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Abstract: Due to the simplified assumptions or unascertained equipment parameters, traditional
mechanism models of boiler system in coal-fired power plant usually have predictive errors that
cannot be ignored. In order to further improve the predictive accuracy of the model, this paper
proposes a novel recurrent neural network-based hybrid modeling method for digital twin of boiler
system. First, the mechanism model of boiler system is described through recurrent neural network
(RNN) to facilitate training and updating parameters, while the interpretability of the model does
not degenerate. Second, for the time-varying parameters in the mechanism model, the functional
relationship between them and the state variables is constructed by neurons to improve the predictive
accuracy. Third, the long short-term memory (LSTM) neural network model is established to describe
the unascertained dynamic characteristics to compensate the predictive residual of the mechanism
model. Fourth, the update architecture and training algorithm applicable to the hybrid model
are established to realize the iterative optimization of model parameters. Finally, experimental
results show that the hybrid modeling method proposed in this paper can improve the predictive
performance of traditional models effectively.
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1. Introduction

With the development of the Industry 4.0 Plan in various countries, it is inevitable to
establish digital intelligent factories by using advanced methods and technologies such as
big data, artificial intelligence and industrial Internet [1–4]. Digital twin, first proposed by
Grieves in 2003 [5], is an effective way for interconnection between information space and
the physical world, which can realize the deep integration of information technology and
traditional industry [6–8]. Originally, NASA used digital twin to monitor and predict the
flight status of spacecraft to help engineers make correct decisions [9]. Since then, digital
twin has been gradually receiving attention from researchers in various fields, especially in
the manufacturing industry such as aerospace [10–12], automotive [13–15] and electronic
manufacturing [16–18]. According to the statistical results of Psarommatis [19], we have the
following information. Frist, the proportion of digital twin research is approximately 24%
for aerospace and automotive, about 10% for electronics and component manufacturing,
and less than 1% for energy industry. This indicates that few references study digital
twin for coal-fired power plants. Second, approximately 55.5% of the references focus
on ways to improve and ensure the quality of the production process and products by
using digital twin, and about 18% of the existing references study the applications of
digital twin for process optimization and production control. These issues are often highly
correlated with the accuracy of the digital twin model. Thereby, the high-fidelity model
is the solid foundation and powerful support for improving system control performance,
optimizing production strategies, predicting equipment health status, increasing efficiency
and reducing pollutant emissions [20–25]. Although the digital twin architectures [26–28],
hybrid modelling of thermal systems [29] and modelling of steam turbine [30] for coal-fired
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power plants are gradually being proposed, the further in-depth and enriched research is
still needed on digital twin modeling for boiler system in coal-fired power plants.

Guided by the aforementioned obstacles and gaps, in this paper, we propose a novel
hybrid modeling method to improve the accuracy of digital twin model for boiler system.
The main contributions of this paper lie in the following four aspects. (1) On the basis
of ensuring the interpretability of the mechanism model, in order to facilitate training
and updating parameters, this paper uses the recurrent neural network to describe the
mechanism dynamic characteristics of the boiler system. (2) By adding new neurons to the
mechanism model, the functional relationship between time-varying parameters and input
variables is properly described to decrease the errors caused by parameters uncertainty. (3)
For the sake of reducing the predictive residual of the mechanism model, the LSTM-based
error-compensation model is formed. (4) To achieve the iterative optimization of hybrid
model parameters, the update architecture and training algorithm are established. Finally,
the experimental results show that the proposed method could ensure the high fidelity of
the digital twin hybrid model.

The rest of this paper is organized as follows. In section “State of the art”, the ex-
isting modeling methods and technologies is discussed in detail. The hybrid modeling
method is established and described in detail in section “Recurrent neural network-based
hybrid modeling method for digital twin of boiler system”. Section “Simulation results”
provides the simulation results to illustrate the effectiveness of the proposed method. The
conclusions and future work are discussed in section “Conclusion”.

2. State of the Art

Presently, the main modeling methods include mechanism analysis, data-driven iden-
tification, and the combination of the two. First, as the traditional modeling method,
mechanism analysis can well interpret the internal operating principle of the system and
fully reflect the physical characteristics of the plant [31,32]. Unfortunately, coal-fired power
plant is a huge and complex system with characteristics such as large inertia, large de-
lay, non-linearity and strong coupling due to many equipment and mutual coupling of
operation processes [33–35]. It is inevitable to propose numerous simplified assump-
tions, including simplified assumptions of equipment structure, working fluid status and
lumped equipment parameters, which doubtlessly leads to poor predictive accuracy of the
model [36]. In addition, due to slagging or oxidation, some parameters such as heat transfer
coefficient and pipeline damping coefficient may change with equipment operation, deviat-
ing from the nominal values provided by the equipment manufacturers. This may affect
the accuracy of the model more or less [37]. Second, the data-driven modeling method, also
called the black box modeling method, learns the dynamic characteristic information of the
plant through the input and output data [38]. Theoretically, if the number of neurons is
sufficient, the neural network model can approximate the non-linear function with arbitrary
accuracy [39]. In recent years, based on the data-driven method, the coal-fired boiler com-
bustion model [40,41], unburned carbon model of boiler [42] and output power prediction
model [43,44] have all achieved significant improvement. However, the accuracy of the
black box model depends too much on the data quality. Insufficient data, excessive data
noise and incomplete coverage of datasets may lead to poor generalization performance of
the model [45]. Furthermore, the parameters are not interpretable and lack the mechanism
formula to describe the relationship between variables [46].

Obviously, only using the mechanism modeling or data-driven method is hard to meet
the requirements of digital twin for high-fidelity models. Compared with the above two
methods, the hybrid modeling scheme can not only ensure the physical explanations, but
also improve the predictive accuracy of the digital twin model. Presently, there are two
main approaches. One is to establish mechanism model and identify parameters through
input and output data [47–49]. This method can compensate most of the errors caused
by the unascertained parameters, but it is powerless for the model errors introduced by
mechanism simplification. The other is to compensate all errors of mechanism model
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by using learning algorithms such as neural network [37,50,51]. Although this method
could improve the predictive accuracy of the digital twin hybrid model, it ignores the
improvement of the predictive performance for the mechanism model.

To deal with the above problems while ensuring the high fidelity of the digital twin
model, this paper proposes a novel recurrent neural network-based hybrid modeling
method which updates the mechanism parameters and data model parameters together.
The main work of this paper includes the following four parts. First, the mechanism
model of boiler system is established and then described through recurrent neural network
(RNN) structure. In this way, the parameters in the mechanism model can be updated
iteratively through the backpropagation algorithm, while the interpretability does not
deteriorate. Second, the time-varying parameters in the mechanism model change with
the change in input and state variables. By using neurons, the functional relationship
between time-varying parameters and input variables is properly described to improve
the predictive accuracy. Third, the long short-term memory (LSTM) neural network model
is established to compensate the predictive residual of the mechanism model. Due to
simplified assumptions, the predictive error caused by unmodeled dynamics cannot be
reduced by updating the parameters in mechanism model only. Therefore, it is an effective
solution to build a data-driven model to compensate the predictive residual of mechanism
model. Fourth, the hybrid model-oriented update architecture and back-propagation
through time (BPTT) training algorithm are established to realize the iterative optimization
of parameters. Finally, the experimental results show that the RNN-based hybrid modeling
method proposed in this article has better predictive performance than the mechanism
model and the black box model.

