Recurrent Neural Network-Based Hybrid Modeling Method for Digital Twin of Boiler System in Coal-Fired Power Plant
Abstract
:1. Introduction
2. State of the Art
3. Recurrent Neural Network-Based Hybrid Modeling Method for Digital Twin of Boiler System
3.1. The Design Process of Digital Twin Model for Boiler System
3.2. The Construction of DTM Framework for Boiler System
3.2.1. The Purpose of DTM
3.2.2. The DTM Framework with Basic Information
3.3. Definitions of Input and Output Parameters for DTM
- Pulverizing system
- 2.
- Furnace
- 3.
- Drum
3.4. Establishment of Digital Twin Model for Boiler System
3.4.1. Recurrent Neural Network Description of Boiler System
- Pulverizing system
- 2.
- Furnace
- 3.
- Drum
3.4.2. LSTM-Based Error Compensation Model for Digital Twin
3.4.3. Parameter Updating Structure for Digital Twin Model of Boiler System
3.4.4. Training Algorithm for Digital Twin Model of Boiler System
4. Simulation Results
4.1. Preprocessing of Data and Parameters
4.1.1. Mechanism Model
4.1.2. Error Compensation Model
4.2. Model Training and Analysis of Predictive Performance
4.2.1. Model Training
4.2.2. Analysis of Predictive Performance
5. Conclusions and Future Work
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zheng, T.; Ardolino, M.; Bacchetti, A. The applications of Industry 4.0 technologies in manufacturing context: A systematic literature review. Int. J. Prod. Res. 2021, 59, 1922–1954. [Google Scholar] [CrossRef]
- Abdulaziz, Q.A.; Mad Kaidi, H.; Masrom, M.; Hamzah, H.S.; Sarip, S.; Dziyauddin, R.A.; Muhammad-Sukki, F. Developing an IoT Framework for Industry 4.0 in Malaysian SMEs: An Analysis of Current Status, Practices, and Challenges. Appl. Sci. 2023, 13, 3658. [Google Scholar] [CrossRef]
- Ryalat, M.; ElMoaqet, H.; AlFaouri, M. Design of a Smart Factory Based on Cyber-Physical Systems and Internet of Things towards Industry 4.0. Appl. Sci. 2023, 13, 2156. [Google Scholar] [CrossRef]
- Ahmad, T.; Zhu, H.; Zhang, D. Energetics systems and artificial intelligence: Applications of industry 4.0. Energy Rep. 2022, 8, 334–361. [Google Scholar] [CrossRef]
- Grieves, M. Digital twin: Manufacturing excellence through virtual factory replication. White Pap. 2014, 1, 1–7. [Google Scholar]
- Jones, D.; Snider, C.; Nassehi, A. Characterising the Digital Twin: A systematic literature review. CIRP J. Manuf. Sci. Technol. 2020, 29, 36–52. [Google Scholar] [CrossRef]
- Liu, M.; Fang, S.; Dong, H. Review of digital twin about concepts, technologies, and industrial applications. J. Manuf. Syst. 2021, 58, 346–361. [Google Scholar] [CrossRef]
- Errandonea, I.; Beltran, S.; Arrizabalaga, S. Digital Twin for maintenance: A literature review. Comput. Ind. 2020, 123, 103316. [Google Scholar] [CrossRef]
- Shafto, M.; Conroy, M.; Doyle, R. DRAFT Modelling, Simulation, Information Technology & Processing Roadmap—Technology Area 11; National Aeronautics and Space Administration: Washington, DC, USA, 2010. [Google Scholar]
- Phanden, R.; Sharma, P.; Dubey, A. A review on simulation in digital twin for aerospace, manufacturing and robotics. Mater. Today Proc. 2021, 38, 174–178. [Google Scholar] [CrossRef]
