Bioavailability of Citrulline in Watermelon Flesh, Rind, and Skin Using a Human Intestinal Epithelial Caco-2 Cell Model
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Citrulline Concentration of Watermelon Flesh, Rind, and Skin
2.2.1. Solid Phase Extraction (SPE)
2.2.2. Citrulline
2.3. Total Phenolic Content and Antioxidant Activity
2.4. Cell Culture and Measurement of Transepithelial Electrical Resistance (TEER)
2.5. Cell Viability Assay
2.6. In Vitro Bioavailability Assay
2.7. Statistical Analysis
3. Results
3.1. Citrulline Concentration of Watermelon Flesh, Rind, and Skin
3.2. Total Phenolic Content and Antioxidant Activity
3.3. Cell Viability of Watermelon Flesh, Rind, and Skin
3.4. In Vitro Bioavailability of Citrulline in Watermelon Flesh, Rind, and Skin
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zamuz, S.; Munekata, P.E.S.; Gullón, B.; Rocchetti, G.; Montesano, D.; Lorenzo, J.M. Citrullus lanatus as Source of Bioactive Components: An up-to-Date Review. Trends Food Sci. Technol. 2021, 111, 208–222. [Google Scholar] [CrossRef]
- Feng, Z.; Bi, Z.; Fu, D.; Feng, L.; Min, D.; Bi, C.; Huang, H. A Comparative Study of Morphology, Photosynthetic Physiology, and Proteome between Diploid and Tetraploid Watermelon (Citrullus lanatus L.). Bioengineering 2022, 9, 746. [Google Scholar] [CrossRef] [PubMed]
- Zia, S.; Khan, M.R.; Shabbir, M.A.; Aadil, R.M. An Update on Functional, Nutraceutical and Industrial Applications of Watermelon by-Products: A Comprehensive Review. Trends Food Sci. Technol. 2021, 114, 275–291. [Google Scholar] [CrossRef]
- Rimando, A.M.; Perkins-Veazie, P.M. Determination of Citrulline in Watermelon Rind. J. Chromatogr. A 2005, 1078, 196–200. [Google Scholar] [CrossRef] [PubMed]
- Balogun, O.; Otieno, D.; Brownmiller, C.R.; Lee, S.-O.; Kang, H.W. Effect of Watermelon (Citrullus lanatus) Extract on Carbohydrates-Hydrolyzing Enzymes In Vitro. Agriculture 2022, 12, 772. [Google Scholar] [CrossRef]
- Esparza, I.; Jiménez-Moreno, N.; Bimbela, F.; Ancín-Azpilicueta, C.; Gandía, L.M. Fruit and Vegetable Waste Management: Conventional and Emerging Approaches. J. Environ. Manag. 2020, 265, 110510. [Google Scholar] [CrossRef] [PubMed]
- Romdhane, M.B.; Haddar, A.; Ghazala, I.; Jeddou, K.B.; Helbert, C.B.; Ellouz-Chaabouni, S. Optimization of Polysaccharides Extraction from Watermelon Rinds: Structure, Functional and Biological Activities. Food Chem. 2017, 216, 355–364. [Google Scholar] [CrossRef]
- Tlili, I.; Hdider, C.; Lenucci, M.S.; Ilahy, R.; Jebari, H.; Dalessandro, G. Bioactive Compounds and Antioxidant Activities during Fruit Ripening of Watermelon Cultivars. J. Food Compos. Anal. 2011, 24, 923–928. [Google Scholar] [CrossRef]
- Ahn, J.; Choi, W.; Kim, S.; Ha, T. Anti-Diabetic Effect of Watermelon (Citrullus vulgaris Schrad) on Streptozotocin-Induced Diabetic Mice. Food Sci. Biotechnol. 2011, 20, 251–254. [Google Scholar] [CrossRef]
- Ali, O.M.; Hasanin, M.S.; Suleiman, W.B.; Helal, E.E.-H.; Hashem, A.H. Green Biosynthesis of Titanium Dioxide Quantum Dots Using Watermelon Peel Waste: Antimicrobial, Antioxidant, and Anticancer Activities. Biomass Conv. Bioref. 2022. [Google Scholar] [CrossRef]