3. Recurrent Neural Network-Based Hybrid Modeling Method for Digital Twin of
Boiler System

In this section, the RNN-based hybrid modeling method for digital twin of boiler
system is established and described in detail, which includes the design process of digital
twin model (DTM) for boiler system, the construction of the overall DTM framework for the
boiler system, definitions of input and output parameters for DTM and the establishment
of DTM.

3.1. The Design Process of Digital Twin Model for Boiler System

To make it easier for readers to understand the design ideas of DTM for boiler system,
we present the design process of DTM clearly and completely according to the unified DT
design method proposed in [19], as shown in Figure 1. First, in Section 3.2.1, the purpose of
the DTM is defined, and then the DTM framework with basic information is constructed in
Section 3.2.2. Second, in Section 3.3, we define the input and output parameters of DTM
according to the mechanism analysis of boiler system. Third, the DTM of boiler system is
established through the above information and suitable technologies in Section 3.4. Fourth,
based on the existing data, historical data and real-time data, we develop the DTM and
optimize corresponding parameters in Section 4.1. Finally, in Section 4.2, we evaluate and
analyze whether the performance of DTM is acceptable.

3.2. The Construction of DTM Framework for Boiler System
3.2.1. The Purpose of DTM

Due to the complexity of the boiler system in coal-fired power plant, it is inevitable
to create simplified assumptions before mechanism modeling to ignore the high-order dy-
namics (usually called unmodeled dynamics) in system. Moreover, some parameters often
cannot be known accurately, which may affect the predictive precision of the mechanism
model. Therefore, it is necessary to establish a more accurate predictive model to ensure the
high fidelity of the digital twin model. The structure of actual system can be described as

F(x, u, p) = fM(x, u, p) + fP(x, u) + fW(x, u), (1)
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where x, u and p are state vector, input vector and parameter vector, respectively.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 4 of 26 
 

The Purpose of DTM

Define the purpose of the 
digital twin model (DTM)

Identify which process or 
asset the DTM will 

emulate

Specify how the DTM will 
be utilized

The DTM Framework with 
Basic Information

Identify the suitable 
technologies for the DTM 

development

Definitions of Input and Output Parameters for DTM

Define the input and output parameters of the 
DTM according to the mechanism characteristics

Establishment of DTM for Boiler System

Establish DTM through the suitable technologies

Develop the DTM based on the existing data, 
historical data, and real-time data from the actual 

system

DTM Training

Performance Analysis

Evaluate whether the performance of DTM meets 
the requirements

 
Figure 1. The design process of digital twin model for boiler system. 

3.2. The Construction of DTM Framework for Boiler System 
3.2.1. The Purpose of DTM 

Due to the complexity of the boiler system in coal-fired power plant, it is inevitable 
to create simplified assumptions before mechanism modeling to ignore the high-order 
dynamics (usually called unmodeled dynamics) in system. Moreover, some parameters 
often cannot be known accurately, which may affect the predictive precision of the mech-
anism model. Therefore, it is necessary to establish a more accurate predictive model to 
ensure the high fidelity of the digital twin model. The structure of actual system can be 
described as 

( , , ) ( , , ) ( , ) ( , )M P WF f f f= + +x u p x u p x u x u , (1)

where x , u  and p  are state vector, input vector and parameter vector, respectively. 
( , , )F x u p  represents the model of actual system, ( , , )Mf x u p  is mechanism model, 

( , )Pf x u  represents the errors caused by inaccurate parameters, ( , )Wf x u  represents the 
unmodeled dynamics of the system ignored due to the simplified assumptions. 

The main purpose of hybrid modeling is to calculate error terms ( , )Pf x u   and 
( , )Wf x u  by using measurement data information, and then achieve high-precision esti-

mation of the digital twin model ( , , )DF x u p  to the actual model ( , , )F x u p . The two ex-
isting hybrid modeling methods are shown in Figure 2a,b, respectively. The function of 
the method in Figure 2a is to establish a mechanism model, and then obtain the estimated 
error term ( , )E

Pf x u  through parameter identification. However, this method is power-
less for the error term ( , )Wf x u . The function of the method in Figure 2b is to establish a 
data-driven model to compensate error terms ( , )Pf x u   and ( , )Wf x u  . Nevertheless, it 
neglects to improve the predictive performance of the mechanism model. This paper com-
bines the above two methods to establish a hybrid model, as shown in Figure 2c. Most of 
the error term ( , )Pf x u  is compensated by training mechanism model parameters, and 
then the data model ( , )E

Wf x u  is established to approximate the error term ( , )Wf x u . This 
method not only improves the predictive performance of the mechanism model, making 
it more interpretable, but also enhances the predictive accuracy of the overall digital twin 
model. Thereby, the digital twin model can be written as 

( , , ) ( , , ) ( , ) ( , )E E
D M P WF f f f= + +x u p x u p x u x u . (2)

Figure 1. The design process of digital twin model for boiler system.

F(x, u, p) represents the model of actual system, fM(x, u, p) is mechanism model,
fP(x, u) represents the errors caused by inaccurate parameters, fW(x, u) represents the
unmodeled dynamics of the system ignored due to the simplified assumptions.

The main purpose of hybrid modeling is to calculate error terms fP(x, u) and fW(x, u)
by using measurement data information, and then achieve high-precision estimation of
the digital twin model FD(x, u, p) to the actual model F(x, u, p). The two existing hybrid
modeling methods are shown in Figure 2a,b, respectively. The function of the method in
Figure 2a is to establish a mechanism model, and then obtain the estimated error term
f E
P (x, u) through parameter identification. However, this method is powerless for the error

term fW(x, u). The function of the method in Figure 2b is to establish a data-driven model
to compensate error terms fP(x, u) and fW(x, u). Nevertheless, it neglects to improve the
predictive performance of the mechanism model. This paper combines the above two
methods to establish a hybrid model, as shown in Figure 2c. Most of the error term fP(x, u)
is compensated by training mechanism model parameters, and then the data model f E

W(x, u)
is established to approximate the error term fW(x, u). This method not only improves the
predictive performance of the mechanism model, making it more interpretable, but also
enhances the predictive accuracy of the overall digital twin model. Thereby, the digital
twin model can be written as

FD(x, u, p) = fM(x, u, p) + f E
P (x, u) + f E

W(x, u). (2)