- Hanel, A.; Schnellhardt, T.; Wenkler, E. The development of a digital twin for machining processes for the application in aerospace industry. Procedia CIRP 2020, 93, 1399–1404. [Google Scholar] [CrossRef]
- Guo, J.; Hong, H.; Zhong, K. Production management and control method of aerospace manufacturing workshops based on digital twin. China Mech. Eng. 2020, 31, 808. [Google Scholar]
- Piromalis, D.; Kantaros, A. Digital twins in the automotive industry: The road toward physical-digital convergence. Appl. Syst. Innov. 2022, 5, 65. [Google Scholar] [CrossRef]
- Rajesh, K.; Manikandan, N.; Ramshankar, C. Digital twin of an automotive brake pad for predictive maintenance. Procedia Comput. Sci. 2019, 165, 18–24. [Google Scholar] [CrossRef]
- Son, Y.; Park, T.; Lee, D. Digital twin–based cyber-physical system for automotive body production lines. Int. J. Adv. Manuf. Technol. 2021, 115, 291–310. [Google Scholar] [CrossRef]
- Yan, D.; Sha, W.; Wang, D. Digital twin-driven variant design of a 3C electronic product assembly line. Sci. Rep. 2022, 12, 3846. [Google Scholar] [CrossRef]
- Xu, J.; Guo, T. Application and research on digital twin in electronic cam servo motion control system. Int. J. Adv. Manuf. Technol. 2021, 112, 1145–1158. [Google Scholar] [CrossRef]
- Leng, J.; Zhang, H.; Yan, D. Digital twin-driven manufacturing cyber-physical system for parallel controlling of smart workshop. J. Ambient Intell. Humaniz. Comput. 2019, 10, 1155–1166. [Google Scholar] [CrossRef]
- Psarommatis, F.; May, G. A literature review and design methodology for digital twins in the era of zero defect manufacturing. Int. J. Prod. Res. 2022, 1–21. [Google Scholar] [CrossRef]
- Dong, Y.; Chen, Q.; Ding, W.; Shao, N.; Chen, G.; Li, G. State Evaluation and Fault Prediction of Protection System Equipment Based on Digital Twin Technology. Appl. Sci. 2022, 12, 7539. [Google Scholar] [CrossRef]
- Guo, K.; Wan, X.; Liu, L.; Gao, Z.; Yang, M. Fault Diagnosis of Intelligent Production Line Based on Digital Twin and Improved Random Forest. Appl. Sci. 2021, 11, 7733. [Google Scholar] [CrossRef]
- Peri, D.; Campana, E. High-fidelity models and multi-objective global optimization algorithms in simulation-based design. J. Ship Res. 2005, 49, 159–175. [Google Scholar] [CrossRef]
- Xia, M.; Shao, H.; Williams, D. Intelligent fault diagnosis of machinery using digital twin-assisted deep transfer learning. Reliab. Eng. Syst. Saf. 2021, 215, 107938. [Google Scholar] [CrossRef]
- Steindl, G.; Stagl, M.; Kasper, L.; Kastner, W.; Hofmann, R. Generic Digital Twin Architecture for Industrial Energy Systems. Appl. Sci. 2020, 10, 8903. [Google Scholar] [CrossRef]
- Piltan, F.; Kim, C.-H.; Kim, J.-M. Bearing Crack Diagnosis Using a Smooth Sliding Digital Twin to Overcome Fluctuations Arising in Unknown Conditions. Appl. Sci. 2022, 12, 6770. [Google Scholar] [CrossRef]
- Sleiti, K.; Kapat, S.; Vesely, L. Digital twin in energy industry: Proposed robust digital twin for power plant and other complex capital-intensive large engineering systems. Energy Rep. 2022, 8, 3704–3726. [Google Scholar] [CrossRef]
- Lei, Z.; Zhou, H.; Hu, W. Toward a web-based digital twin thermal power plant. IEEE Trans. Ind. Inform. 2021, 18, 1716–1725. [Google Scholar] [CrossRef]