- Di Sano, C.; Lazzara, V.; Durante, M.; D’Anna, C.; Bonura, A.; Dino, P.; Uasuf, C.G.; Pace, E.; Lenucci, M.S.; Bruno, A. The Protective Anticancer Effect of Natural Lycopene Supercritical CO2 Watermelon Extracts in Adenocarcinoma Lung Cancer Cells. Antioxidants 2022, 11, 1150. [Google Scholar] [CrossRef] [PubMed]
- Tarazona-Díaz, M.P.; Viegas, J.; Moldao-Martins, M.; Aguayo, E. Bioactive Compounds from Flesh and By-Product of Fresh-Cut Watermelon Cultivars. J. Sci. Food Agric. 2011, 91, 805–812. [Google Scholar] [CrossRef]
- Din, S.N.; Mubarak, A.; Lani, M.N.; Yahaya, M.Z.; Wan Abdullah, W.Z. Development of Pastilles from Flesh and Rind of Watermelon. Food Res. 2022, 6, 288–297. [Google Scholar] [CrossRef]
- Rico, X.; Gullón, B.; Alonso, J.L.; Yáñez, R. Recovery of High Value-Added Compounds from Pineapple, Melon, Watermelon and Pumpkin Processing by-Products: An Overview. Food Res. Int. 2020, 132, 109086. [Google Scholar] [CrossRef]
- Zia, S.; Khan, M.R.; Aadil, R.M.; Shahid, M. Development and Storage Stability of Value-Added Watermelon Fruit Butter by Incorporating Watermelon Rind Byproduct. J. Food Process. Preserv. 2022, 46, e17031. [Google Scholar] [CrossRef]
- Ashoka, S.; Shamshad Begum, S.; Vijayalaxmi, K.G. Byproduct Utilization of Watermelon to Develop Watermelon Rind Flour Based Cookies. Pharma Innov. 2021, 10, 196–199. [Google Scholar] [CrossRef]
- Joshi, V.; Joshi, M.; Silwal, D.; Noonan, K.; Rodriguez, S.; Penalosa, A. Systematized Biosynthesis and Catabolism Regulate Citrulline Accumulation in Watermelon. Phytochemistry 2019, 162, 129–140. [Google Scholar] [CrossRef]
- Jayaprakasha, G.K.; Chidambara Murthy, K.N.; Patil, B.S. Rapid HPLC-UV Method for Quantification of l-Citrulline in Watermelon and Its Potential Role on Smooth Muscle Relaxation Markers. Food Chem. 2011, 127, 240–248. [Google Scholar] [CrossRef]
- Wu, G.; Meininger, C.J. Analysis of Citrulline, Arginine, and Methylarginines Using High-Performance Liquid Chromatography. In Methods in Enzymology; Nitric Oxide, Part F; Academic Press: Cambridge, MA, USA, 2008; Volume 440, pp. 177–189. [Google Scholar]
- Levine, A.B.; Punihaole, D.; Levine, T.B. Characterization of the Role of Nitric Oxide and Its Clinical Applications. Cardiology 2012, 122, 55–68. [Google Scholar] [CrossRef]
- Volino-Souza, M.; Oliveira, G.V.; Vargas, R.; Tavares, A.C.; Conte-Junior, C.A.; Alvares, T. da S. Effect of Microencapsulated Watermelon (Citrullus lanatus) Intake on Plasma Amino Acids and Glycemic Response in Healthy Adults. Food Biosci. 2022, 46, 101553. [Google Scholar] [CrossRef]
- Hong, M.Y.; Hartig, N.; Kaufman, K.; Hooshmand, S.; Figueroa, A.; Kern, M. Watermelon Consumption Improves Inflammation and Antioxidant Capacity in Rats Fed an Atherogenic Diet. Nutr. Res. 2015, 35, 251–258. [Google Scholar] [CrossRef] [PubMed]
- Akashi, K.; Miyake, C.; Yokota, A. Citrulline, a Novel Compatible Solute in Drought-Tolerant Wild Watermelon Leaves, Is an Efficient Hydroxyl Radical Scavenger. FEBS Lett. 2001, 508, 438–442. [Google Scholar] [CrossRef] [PubMed]
- Bahri, S.; Zerrouk, N.; Aussel, C.; Moinard, C.; Crenn, P.; Curis, E.; Chaumeil, J.-C.; Cynober, L.; Sfar, S. Citrulline: From Metabolism to Therapeutic Use. Nutrition 2013, 29, 479–484. [Google Scholar] [CrossRef] [PubMed]
- Romero, M.J.; Platt, D.H.; Caldwell, R.B.; Caldwell, R.W. Therapeutic Use of Citrulline in Cardiovascular Disease. Cardiovasc. Drug Rev. 2006, 24, 275–290. [Google Scholar] [CrossRef]