3.2.2. The DTM Framework with Basic Information

The purpose of the DTM established in this paper is to reflect the dynamic processes of
the physical boiler system in real time accurately, as shown in Figure 3. The physical boiler
system includes pulverizing system, furnace and drum. Initially, the pulverized coals in
coal mills are sent into the furnace by the primary air and mixed with the secondary air for
combustion. Then, the water in the drum is heated to saturated vapor through the radiation
energy generated by fuel combustion in furnace. Finally, the saturated vapor flowing out
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of the drum is heated into super-heated vapor in the super heater. The inputs of each
device in Figure 3 include not only the outputs of the front device, but also the outputs of
other devices.
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In DTM of boiler system, the dynamic model corresponding to each device is estab-
lished. The usage mode of DTM is continuous because the dynamic processes of real
physical system need to be reflected synchronously. To identify the suitable technologies
for the DTM development, we need to propose the requirements for DTM. The first issue
to address is that of the way to achieve iterative updating of DTM parameters using input
and output data while ensuring the interpretability of DTM. The solution proposed in this
paper is to establish the mechanism model of the boiler system and describe it through
neural network structure. In this way, the parameters in the mechanism model can be
updated iteratively through the backpropagation algorithm, while the interpretability will
not deteriorate. Since the outputs of the previous time need to be used, it is a better way
to describe the mechanism model through recurrent neural network (RNN). The second
requirement for DTM is to ensure the high fidelity after adopting the simplified mechanism
model. Then, the LSTM-based error-compensation model is formed to reduce the predictive
residual of the mechanism model.

3.3. Definitions of Input and Output Parameters for DTM

In this subsection, we define the input and output for DTM, and then establish the
discrete-time model of each block (including pulverizing system, furnace and drum) based
on the mechanism analysis in [52] through the Euler method. The input and output
parameters are shown in Table 1. Then, the model of each block in boiler system can
be derived.

Table 1. Input and output parameters for DTM.

Inputs Meanings Inputs Meanings Outputs Meanings Outputs Meanings

Ng

normalized
speed of coal

feeder
Qnet,ar

net calorific
value Wc f coal flow Qsl

heat
absorption of

water wall

Wlk
primary cool

air flow Tslvp

the
temperature

of
evaporation

area

To

temperature
of air–coal

mixture
Mdl

the mass of
liquid region

in drum

Wrk
primary hot

air flow We
the inlet

water flow ρb gas density ρv
saturated

vapor density

Wc f coal flow He
the enthalpy
of inlet water Tgs

average
temperature

of gas in
furnace

Hw

the enthalpy
of water in

drum

Wsa
secondary air

flow Qsl

the heat
absorption of

water wall
Pb

furnace
pressure Hr

the enthalpy
of saturated
vapor–water

mixture in
riser

Wgs gas flow Ps

the pressure
of

super-heater
Ocp

gas oxygen
content

1. Pulverizing system

The function of the pulverizing system is to crush the coals and sent them into furnace
with the primary air. The inputs include normalized speed of coal feeder Ng, primary cool
air flow Wlk and hot air flow Wrk. The outputs include coal flow Wc f and temperature of
air–coal mixture To. The discrete-time model can be written as

Wc f (k) =
(

1− 1/Kc f

)
·Wc f (k− 1) + Wg/Kc f , (3)
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To(k) = To(k− 1) + (Qai + Qrc −Qao −Qmo)/KT , (4)

where Qai = Hlk · Wlk + Hrk · Wrk, Qrc = Hg · Wg, Qao = Cpa · Wpa · To(k− 1),
Wpa = Wlk +Wrk, Wg = Kg ·Ng, Qmo = Cc f ·Wc f (k− 1) ·∆Tm and ∆Tm = (To(k− 1)− Tg).
Kc f and KT are inertia time constants, Wg is inlet coal flow, Qai, Qrc and Qout are the energy
of inlet air flow, inlet coal flow and outlet mixture flow, respectively. Hlk, Hrk and Hg are the
enthalpy of cool air flow, hot air flow and coals, respectively. Cpa and Cc f are the specific
heat capacity of air and coals. Tg is the inlet temperature of coals. Kg is the maximum inlet
coal flow. k is sampling time.

2. Furnace

In the furnace, the pulverized coals mix with the secondary air to heat the water wall
through combustion. The inputs include coal flow Wc f , secondary air flow Wsa, gas flow
Wgs, net calorific value Qnet,ar and the temperature of evaporation area Tsv. The outputs
include gas density ρb, average temperature of gas in furnace Tgs, furnace pressure Pb, gas
oxygen content Ocp and heat absorption of water wall Qsl . The discrete-time model can be
written as

ρb(k) = ρb(k− 1) +
(

Wc f (k) + Wsa(k)−Wgs(k)
)

/Vb, (5)

Tgs(k) = Tgs(k− 1) +
(
Qci + Qsi −Qgo −Qsl

)
/Kbq, (6)

Pb(k) = Pb(k− 1) +
(

Wc f (k) + Wsa(k)−Wgs(k)
)

/Cb, (7)

Ocp(k) = Ocpi/Ko + (1− 1/Ko) ·Ocp(k− 1), (8)

Qsl(k) = Ksl · ∆Ts/Ksq +
(
1− 1/Ksq

)
·Qsl(k− 1), (9)

where Qci = Qnet,ar(k) ·Wc f (k), Qsi = Hsa ·Wsa(k), Qgo = Cgs ·Wgs(k) · Tgs(k− 1),

Vsa = Wsa/ρa, Ocpi =
(

Vsa −V0 ·Wc f

)
· 21/Vsa and ∆Ts = T4

gs(k− 1) − T4
sv(k). Vb is

furnace volume. Kbq, Ko and Ksq are inertia time constants. Hsa is the enthalpy of secondary
air flow, Cgs is the specific heat capacity of gas, Cb is flow capacity coefficient of furnace,
Ocpi is the inlet gas oxygen content at furnace bottom, Qsc is the radiant energy near fuel
combustion, Vsa is the volume flow of secondary air, V0 is the theoretical air consumption,
Ksl is the radiant heat transfer coefficient, ρa is the air density and 21 is the oxygen content
of air.