- Xu, B.; Wang, J.; Wang, X. A case study of digital-twin-modelling analysis on power-plant-performance optimizations. Clean Energy 2019, 3, 227–234. [Google Scholar] [CrossRef] [Green Version]
- Yu, J.; Petersen, N.; Liu, P. Hybrid modelling and simulation of thermal systems of in-service power plants for digital twin development. Energy 2022, 260, 125088. [Google Scholar] [CrossRef]
- Yu, J.; Liu, P.; Li, Z. Hybrid modelling and digital twin development of a steam turbine control stage for online performance monitoring. Renew. Sustain. Energy Rev. 2020, 133, 110077. [Google Scholar] [CrossRef]
- Sunil, P.; Barve, J.; Nataraj, P. Mathematical modeling, simulation and validation of a boiler drum: Some investigations. Energy 2017, 126, 312–325. [Google Scholar] [CrossRef]
- Glushkov, D.; Paushkina, K.; Vershinina, K.; Vysokomornaya, O. Slagging Characteristics of a Steam Boiler Furnace with Flare Combustion of Solid Fuel When Switching to Composite Slurry Fuel. Appl. Sci. 2023, 13, 434. [Google Scholar] [CrossRef]
- Astrom, K.; Eklund, K. A simplified non-linear model of a drum boiler-turbine unit. Int. J. Control 1972, 16, 145–169. [Google Scholar] [CrossRef] [Green Version]
- Astrom, K.; Bell, R. Drum-boiler dynamics. Automatica 2000, 36, 363–378. [Google Scholar] [CrossRef]
- Bhambare, K.; Mitra, S.; Gaitonde, U. Modeling of a coal-fired natural circulation boiler. J. Energy Resour. Technol. 2007, 129, 159–167. [Google Scholar] [CrossRef]
- Yang, Y.; Liu, J. Research on the algorithm of the coal mill primary air flow prediction based on the hybrid modelling. Chin. J. Sci. Instrum. 2016, 37, 1913–1919. [Google Scholar]
- Li, J.; Zhou, D.; Xiao, W. Hybrid Modeling of Gas Turbine based on Neural Network. J. Eng. Therm. Energy Power 2019, 34, 33–39. [Google Scholar]
- Jain, A.; Mao, J.; Mohiuddin, K. Artificial neural networks: A tutorial. Computer 1996, 29, 31–44. [Google Scholar] [CrossRef] [Green Version]
- Hornik, K. Approximation capabilities of multilayer feedforward networks. Neural Netw. 1991, 4, 251–257. [Google Scholar] [CrossRef]
- Smrekar, J.; Assadi, M.; Fast, M. Development of artificial neural network model for a coal-fired boiler using real plant data. Energy 2009, 34, 144–152. [Google Scholar] [CrossRef]
- Deepika, K.K.; Varma, P.S.; Reddy, C.R.; Sekhar, O.C.; Alsharef, M.; Alharbi, Y.; Alamri, B. Comparison of Principal-Component-Analysis-Based Extreme Learning Machine Models for Boiler Output Forecasting. Appl. Sci. 2022, 12, 7671. [Google Scholar] [CrossRef]
- Ilamathi, P.; Selladurai, V.; Balamurugan, K. Modeling and optimization of unburned carbon in coal-fired boiler using artificial neural network and genetic algorithm. J. Energy Resour. Technol. 2013, 135, 032201. [Google Scholar] [CrossRef]
- Smrekar, J.; Pandit, D.; Fast, M. Prediction of power output of a coal-fired power plant by artificial neural network. Neural Comput. Appl. 2010, 19, 725–740. [Google Scholar] [CrossRef]
- Grimaccia, F.; Niccolai, A.; Mussetta, M.; D’Alessandro, G. ISO 50001 Data Driven Methods for Energy Efficiency Analysis of Thermal Power Plants. Appl. Sci. 2023, 13, 1368. [Google Scholar] [CrossRef]
- Zhang, Y.; Liu, P.; Li, Z. Hybrid Modeling of Gas Turbine Based on Dominant Factors Method. J. Eng. Thermophys. 2021, 42, 2787–2795. [Google Scholar]