- Rashid, J.; Kumar, S.S.; Job, K.M.; Liu, X.; Fike, C.D.; Sherwin, C.M. Therapeutic Potential of Citrulline as an Arginine Supplement: A Clinical Pharmacology Review. Paediatr. Drugs 2020, 22, 279–293. [Google Scholar] [CrossRef]
- Bahri, S.; Curis, E.; El Wafi, F.-Z.; Aussel, C.; Chaumeil, J.-C.; Cynober, L.; Zerrouk, N. Mechanisms and Kinetics of Citrulline Uptake in a Model of Human Intestinal Epithelial Cells. Clin. Nutr. 2008, 27, 872–880. [Google Scholar] [CrossRef]
- Xu, Y.; Li, Y.; Xie, J.; Xie, L.; Mo, J.; Chen, W. Bioavailability, Absorption, and Metabolism of Pelargonidin-Based Anthocyanins Using Sprague–Dawley Rats and Caco-2 Cell Monolayers. J. Agric. Food Chem. 2021, 69, 7841–7850. [Google Scholar] [CrossRef]
- Liu, C.-S.; Glahn, R.P.; Liu, R.H. Assessment of Carotenoid Bioavailability of Whole Foods Using a Caco-2 Cell Culture Model Coupled with an in Vitro Digestion. J. Agric. Food Chem. 2004, 52, 4330–4337. [Google Scholar] [CrossRef]
- Fan, J.; Park, E.; Zhang, L.; Edirisinghe, I.; Burton-Freeman, B.; Sandhu, A.K. Pharmacokinetic Parameters of Watermelon (Rind, Flesh, and Seeds) Bioactive Components in Human Plasma: A Pilot Study to Investigate the Relationship to Endothelial Function. J. Agric. Food Chem. 2020, 68, 7393–7403. [Google Scholar] [CrossRef]
- Tarazona-Díaz, M.P.; Alacid, F.; Carrasco, M.; Martínez, I.; Aguayo, E. Watermelon Juice: Potential Functional Drink for Sore Muscle Relief in Athletes. J. Agric. Food Chem. 2013, 61, 7522–7528. [Google Scholar] [CrossRef]
- Slinkard, K.; Singleton, V.L. Total Phenol Analysis: Automation and Comparison with Manual Methods. Am. J. Enol. Vitic. 1977, 28, 49–55. [Google Scholar] [CrossRef]
- Akkari, H.; Hajaji, S.; B’chir, F.; Rekik, M.; Gharbi, M. Correlation of Polyphenolic Content with Radical-Scavenging Capacity and Anthelmintic Effects of Rubus Ulmifolius (Rosaceae) against Haemonchus contortus. Vet. Parasitol. 2016, 221, 46–53. [Google Scholar] [CrossRef] [PubMed]
- Abu-Reidah, I.M.; Arráez-Román, D.; Segura-Carretero, A.; Fernández-Gutiérrez, A. Profiling of Phenolic and Other Polar Constituents from Hydro-Methanolic Extract of Watermelon (Citrullus lanatus) by Means of Accurate-Mass Spectrometry (HPLC–ESI–QTOF–MS). Food Res. Int. 2013, 51, 354–362. [Google Scholar] [CrossRef]
- Koga, Y. Study report on the constituents of squeezed watermelon. Tokyo Kagaku Kaishi [J. Tokyo Chem. Soc.] 1914, 35, 519–528. [Google Scholar]
- Wada, M. On the Occurrence of a New Amino Acid in Watermelon, Citrullus vulgaris, Schrad. Bull. Agric. Chem. Soc. Jpn. 1930, 6, 32–34. [Google Scholar] [CrossRef]
- Bailey, S.J.; Blackwell, J.R.; Williams, E.; Vanhatalo, A.; Wylie, L.J.; Winyard, P.G.; Jones, A.M. Two Weeks of Watermelon Juice Supplementation Improves Nitric Oxide Bioavailability but Not Endurance Exercise Performance in Humans. Nitric Oxide 2016, 59, 10–20. [Google Scholar] [CrossRef] [PubMed]
- Ridwan, R.; Abdul Razak, H.R.; Adenan, M.I.; Md Saad, W.M. Development of Isocratic RP-HPLC Method for Separation and Quantification of L-Citrulline and L-Arginine in Watermelons. Int. J. Anal. Chem. 2018, 2018, 4798530. [Google Scholar] [CrossRef] [PubMed]
- Casacchia, T. Nutraceutical properties and health-promoting biological activities of fruits of watermelon cultivars with different origins. Farmacia 2020, 68, 679–686. [Google Scholar] [CrossRef]