3. Drum

In the drum, the riser absorbs the energy from the furnace to heat the water into
saturated vapor, and then the saturated vapor flows out to super-heater through the top
of the drum. The inputs include the inlet water flow We from economizer, the enthalpy of
inlet water He, the heat absorption of water wall Qsl and the pressure of super-heater Ps.
The outputs include the mass of liquid region in drum Mdl , saturated vapor density ρv, the
enthalpy of water in drum Hw and the enthalpy of saturated vapor-water mixture in riser
Hr. The discrete-time model can be written as

Mdl(k) = Mdl(k− 1) + We(k)− qv ·Wro −Wdv, (10)

ρv(k) = ρv(k− 1) + V−1
v · ∆Wv, (11)

Hw(k) = Hw(k− 1) + (Qe + Qwv −Qd −Qdv)/Mdl , (12)
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Hr(k) = Hr(k− 1) + (Qsl + Qd −Qro)/Kr (13)

where qv = Fq(Hr, Hv, Hwv) = (Hr − Hwv)/(Hv − Hwv), Vv = Vdrum − (Mdl/ρw),
Wvp = qv ·Wro, Wdv = Kec ·

(
Pdr − Pex

dr
)
, Hwv = Tp(ρv), Hv = Tp(ρv), ρw = Tp(ρv),

Pdr = Tp(ρv), Qdv = Wdv · Hv, ∆Wv = Wvp + Wdv −Wv, Wv =
√
(Pdr − Ps)/R f ,

Qe = He(k) ·We(k), Qwv = Hwv · (1− qv) ·Wro, Qd = Hw(k− 1) ·Wro and Qro = Hr(k− 1) ·
Wro. qv is the vapor content of vapor–water mixture at riser outlet, Wro is the vapor–water
mixture flow of riser outlet, Vv is the volume of vapor region in drum, Wdv is the dynamic
evaporation in drum, Wv is the outlet vapor flow, R f is the pipe damping coefficient, Hwv
is the enthalpy of saturated water, Wd is inlet water flow of down tube, Kr is the inertia
time constants of riser, Vdrum is the volume of drum, ρw is water density in drum, Hv is
the enthalpy of saturated vapor, Kec is the coefficient, Pdr is the drum pressure, Pex

dr is the
drum pressure of the previous time, Tp(·) represents thermodynamic property function of
saturated vapor and saturated water. The Pdr, Hwv, Hv and ρw can be derived by Tp(ρv).
The Qe, Qwv, Qdv, Qd and Qro are the energy of inlet water flow, saturated water, dynamic
vapor, inlet water flow of down tube and vapor-water mixture flow of riser outlet, respec-
tively. Additionally, to simplify the drum model, we neglect the dynamic equation of the
down tube. That is, the inlet water flow of the down tube is equal to the outlet flow of riser.

3.4. Establishment of Digital Twin Model for Boiler System
3.4.1. Recurrent Neural Network Description of Boiler System

Because some parameters in mechanism model cannot be known accurately, it is
necessary to update the parameters iteratively by using learning algorithms to approximate
the true values continuously. If we describe the mechanism model through neural network
structure, the parameters can be easily trained through backpropagation algorithm. Before
building the neural network of mechanism model, the writing rules of neuron symbols
and weights in the network should be defined. Let the wm

G
(l)
hu represent the general form of

weights, where G represents the equipment block (i.e., the pulverizing block pz, furnace
block bo and drum block vp), m represents the order number of outputs corresponding to
the block, h, u and (l) represent the inputs order number of the neuron, the order number
of the neuron in the corresponding layer, and the order number of layers corresponding
to the neuron, respectively. Briefly speaking, the wm

G
(l)
hu represents the weight of the hth

input of the uth neuron in the lth layer of the mth output of the block G. Similarly, the bm
G
(l)
u

represents the bias of the uth neuron in the lth layer of the mth output of the block G. In
addition, w0

Gn represents the weight shared by each output of block G, where n is the order
number of the weight. In the neurons, the symbols in the left represent the operation on
the weighted input. The specific meanings are shown in Table 2. The symbols on the right
represent the output of neuron after calculation.

Table 2. Meanings of symbols in neurons.

Symbols Operation Symbols Operation Symbols Operation

∑ Summation ∏ Product Pw Exponential

Tp Thermodynamic
property functions Fq

Function of vapor
content of

vapor–water
mixture

Sq Square root

1. Pulverizing system

According to Equations (3) and (4), the neural network structures of the pulverizing
block are shown in Figure 4. In the two figures, weights mean the model parameters,
including known parameters and unascertained parameters. The known weights and
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unascertained weights are shown in Table 3. In Equation (4), the heat dissipation of pul-
verizing system is ignored for simplification. Therefore, neuron Qpz

bu is added to represent
the heat dissipation and is assumed to be a function of the inlet coal flow Wg, that is,

Qpz
bu = w2

pz
(2)
14 ·Wg + b2

pz
(2)
4 . The value or initial value of the parameters is provided in the

“Simulation results” section. In addition, it should be noted that all unmarked weights in
the networks are equal to 1.
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Table 3. The known weights and unascertained weights in pulverizing block.

Known Values Known Values Unascertained Values Unascertained Values

w2
pz

(1)
11

Hlk w2
pz

(2)
13

Hg w0
pz1 Kg w2

pz
(4)
11

1/KT

w2
pz

(1)
21

Hrk w2
pz

(3)
21

−1 w1
pz

(2)
11

1/Kc f w2
pz

(2)
14

/

b2
pz

(1)
3

−Tg w2
pz

(3)
31

−1 w1
pz

(2)
21 1− w1

pz
(2)
11 b2

pz
(2)
4

/

w2
pz

(2)
11

Cpa w2
pz

(2)
12

Cc f

2. Furnace

Based on Equations (5)–(9), the neural network structures of the furnace block are
shown in Figures 5–7. The known weights and unascertained weights are shown in Table 4.
In furnace block, generally speaking, KQ = 1/Kbq and Ksl are time-varying parameters,
and their specific dynamic characteristics and functional relationship cannot be known
accurately. Thus, by adding neurons to the network, these two parameters are expressed as
KQ = w2

bo
(2)
11 · ρ

−1
b and Ksl = w5

bo
(1)
11 ·Wgs + b5

bo
(1)
1 , respectively.
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Table 4. The known weights and unascertained weights in furnace block.

Known Values Known Values Unascertained Values Unascertained Values

w0
bo1 −1 w2

bo
(1)
13

Hsa w1
bo
(2)
11

1/Vb w2
bo
(1)
14

Cgs

w2
bo
(2)
32

−1 w2
bo
(2)
42

−1 w3
bo
(2)
11

1/Cb w4
bo
(2)
11

V0

w4
bo
(2)
21

−21 · ρsa b4
bo
(2)
1

21 w4
bo
(3)
11

1/Ko w4
bo
(3)
21 1− w4

bo
(3)
11

w5
bo
(2)
21

−1 w5
bo
(4)
11

1/Ksq w5
bo
(4)
21 1− w5

bo
(4)
11

w2
bo
(2)
11

/ w5
bo
(1)
11

/

b5
bo
(1)
1

/

3. Drum

Based on Equations (10)–(13), the neural network structures of the drum block are
shown in Figures 8–10. The known weights and unascertained weights are shown in
Table 5. The specific thermodynamic functions Tp(·) are provided in the “Simulation
results” section.
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Table 5. The known weights and unascertained weights in drum block.