- Li, S.; Tan, P.; Rao, D. Modeling of Coal-fired Generating Unit Coordination System with Data and Mechanism. J. Eng. Thermophys. 2022, 43, 19–26. [Google Scholar]
- Wu, X.; Shen, J.; Li, Y. Data-driven modeling and predictive control for boiler–turbine unit. IEEE Trans. Energy Convers. 2013, 28, 470–481. [Google Scholar] [CrossRef]
- Dong, X.; Shen, J.; He, G. A general radial basis function neural network assisted hybrid modeling method for photovoltaic cell operating temperature prediction. Energy 2021, 234, 121212. [Google Scholar] [CrossRef]
- Heo, J.; Lee, K.; Garduno-Ramirez, R. Multi-objective control of power plants using particle swarm optimization techniques. IEEE Trans. Energy Convers. 2006, 21, 552–561. [Google Scholar] [CrossRef]
- Zhao, G.; Cui, Z.; Xu, J. Hybrid modeling-based digital twin for performance optimization with flexible operation in the direct air-cooling power unit. Energy 2022, 254, 124492. [Google Scholar] [CrossRef]
- Ghosh, D.; Hermonat, E.; Mhaskar, P. Hybrid modeling approach integrating first-principles models with subspace identification. Ind. Eng. Chem. Res. 2019, 58, 13533–13543. [Google Scholar] [CrossRef]
- Lv, C. System Simulation and Modelling of Large Thermal Power Unit; Tsinghua University Press: Beijing, China, 2002. [Google Scholar]
- Graves, A.; Graves, A. Long short-term memory. Supervised Seq. Label. Recurr. Neural Netw. 2012, 37–45. [Google Scholar]
- Jozefowicz, R.; Zaremba, W.; Sutskever, I. An empirical exploration of recurrent network architectures. Int. Conf. Mach. Learn. 2015, 37, 2342–2350. [Google Scholar]
- Chung, J.; Gulcehre, C.; Cho, K.H. Empirical evaluation of gated recurrent neural networks on sequence modeling. arXiv 2014, arXiv:1412.3555. [Google Scholar] [CrossRef]
- Sherstinsky, A. Fundamentals of recurrent neural network (RNN) and long short-term memory (LSTM) network. Phys. D Nonlinear Phenom. 2020, 404, 132306. [Google Scholar] [CrossRef] [Green Version]
- Werbos, P. Backpropagation through time: What it does and how to do it. Proc. IEEE 1990, 78, 1550–1560. [Google Scholar] [CrossRef] [Green Version]
- Gonzalez, J.; Yu, W. Non-linear system modeling using LSTM neural networks. IFAC 2018, 51, 485–489. [Google Scholar] [CrossRef]
- Psarommatis, F.; May, G. A standardized approach for measuring the performance and flexibility of digital twins. Int. J. Prod. Res. 2022, 1–16. [Google Scholar] [CrossRef]
Inputs | Meanings | Inputs | Meanings | Outputs | Meanings | Outputs | Meanings |
---|---|---|---|---|---|---|---|
normalized speed of coal feeder | net calorific value | coal flow | heat absorption of water wall | ||||
primary cool air flow | the temperature of evaporation area | temperature of air–coal mixture | the mass of liquid region in drum | ||||
primary hot air flow | the inlet water flow | gas density | saturated vapor density | ||||
coal flow | the enthalpy of inlet water | average temperature of gas in furnace | the enthalpy of water in drum | ||||
secondary air flow | the heat absorption of water wall | furnace pressure | the enthalpy of saturated vapor–water mixture in riser | ||||
gas flow | the pressure of super-heater | gas oxygen content |
Symbols | Operation | Symbols | Operation | Symbols | Operation |
---|---|---|---|---|---|
