Sciences 13, no. 8: 4849. https://doi.org/10.3390/app13084849
APA StyleWierzba, P. (2023). High-Resolution, Broad-Range Detection Setup for Polarimetric Optical Fiber Sensors. Applied Sciences, 13(8), 4849. https://doi.org/10.3390/app13084849