Known Values Known Values Known Values Unascertained Values

w0
vp1 −1 w0

vp2 Kec w1
vp

(4)
21

−1 w0
vp3 Wro

w1
vp

(4)
31

−1 w2
vp

(3)
11

−1 b2
vp

(3)
1

Vdrum w2
vp

(3)
14

1/R f

w2
vp

(2)
24

−1 w2
vp

(4)
32

−1 w3
vp

(3)
12

−1 w4
vp

(3)
11

1/Kr

b3
vp

(3)
2

1 w3
vp

(5)
21

−1 w3
vp

(5)
41

−1

w4
vp

(2)
11

−1
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3.4.2. LSTM-Based Error Compensation Model for Digital Twin

As previously mentioned, the predictive error caused by unmodeled dynamics cannot
be reduced by updating the parameters in mechanism model only. Moreover, in practice,
most of the predictive errors caused by unascertained parameters can be reduced through
the mechanism parameter identification, but it is difficult to eliminate the errors completely.
For this reason, it is necessary to establish a data-driven model to compensate the predictive
residual of mechanism model. Long short-term memory (LSTM) network is a special kind
of RNN which can solve the problem of gradient disappearance and explosion during long
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sequence training [53]. In other words, compared with common RNN, LSTM has better
performance in long time series prediction [54–56].

Therefore, for each block, the error-compensation model is established based on
LSTM. The inputs of the LSTM are the same as that of the corresponding block in mech-
anism network, and the outputs are the compensation for the predictive error of the
mechanism model.

3.4.3. Parameter Updating Structure for Digital Twin Model of Boiler System

The parameter updating structure for digital twin hybrid model is shown in Figure 11.
According to the input xG, the actual system, mechanism model and error compensation
model generate the real output yG, predictive output of mechanism model ỹmc

G and that
of error compensation model ỹec

G , respectively. The subscript G represents the equipment
block. The parameters in mechanism model are updated based on the difference between
ỹmc

G and yG, that is, Emc
G = ỹmc

G − yG. This is because we hope that the predictive output
of the mechanism model can approach the real value as much as possible. For the error
compensation model, we hope that it can reduce the predictive residual of the mechanism
model as much as possible. Therefore, the parameters in compensation model are updated
based on the difference between ỹhy

G and yG, which can be expressed as Eec
G = ỹhy

G − yG.
The advantages of this structure can be summed up in the following three aspects. First,
the model parameters are updated to improve the predictive performance of mechanism
model. Second, due to the improvement in predictive accuracy, the mechanism model
has better interpretability. Third, the error compensation model is added and updated to
ensure the high fidelity of the digital twin model.
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Finally, the parameters can be iteratively updated through the gradient descent 
method, which can be expressed as mc

G G G GLη= − ⋅∂ ∂W W W  and mc
G G G GLη= − ⋅∂ ∂b b b . 

η  is the learning rate. 
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3.4.4. Training Algorithm for Digital Twin Model of Boiler System

Because the mechanism model and error compensation model mentioned above are
established based on RNN, Backpropagation Through Time (BPTT) method [57], the most
common optimization algorithm in RNN [58], is adopted in this paper for iterative training
and updating of network parameters in these two models. The time sequence propagation
structure of the network for mechanism model is shown in Figure 12. Assume that the total
length of the time sequence is T. The directions of the black arrow represent the forward
propagation through the network and time. On the contrary, that of the red arrow represent
the backpropagation of errors through the network and time. The general form of the
network equation at a certain moment t can be written as

ỹmc
G (t) = f(xG(t), ỹmc

G (t− 1), WG, bG), (14)
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where WG and bG are the weight and bias matrices of block G. Since the loss function at
time t is related to all previous moments, using the chain rule, the gradient of Lmc

G with
respect to WG is written as

∂Lmc
G

∂WG
=

T

∑
t=0

t

∑
k=0

∂Lmc
G (t)

∂ỹmc
G (t)

(
t

∏
j=k+1

∂ỹmc
G (j)

∂ỹmc
G (j− 1)

)
∂ỹmc

G (k)
∂WG

. (15)
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Finally, the parameters can be iteratively updated through the gradient descent 
method, which can be expressed as mc
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Similarly, we can also obtain

∂Lmc
G

∂bG
=

T

∑
t=0

t

∑
k=0

∂Lmc
G (t)

∂ỹmc
G (t)

(
t

∏
j=k+1

∂ỹmc
G (j)

∂ỹmc
G (j− 1)

)
∂ỹmc

G (k)
∂bG

. (16)

Finally, the parameters can be iteratively updated through the gradient descent
method, which can be expressed as WG = WG − η · ∂Lmc

G /∂WG and bG = bG − η ·
∂Lmc

G /∂bG. η is the learning rate.

4. Simulation Results

In this section, the parameter training results of the DTM are analyzed and the predic-
tive performance of different models is compared. Before model training, the preprocessing
of data and parameters is required. It should be noted that almost all parameters in gradi-
ent terms have physical meaning, so it is necessary to determine the reasonable range for
time-varying parameters that need to be updated. Additionally, due to the large difference
in the order of magnitude of each neuron (i.e., state variable), it is easy to cause gradient
explosion or gradient disappearance in backpropagation processes. Therefore, the range of
corresponding parameters or variables in gradient terms should be determined and then
their normalized values need to be derived.

4.1. Preprocessing of Data and Parameters
4.1.1. Mechanism Model

The values of parameters in three blocks are shown in Table 6. For unascertained
parameters, the initial value is considered. According to the thermodynamic properties of
saturated water and saturated vapor, functions Tp(·) can be written as

Pdr = Adr · ρ3
v + Bdr · ρ2

v + Cdr · ρv + Ddr, (17)

Hv = Av · ρ3
v + Bv · ρ2

v + Cv · ρv + Dv, (18)

Hwv = Awv · ρ4
v + Bwv · ρ3

v + Cwv · ρ2
v + Dwv · ρv + Ewv, (19)

ρw = Aw · H3
w + Bw · H2

w + Cw · Hw + Dw, (20)
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where Adr = 1.104 × 10−6, Bdr = −8.206 × 10−4, Cdr = 0.2265, Ddr = −0.2319,
Av = 2.331× 10−5, Bv = −6.728× 10−3, Cv = −2.151, Dv = 2860, Awv = −7.772× 10−7,
Bwv = 4.381× 10−4, Cwv = −0.102, Dwv = 14.12, Ewv = 870.3, Aw = −1.458× 10−7,
Bw = 4.729 × 10−4, Cw = −0.8501 and Dw = 1355. Then, the derivatives ∂Pdr/∂ρv,
∂Hv/∂ρv, ∂Hwv/∂ρv and ∂ρw/∂Hw in gradient terms can be easily derived. The range of
time-varying parameters, inputs and outputs are shown in Table 7. It should be noted that
the range such as [a× 10±c, b× 10±c] is written as [a, b]E±c for simplicity. In the training
processes, the positive and negative characteristics of parameters affect the direction of
gradient terms. Therefore, for parameters with different ranges, different normalization
ranges and methods need to be adopted to retain their positive and negative signs. In
general, the normalized interval of parameters can be divided into three categories, in-
cluding [0, 1], [−1, 1] and [−1, 0]. First, for parameter with interval [a, b], where a ≥ 0 and
b > 0, the normalized interval is set as [0, 1]. The normalization method can be written
as x = (x− a)/(b− a), where x is normalized value of x. Second, for parameter with
interval [a, b], where a < 0, b > 0 and a = −b, the normalized interval is set as [−1, 1]. The
normalization method can be written as x = x/b. Third, for parameter with interval [a, b],
where a < 0 and b < 0, the normalized interval is set as [−1, 0]. The normalization method
can be written as x = −(|x| − |b|)/(|a| − |b|). In Table 7, the normalized (std.) range of
parameters such as w2