Summation | Product | Exponential | |||
Thermodynamic property functions | Function of vapor content of vapor–water mixture | Square root |
Known | Values | Known | Values | Unascertained | Values | Unascertained | Values |
---|---|---|---|---|---|---|---|
/ | |||||||
/ | |||||||
Known | Values | Known | Values | Unascertained | Values | Unascertained | Values |
---|---|---|---|---|---|---|---|
/ | / | ||||||
/ |
Known | Values | Known | Values | Known | Values | Unascertained | Values |
---|---|---|---|---|---|---|---|
Parameter | Value | Parameter | Value | Parameter | Value | Parameter | Value | Parameter | Value |
---|---|---|---|---|---|---|---|---|---|
41 | 276 | 30 | 1.022 | 1.3 | |||||
56.4 | 100 | 2.5 | −600 | 200 | |||||
1667 | 0.001 | 0.001 | 1.5 | ||||||
5.25 | 1.416 | 16,855 | |||||||
14.286 | 20 | 1.25 | 118.53 | ||||||
1290 |
Parameter | Range | Std. Range | Parameter | Range | Std. Range | Parameter | Range | Std. Range |
---|---|---|---|---|---|---|---|---|
Parameter | Range | Std. Range | Parameter | Range | Std. Range | Parameter | Range | Std. Range |
---|---|---|---|---|---|---|---|---|
Parameter | Std. Value | Con. Value | Actual Value | Parameter | Std. Value | Con. Value | Actual Value |
---|---|---|---|---|---|---|---|
0.4666 | 96.9988 | 97 | 0.3694 | 0.2477 | 0.245 | ||
0.8617 | 2.0617 | 1.988 | 0.8076 | ||||
0.1774 | 0.1774 | / | 0.1836 | 0.3672 | / | ||
0.3447 | 0.5169 | 1.3101 | 1.31 | ||||
0.1650 | 0.4461 | 0.0523 | 0.05 | ||||
0.6089 | 5.4134 | 5.4135 | 0.2476 | 0.0298 | 0.0287 | ||
−0.3812 | / | 0.9328 | 0.9798 | 0.99 | |||
0.9738 | / | 0.3334 | 1285.01 | 1283.85 | |||
0.3048 | 429144.41 | 429150 | 0.8271 |
Indexes | Output | MMNP | EM-LSTM | EM-GRU | HMPIO |
---|---|---|---|---|---|
AOP (%) | 85.51 | 2.66 | 1.41 | 0.06 | |
75.01 | 0.2 | 0.5 | 0.17 | ||
ACVAR | 0.0438 | 0.0391 | 0.0394 | 0.0363 | |
0.6771 | 0.0147 | 0.0149 | 0.0148 | ||
GDTA (%) | global | 80.26 | 1.43 | 0.95 | 0.12 |
GAVAR | global | 0.3605 | 0.0269 | 0.0271 | 0.0256 |
ART (s) | global | 0.0044 | 0.0041 | ||
RTVAR | global |
Indexes | Output | MMNP | EM-LSTM | EM-GRU | HMPIO | HM |
---|---|---|---|---|---|---|
AOP (%) | 5.23 | 0.80 | 0.63 | 3.99 | 0.01 | |
9.64 | 0.07 | 0.07 | 0.28 | 0.02 | ||
3.68 | 0.53 | 0.38 | 2.69 | 0.01 | ||
61.55 | 0.4 | 0.36 | 0.24 | 0.04 | ||
164.94 | 0.13 | 0.07 | 0.56 | 0.05 | ||
ACVAR | 0.0018 | 0.0011 | ||||
0.0074 | 0.0012 | 0.0012 | 0.0012 | 0.0013 | ||
0.0014 | ||||||
0.1985 | ||||||
0.6221 | 0.0025 | 0.0025 | 0.0028 | 0.0025 | ||
GDTA (%) | global | 49.01 | 0.39 | 0.30 | 1.55 | 0.03 |
GAVAR | global | 0.1662 | 0.0010 | 0.0012 | 0.0010 | |
ART (s) | global | 0.0048 | 0.0045 | 0.0024 | ||
RTVAR | global |
Indexes | Output | MMNP | EM-LSTM | EM-GRU | HMPIO | HM |
---|---|---|---|---|---|---|
AOP (%) | 35.72 | 3.07 | 4.80 | 11.92 | 0.48 | |
3.20 | 0.27 | 0.19 | 0.22 | 0.09 | ||
9.14 | 0.42 | 0.52 | 2.48 | 0.62 | ||
2.24 | 0.24 | 0.22 | 0.85 | 0.18 | ||
ACVAR | 0.0350 | 0.0022 | 0.0029 | 0.0035 | 0.0021 | |
0.0022 | 0.0016 | 0.0016 | 0.0017 | 0.0017 | ||
0.0080 | 0.0010 | 0.0010 | 0.0038 | 0.0014 | ||
0.0041 | 0.0039 | 0.0038 | 0.0039 | 0.0038 | ||
GDTA (%) | global | 12.58 | 1.00 | 1.43 | 3.87 | 0.34 |
GAVAR | global | 0.0123 | 0.0022 | 0.0023 | 0.0032 | 0.0023 |