- Pp, S.B.; Sagar, V.R.; Kar, A.; Varghese, E.; Singh, S.; Choudhary, H. Identification and Quantification of Physicochemical and Bioactive Components from Sugar Baby Variety of Watermelon (Citrullus lanatus). Agric. Res. 2022, 11, 410–420. [Google Scholar] [CrossRef]
- Akashi, K.; Mifune, Y.; Morita, K.; Ishitsuka, S.; Tsujimoto, H.; Ishihara, T. Spatial Accumulation Pattern of Citrulline and Other Nutrients in Immature and Mature Watermelon Fruits. J. Sci. Food Agric. 2017, 97, 479–487. [Google Scholar] [CrossRef]
- Kim, S.-J.; Matsushita, Y.; Fukushima, K.; Aoki, D.; Yagami, S.; Yuk, H.-G.; Lee, S.-C. Antioxidant Activity of a Hydrothermal Extract from Watermelons. LWT Food Sci. Technol. 2014, 59, 361–368. [Google Scholar] [CrossRef]
- Yusoff, I.M.; Chua, L.S.; Taher, Z.M. Valorization of Fruit Waste from Cucurbitaceae Family: Profiling of Phytoconstituent of Benincasa Hispida and Citrullus lanatus Rinds Using Ultrasound-Assisted Extraction. Food Biosci. 2023, 51, 102190. [Google Scholar] [CrossRef]
- Ho, L.-H.; Ramli, N.F.; Tan, T.-C.; Muhamad, N.; Haron, M.N. Effect of Extraction Solvents and Drying Conditions on Total Phenolic Content and Antioxidant Properties of Watermelon Rind Powder. Sains Malays. 2018, 47, 99–107. [Google Scholar] [CrossRef]
- Dieng, S.I.M.; Diallo, A.J.; Fall, A.D.; Diatta-Badji, K.; Diatta, W.; Sarr, A.; Bassene, E. Total Polyphenols and Flavonoids Contents of Aqueous Extracts of Watermelon Red Flesh and Peels (Citrullus lanatus, Thunb). J. Pharm. Phytochem. 2017, 6, 801–803. [Google Scholar]
- Neglo, D.; Tettey, C.O.; Essuman, E.K.; Kortei, N.K.; Boakye, A.A.; Hunkpe, G.; Amarh, F.; Kwashie, P.; Devi, W.S. Comparative Antioxidant and Antimicrobial Activities of the Peels, Rind, Pulp and Seeds of Watermelon (Citrullus lanatus) Fruit. Sci. Afr. 2021, 11, e00582. [Google Scholar] [CrossRef]
Sample | Total Phenolic Content | DPPH | FRAP |
---|---|---|---|
(mg GAE/g) | (μmol TE/g) | (μmol Fe2+/g) | |
Flesh | 12.7 ± 0.5 b | 28.7 ± 3.5 a | 181.9 ± 7.2 b |
Rind | 2.4 ± 0.4 c | 7.0 ± 2.7 b | 40.1 ± 9.0 c |
Skin | 15.2 ± 0.6 a | 31.1 ± 6.2 a | 240.0 ± 8.4 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gu, I.; Balogun, O.; Brownmiller, C.; Kang, H.W.; Lee, S.-O. Bioavailability of Citrulline in Watermelon Flesh, Rind, and Skin Using a Human Intestinal Epithelial Caco-2 Cell Model. Appl. Sci. 2023, 13, 4882. https://doi.org/10.3390/app13084882
Gu I, Balogun O, Brownmiller C, Kang HW, Lee S-O. Bioavailability of Citrulline in Watermelon Flesh, Rind, and Skin Using a Human Intestinal Epithelial Caco-2 Cell Model. Applied Sciences. 2023; 13(8):4882. https://doi.org/10.3390/app13084882
Chicago/Turabian StyleGu, Inah, Olugbenga Balogun, Cindi Brownmiller, Hye Won Kang, and Sun-Ok Lee. 2023. "Bioavailability of Citrulline in Watermelon Flesh, Rind, and Skin Using a Human Intestinal Epithelial Caco-2 Cell Model" Applied Sciences 13, no. 8: 4882. https://doi.org/10.3390/app13084882
APA StyleGu, I., Balogun, O., Brownmiller, C., Kang, H. W., & Lee, S. -O. (2023). Bioavailability of Citrulline in Watermelon Flesh, Rind, and Skin Using a Human Intestinal Epithelial Caco-2 Cell Model. Applied Sciences, 13(8), 4882. https://doi.org/10.3390/app13084882