pz
(2)
14 , b2

pz
(2)
4 , w5

bo
(1)
11 and b5

bo
(1)
1 is [−1, 1], and that of other parameters is

[0, 1]. Moreover, the learning rate η is set to 0.001 and the threshold of gradient is set to one.

Table 6. The value of parameters in mechanism models.

Parameter Value Parameter Value Parameter Value Parameter Value Parameter Value

Hlk 41 Hrk 276 Tg 30 Cpa 1.022 Cc f 1.3
Hg 56.4 Kg 100 Kc f 2.5 Kec −600 Hsa 200
KT 1667 w2

pz
(2)
14

0.001 b2
pz

(2)
4

0.001 Kr 2.97× 104 Cgs 1.5

V0 5.25 ρsa 1.416 Vb 16,855 b5
bo
(1)
1

5× 10−7 w2
bo
(2)
11

5× 10−5

Cb 14.286 Ko 20 Ksq 1.25 w5
bo
(1)
11

−2.5×
10−10 Vdrum 118.53

Wro 1290 R f
2.27×
10−6

4.1.2. Error Compensation Model

The range of outputs in error compensation model is shown in Table 8. The range
of inputs is the same as that of the mechanism model, which is shown in Table 7. Since
the error compensation model is established based on the general LSTM network, the
normalized range can be all selected as [0, 1], without considering the sign of outputs. The
LSTM network structure is set to 1-1-1, that is, an input layer, one hidden layer with 90
neurons and an output layer. The learning rate is set to 0.001, and the threshold of gradient
is set to one. The loss function is defined as

Lec
G =

T

∑
t=0

Lec
G (t) =

T

∑
t=0

1
2

(
ỹhy

G (t)− yG(t)
)T(

ỹhy
G (t)− yG(t)

)
, (21)

where ỹhy
G (t) = ỹmc

G (t) + ỹec
G (t). The ỹec

G and ỹhy
G represent the predictive outputs of error

compensation model and that of digital twin hybrid model of block G, respectively.
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Table 7. The range of time-varying parameters, inputs and outputs.

Parameter Range Std. Range Parameter Range Std. Range Parameter Range Std. Range

Ng [0.54, 0.75] [0, 1] Wlk [19, 32] [0, 1] Wrk [78, 92] [0, 1]
Wc f [54, 80] [0, 1] To [120, 145] [0, 1] w1

pz
(1)
11

[90, 105] [0, 1]

w1
pz

(2)
11

[0.1, 0.5] [0, 1] w2
pz

(2)
12

[1.2, 2.2] [0, 1] w2
pz

(4)
11 [4, 9]E−3 [0, 1]

w2
pz

(2)
14

[−1, 1] [−1, 1] b2
pz

(2)
4

[−2, 2] [−1, 1] Wsa [500, 700] [0, 1]
Wgs [590, 770] [0, 1] Qnet,ar [19, 21] [0, 1] Tslvp [329, 332] [0, 1]
ρb [1.3, 1.4] [0, 1] Tgs [1, 1.1]E+3 [0, 1] Pb [1.01, 1.02]E+5 [0, 1]

Ocp [2.6, 3.8] [0, 1] Qsl [5.2, 6.2]E+5 [0, 1] w1
bo
(2)
11 [5, 8.5]E−5 [0, 1]

w2
bo
(1)
14

[1, 1.6] [0, 1] w2
bo
(2)
11 [2, 8]E−5 [0, 1] w3

bo
(2)
11

[0.03, 0.08] [0, 1]

w4
bo
(2)
11

[4.5, 6] [0, 1] w4
bo
(3)
11

[0.01, 0.09] [0, 1] w5
bo
(1)
11 [−5, 5]E−10 [−1, 1]

w5
bo
(4)
11

[0.7, 1] [0, 1] b5
bo
(1)
1 [−6, 6]E−7 [−1, 1] We [440, 562] [0, 1]

He [1280, 1350] [0, 1] Ps [17.8, 18.3] [0, 1] Mdl [3.78, 3.87]E+4 [0, 1]
ρv [137, 149] [0, 1] Hw [1581, 1596] [0, 1] Hr [2010, 2074] [0, 1]

w0
vp3 [1280, 1295] [0, 1] w2

vp
(3)
14 [4.2, 4.5]E+5 [0, 1] w4

vp
(3)
11 [3.2, 4]E−5 [0, 1]

Table 8. The range of outputs in error compensation model.

Parameter Range Std. Range Parameter Range Std. Range Parameter Range Std. Range

∆ρec
b [−5, 1]E−3 [0, 1] ∆Tec

gs [−3, 4] [0, 1] ∆Pec
b [−4.5, 0.5] [0, 1]

∆Oec
cp [−0.04, 0.02] [0, 1] ∆Qec

sl [−6, 8]E+3 [0, 1] ∆Mec
dl [−150, 150] [0, 1]

∆ρec
v [−1, 4] [0, 1] ∆Hec

w [−8, 15] [0, 1] ∆Hec
r [−8, 15] [0, 1]

4.2. Model Training and Analysis of Predictive Performance
4.2.1. Model Training

The training and testing datasets used in this paper are collected from the 600 MW coal-
fired power plant simulator. The training process of parameters in three blocks is shown in
Figure 13. To display the parameters of each block in the same picture, the iterative curve
of normalized parameters is provided. The training process of some parameters shows
a trend of first falling and then rising, which may be related to the initial value of block
parameters. Additionally, the convergence speed of some parameters is slower than that of
other parameters, which may be related to the setting of threshold and the normalized range
of derivatives in gradient terms. The convergence (con.) value, normalized (std.) value and
actual value of all parameters are listed in Table 9. Due to the simplification of mechanism
model established in this paper, some corresponding parameters, especially dynamic
parameters such as Kc f , KT , Ko, Ksq and Kr, cannot be detected in the simulator directly.
Therefore, for these parameters, we obtain their approximate true values through the
derivation and calculation of other relevant parameters in the simulator. The convergence
value of most parameters is very close to the real value, except for parameters w2

bo
(2)
11 and

w0
vp3. The reasons for the large deviation of these two parameters may be the complex

gradient terms, the inappropriate normalized range of parameters and derivatives, and the
insufficient number of additional neurons. The additional neurons such as w2

pz
(2)
14 , b2

pz
(2)
4 ,

w5
bo
(1)
11 and b5

bo
(1)
1 are used for mapping the relationship between time-varying parameters

and state variables. Because they have no physical meaning, there are no corresponding
actual values in the simulator. With regard to the training of error compensation models,
we use the deep learning toolbox of MATLAB 2022a. The training processes are shown in
Figure 13.
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Table 9. The convergence value, normalized value and actual value of all parameters.