ART (s) | global | 0.0044 | 0.0046 | 0.0022 | ||
RTVAR | global |
Question | MMNP | HMPIO | EM | HM |
---|---|---|---|---|
Q1: Can the DTM be used in other use cases without any changes? (YES (Y) or NO (N)) | N (−0.8) | N (−0.8) | Y (+0.8) | N (−0.8) |
Q2: Does the DTM require specific experiments to develop the DT (S) or can it be developed using real-time or historical data (NS)? | NS (+0.5) | NS (+0.5) | NS (+0.5) | NS (+0.5) |
Q3: Can the number of input parameters be increased? | N (−0.6) | Y (+0.6) | Y (+0.6) | Y (+0.6) |
Q3.1: Are there any limitations to increasing the number of input parameters? (if Q3 is YES) | / | N (+0.2) | N (+0.2) | N (+0.2) |
Q3.3: Does increasing the number of input parameters require modification of the DTM? (if Q3 is YES) | / | Y (−0.2) | N (+0.2) | Y (−0.2) |
Q3.4: Does increasing the number of input parameters affect the output parameters? (if Q3 is YES) | / | Y (−0.2) | Y (−0.2) | Y (−0.2) |
Q4: Can the number of input parameters be decreased? | N (−0.4) | N (−0.4) | Y (+0.4) | N (−0.4) |
Q4.1: Does decreasing the number of input parameters affect the output parameters? (if Q4 is YES) | / | / | Y (−0.2) | / |
Q4.2: Does decreasing the number of input parameters require modification of the DTM? (if Q4 is YES) | / | / | N (+0.2) | / |
Q5: Can the DTM handle more than one output parameter at the same time? (No need for aggregation of multiple parameters into a single value.) | Y (+0.6) | Y (+0.6) | Y (+0.6) | Y (+0.6) |
Q6: Can the number of output parameters be increased? | N (−0.5) | N (−0.5) | Y (+0.5) | N (−0.5) |
Q6.1: Are there any limitations on increasing the number of output parameters in the DTM? (if Q6 is YES) | / | / | Y (−0.2) | / |
Q7: Can the DTM adapt to new operational conditions? | Y (+0.8) | Y (+0.8) | Y (+0.8) | Y (+0.8) |
Q7.1: Is the adaptation of DTM performed automatically(A)/manually(M)? (if Q7 is YES) | A (+0.3) | A (+0.3) | A (+0.3) | A (+0.3) |
Q7.2: Does the adaptation of the DTM require additional data? (if Q7 is YES) | Y (−0.3) | Y (−0.3) | Y (−0.3) | Y (−0.3) |
Q8: Can the DTM be executed using a conventional hardware computer? | Y (+0.3) | Y (+0.3) | Y (+0.3) | Y (+0.3) |
Q9: Does the use of the DTM require special training? | N (+0.3) | N (+0.3) | N (+0.3) | N (+0.3) |
Total score | 5 | 6 | 9.6 | 6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, Y.; Cai, Y.; Jiang, H. Recurrent Neural Network-Based Hybrid Modeling Method for Digital Twin of Boiler System in Coal-Fired Power Plant. Appl. Sci. 2023, 13, 4905. https://doi.org/10.3390/app13084905
Zhao Y, Cai Y, Jiang H. Recurrent Neural Network-Based Hybrid Modeling Method for Digital Twin of Boiler System in Coal-Fired Power Plant. Applied Sciences. 2023; 13(8):4905. https://doi.org/10.3390/app13084905
Chicago/Turabian StyleZhao, Yanbo, Yuanli Cai, and Haonan Jiang. 2023. "Recurrent Neural Network-Based Hybrid Modeling Method for Digital Twin of Boiler System in Coal-Fired Power Plant" Applied Sciences 13, no. 8: 4905. https://doi.org/10.3390/app13084905
APA StyleZhao, Y., Cai, Y., & Jiang, H. (2023). Recurrent Neural Network-Based Hybrid Modeling Method for Digital Twin of Boiler System in Coal-Fired Power Plant. Applied Sciences, 13(8), 4905. https://doi.org/10.3390/app13084905