Parameter Std. Value Con. Value Actual Value Parameter Std. Value Con. Value Actual Value

w1
pz

(1)
11

0.4666 96.9988 97 w1
pz

(2)
11

0.3694 0.2477 0.245

w2
pz

(2)
12

0.8617 2.0617 1.988 w2
pz

(4)
11

0.8076 8× 10−4 7.93× 10−4

w2
pz

(2)
14

0.1774 0.1774 / b2
pz

(2)
4

0.1836 0.3672 /

w1
bo
(2)
11

0.3447 6.21× 10−5 6.13× 10−5 w2
bo
(1)
14

0.5169 1.3101 1.31

w2
bo
(2)
11

0.1650 2.99× 10−5 3.38× 10−5 w3
bo
(2)
11

0.4461 0.0523 0.05

w4
bo
(2)
11

0.6089 5.4134 5.4135 w4
bo
(3)
11

0.2476 0.0298 0.0287

w5
bo
(1)
11

−0.3812 −1.91× 10−10 / w5
bo
(4)
11

0.9328 0.9798 0.99

b5
bo
(1)
1

0.9738 5.84× 10−7 / w0
vp3 0.3334 1285.01 1283.85

w2
vp

(3)
14

0.3048 429144.41 429150 w4
vp

(3)
11

0.8271 3.862× 10−5 3.85× 10−5

4.2.2. Analysis of Predictive Performance

The predictive results Wc f and To of pulverizing system are shown in Figure 14, in-
cluding the curves of actual value, mechanism model with nominal parameters (MMNP),
LSTM-based empirical model (EM-LSTM), GRU-based empirical model (EM-GRU) and
hybrid model with parameter identification only (HMPIO). The upper subgraphs in Fig-
ure 14 depict the overall trend of outputs. As a supplement, the lower subgraphs show
the details of the corresponding output as well as the difference between models. Because
the time-varying parameters in MMNP are the initial nominal values and have not been
updated, there are differences between them and the true values. Undoubtedly, this leads
to unsatisfactory predictive accuracy. The EM-LSTM and EM-GRU are data-driven models,
which learn the dynamic characteristic information of the system through the input and
output data. The HMPIO can be said to be a mechanism model in the form of neural net-
works, which not only has interpretability, but also makes parameters easy to train through
BPTT algorithm. Compared to MMNP, HMPIO achieves higher predictive accuracy by
training the parameters to approximate the true values gradually. The iterative training



Appl. Sci. 2023, 13, 4905 18 of 24

results of the parameters are shown in Figure 13. According to the evaluation indexes
proposed by Psarommatis [59], the performance of digital twin model can be analyzed
comprehensively. The results are listed in Table 10. The indexes include the accuracy of each
output parameter (AOP), global DT accuracy (GDTA), the accuracy variance of each output
parameter (ACVAR), the global accuracy variance (GAVAR), the response time (ART) and
the response time variance (RTVAR). From the results in Table 10, for pulverizing system,
the HMPIO has the highest predictive accuracy and fastest response time. In addition,
for this block, the predictive accuracy of HMPIO can meet the requirements, so no error
compensation model (ECM) is added. The predictive results of furnace, including ρb, Tgs,
Pb, Ocp and Qsl , are shown in Figures 15 and 16. The predictive error of MMNP is much
larger than that of other methods, especially for Ocp and Qsl . As for the results of HMPIO
for variables ρb and Pb, there are predictive errors in both steady and dynamic processes.
Part of the reason is that the parameter optimization of the mechanism model can make it
close to the true value, which significantly reduces the predictive error, but still cannot be
consistent with the true value completely. Another part of the reason may be that there are
errors which cannot be eliminated due to the simplification of mechanism model. Because
of the differences in the optimization results of parameter w2

bo
(2)
11 that cannot be ignored,

there are large predictive errors in dynamic processes of HMPIO for Tgs, which leads to the
dynamic error of Qsl indirectly. Therefore, the ECM is added to compensate the error of
HMPIO. The green line in the figures represents the hybrid model with ECM. The hybrid
model (HM) proposed in this paper reduces the predictive residual of HMPIO effectively.
The results of GDTA in Table 11 demonstrate that the HM has the highest accuracy, only
one tenth of EM. Due to the ECM, the response time of HM is slower than that of MMNP
and HMPIO, but only half of that of EM. Although the improvement of HM accuracy
comes at the cost of sacrificing some response time, it can still meet the requirements for
the boiler system. Similarly, the predictive results of drum, including Mdl , ρv, Hw and
Hr, are shown in Figures 17 and 18. The reason why the curve of MMNP for output Mdl

has been rising is that the initial value of parameter w2
vp

(3)
14 is inaccurate, resulting in the

mass imbalance of liquid in drum. Due to the mutual conversion and calculation between
vapor and liquid, the drum is a complex non-linear block, which leads to poor predictive
performance of the simplified mechanism model MMNP, even for HMPIO. For outputs Mdl
and Hw, even though HMPIO has better predictive effect than MMNP, it still has obvious
predictive errors, especially in the dynamic processes. Meanwhile, as to output Mdl , the
predictive result of EM is also not very satisfactory. Comparing the results of these models,
we can see that the hybrid model has relatively excellent predictive performance. From the
results of GDTA in Table 12, we can derive that the accuracy of HM has been improved
by 66% and 76% compared to EM-LSTM and EM-GRU, respectively. Finally, we provide
the flexibility comparison in Table 13 according to reference [59]. From the total score, EM
has the highest flexibility, followed by HMPIO and HM, and MMNP has the lowest. HM,
MMNP and HMPIO are not as flexible as EM due to their mechanism model limiting the
number and relationship of input and output parameters. Although the interpretability of
HM comes at the cost of sacrificing some flexibility, compared to EM, HM improves the
accuracy and response time of digital twin models effectively. In conclusion, the hybrid
model established in this paper has relatively excellent predictive performance, which
ensures the high fidelity of digital twin model for boiler system. However, the datasets
used for training and verifying the model in this paper is limited and may not cover all
working conditions. Therefore, the generalization performance of hybrid model, especially
ECM, needs to be further studied in future work.
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Table 10. The evaluation indexes of digital twin model for pulverizing system.

Indexes Output MMNP EM-LSTM EM-GRU HMPIO

AOP (%)
Wc f 85.51 2.66 1.41 0.06
To 75.01 0.2 0.5 0.17

ACVAR
Wc f 0.0438 0.0391 0.0394 0.0363
To 0.6771 0.0147 0.0149 0.0148

GDTA (%) global 80.26 1.43 0.95 0.12
GAVAR global 0.3605 0.0269 0.0271 0.0256
ART (s) global 2.84× 10−5 0.0044 0.0041 7.43× 10−6

RTVAR global 2.20× 10−7 2.27× 10−5 9.29× 10−6 5.23× 10−8
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Table 11. The evaluation indexes of digital twin model for furnace.

Indexes Output MMNP EM-LSTM EM-GRU HMPIO HM

AOP (%)

ρb 5.23 0.80 0.63 3.99 0.01
Tgs 9.64 0.07 0.07 0.28 0.02
Pb 3.68 0.53 0.38 2.69 0.01

Ocp 61.55 0.4 0.36 0.24 0.04
Qsl 164.94 0.13 0.07 0.56 0.05

ACVAR

ρb 0.0018 7.09× 10−4 8.39× 10−4 0.0011 7.63× 10−4

Tgs 0.0074 0.0012 0.0012 0.0012 0.0013
Pb 0.0014 4.99× 10−4 5.94× 10−4 8.05× 10−4 5.41× 10−4

Ocp 0.1985 4.22× 10−5 4.69× 10−5 7.22× 10−5 4.51× 10−5

Qsl 0.6221 0.0025 0.0025 0.0028 0.0025
GDTA (%) global 49.01 0.39 0.30 1.55 0.03

GAVAR global 0.1662 9.90× 10−4 0.0010 0.0012 0.0010
ART (s) global 3.25× 10−6 0.0048 0.0045 2.69× 10−6 0.0024
RTVAR global 4.51× 10−9 1.42× 10−6 1.10× 10−6 2.01× 10−9 3.15× 10−7
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Table 12. The evaluation indexes of digital twin model for drum.

Indexes Output MMNP EM-LSTM EM-GRU HMPIO HM

AOP (%)

Mdl 35.72 3.07 4.80 11.92 0.48
ρv 3.20 0.27 0.19 0.22 0.09
Hw 9.14 0.42 0.52 2.48 0.62
Hr 2.24 0.24 0.22 0.85 0.18

ACVAR

Mdl 0.0350 0.0022 0.0029 0.0035 0.0021
ρv 0.0022 0.0016 0.0016 0.0017 0.0017
Hw 0.0080 0.0010 0.0010 0.0038 0.0014
Hr 0.0041 0.0039 0.0038 0.0039 0.0038

GDTA (%) global 12.58 1.00 1.43 3.87 0.34
GAVAR global 0.0123 0.0022 0.0023 0.0032 0.0023
ART (s) global 4.75× 10−6 0.0044 0.0046 7.24× 10−6 0.0022
RTVAR global 1.45× 10−9 6.41× 10−7 8.70× 10−6 5.19× 10−9 1.04× 10−7

Table 13. The flexibility index for digital twin model.

Question MMNP HMPIO EM HM

Q1: Can the DTM be used in other use cases without any
changes? (YES (Y) or NO (N)) N (−0.8) N (−0.8) Y (+0.8) N (−0.8)

Q2: Does the DTM require specific experiments to develop
the DT (S) or can it be developed using real-time or historical

data (NS)?
NS (+0.5) NS (+0.5) NS (+0.5) NS (+0.5)

Q3: Can the number of input parameters be increased? N (−0.6) Y (+0.6) Y (+0.6) Y (+0.6)
Q3.1: Are there any limitations to increasing the number of

input parameters? (if Q3 is YES) / N (+0.2) N (+0.2) N (+0.2)

Q3.3: Does increasing the number of input parameters
require modification of the DTM? (if Q3 is YES) / Y (−0.2) N (+0.2) Y (−0.2)
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Table 13. Cont.

Question MMNP HMPIO EM HM

Q3.4: Does increasing the number of input parameters affect
the output parameters? (if Q3 is YES) / Y (−0.2) Y (−0.2) Y (−0.2)

Q4: Can the number of input parameters be decreased? N (−0.4) N (−0.4) Y (+0.4) N (−0.4)
Q4.1: Does decreasing the number of input parameters affect

the output parameters? (if Q4 is YES) / / Y (−0.2) /

Q4.2: Does decreasing the number of input parameters
require modification of the DTM? (if Q4 is YES) / / N (+0.2) /

Q5: Can the DTM handle more than one output parameter at
the same time? (No need for aggregation of multiple

parameters into a single value.)
Y (+0.6) Y (+0.6) Y (+0.6) Y (+0.6)

Q6: Can the number of output parameters be increased? N (−0.5) N (−0.5) Y (+0.5) N (−0.5)
Q6.1: Are there any limitations on increasing the number of

output parameters in the DTM? (if Q6 is YES) / / Y (−0.2) /

Q7: Can the DTM adapt to new operational conditions? Y (+0.8) Y (+0.8) Y (+0.8) Y (+0.8)
Q7.1: Is the adaptation of DTM performed

automatically(A)/manually(M)? (if Q7 is YES) A (+0.3) A (+0.3) A (+0.3) A (+0.3)

Q7.2: Does the adaptation of the DTM require additional
data? (if Q7 is YES) Y (−0.3) Y (−0.3) Y (−0.3) Y (−0.3)

Q8: Can the DTM be executed using a conventional
hardware computer? Y (+0.3) Y (+0.3) Y (+0.3) Y (+0.3)

Q9: Does the use of the DTM require special training? N (+0.3) N (+0.3) N (+0.3) N (+0.3)
Total score 5 6 9.6 6

5. Conclusions and Future Work

In this paper, an RNN-based hybrid modeling method for digital twin of boiler system
is established to improve the predictive accuracy of mechanism model. The mechanism
model of main blocks in boiler system is described through RNN to facilitate training and
updating parameters. By adding neurons to mechanism model, the mapping between
time-varying parameters and state variables is constructed. In order to compensate the
predictive residual of the mechanism model, the LSTM-based error compensation model is
established. Moreover, the update architecture and training algorithm for hybrid model are
built to realize the iterative optimization of model parameters. Finally, the experimental
results show that the hybrid model has better predictive performance.

However, there are some shortcomings that need to be further studied. First, for a few
parameters, the optimization results are not satisfactory. In future work, we will explore
corresponding solutions. Second, in the training algorithm, the calculation of some gradient
terms is complex, which affects the optimization results of parameters. In the future, we
will try to develop an effective approach to optimize the calculation of gradient. Finally,
the datasets used for training and verifying the model are collected from a 600 MW power
plant simulator. In the future, we hope to further validate the hybrid model based on the
actual power plant datasets.
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