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Abstract: Speech enhancement has been extensively studied and applied in the fields of automatic
speech recognition (ASR), speaker recognition, etc. With the advances of deep learning, attempts
to apply Deep Neural Networks (DNN) to speech enhancement have achieved remarkable results
and the quality of enhanced speech has been greatly improved. In this study, we propose a two-
stage model for single-channel speech enhancement. The model has two DNNs with the same
architecture. In the first stage, only the first DNN is trained. In the second stage, the second DNN
is trained to refine the enhanced output from the first DNN, while the first DNN is frozen. A
multi-frame filter is introduced to help the second DNN reduce the distortion of the enhanced
speech. Experimental results on both synthetic and real datasets show that the proposed model
outperforms other enhancement models not only in terms of speech enhancement evaluation metrics
and word error rate (WER), but also in its superior generalization ability. The results of the ablation
experiments also demonstrate that combining the two-stage model with the multi-frame filter yields
better enhancement performance and less distortion.

Keywords: speech enhancement; two-stage training; multi-frame filter

1. Introduction

In real-world environments, speech is always corrupted by background noise, which
severely degrades speech intelligibility for human listeners and makes downstream tasks
such as automatic speech recognition (ASR) more challenging. Therefore, speech enhance-
ment, which suppresses the background noise to get clean speech, has been extensively
studied for decades and numerous methods have been proposed in this field.

Two primary approaches exist for speech enhancement: single-channel and multi-
channel. Single-channel speech enhancement operates on a single microphone input, while
multi-channel speech enhancement utilizes multiple microphone inputs to enhance the
speech signal. In this study, we mainly focus on single-channel speech enhancement, as
single-channel speech signals can be collected using only one microphone, making them
more common in real-life scenarios.

In the context of single-channel speech enhancement, traditional methods include
spectral-subtraction algorithms [1], Wiener filtering [2], non-negative matrix factoriza-
tion [3], spectrogram inversion [4], etc. These methods are generally computationally
efficient and exhibit good domain generalization. However, they assume that the back-
ground noise is stationary, that is, its spectral and temporal characteristics remain constant
over time, enabling accurate estimation of its statistical properties. In the presence of
non-stationary background noise, however, accurately capturing its statistical properties
becomes challenging as the noise continuously changes over time, leading to a substantial
performance degradation of these methods [5].

Appl. Sci. 2023, 13, 4926. https://doi.org/10.3390/app13084926 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app13084926
https://doi.org/10.3390/app13084926
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0003-4500-3515
https://doi.org/10.3390/app13084926
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app13084926?type=check_update&version=1


Appl. Sci. 2023, 13, 4926 2 of 14

In recent years, methods based on Deep Neural Networks (DNN) have shown their
superior capability in dealing with non-stationary noise compared with traditional methods
in both single-channel and multi-channel speech enhancement. These methods typically
train DNNs to learn a mapping from noisy speech to clean speech. The speech enhanced
by these methods tends to achieve high enhancement metrics scores. However, a recent
study [6,7] has shown that the DNNs can introduce distortions into the enhanced speech,
which will cause performance degradation of downstream tasks, such as ASR.

To minimize such distortions, in multi-channel speech enhancement, recent stud-
ies [8,9] have combined DNNs with low-distortion multi-channel filters. These studies
have achieved excellent results not only on speech enhancement but also on the down-
stream ASR task.

Although [8,9] have demonstrated that low-distortion filters can improve the perfor-
mance of neural networks in multi-channel scenarios, it should be noted that in multi-
channel scenarios, filters can exploit the spatial information inherent in microphone arrays,
which is not accessible in single-channel scenarios. Therefore, inspired by these studies,
we aim to investigate the performance of combining DNNs and conventional filters on
single-channel speech enhancement and the downstream ASR task. We adopt a similar
two-stage framework to [8], since we believe single-stage networks may suffer from per-
formance bottlenecks in recovering clean speech from degraded ones when faced with
challenging scenarios.

The main difference between our method and the one proposed in [8] is that our
method focuses on single-channel speech enhancement, so the networks and filters in our
method are designed for single-channel speech signals. Specifically, our method consists
of two DNNs, which have the same architecture but do not share the parameters, and
a single-channel filter module. In the first stage, the first DNN is trained to generate an
enhanced spectrum from the noisy spectrum. In the second stage, the first DNN is fixed,
and its output is used to compute the single-channel filter. The filtered result and the output
of the first DNN are used as extra features to guide the training of the second DNN for
better enhancement.

The rest of this study is organized as follows. In Section 2, we introduce related
research. The framework and DNN architecture of the proposed method, the training strat-
egy, and the single-channel filter are introduced in Section 3. In Section 4, the experimental
results and analysis are provided. Conclusions are given in Section 5.

2. Related Research
2.1. Speech Enhancement Based on Filters

Multi-channel filters are widely applied in multi-channel speech enhancement, since
they can utilize the extra spatial information contained in speech signals, thus achieving
good enhancement results. There has been a long history of research on how to design
filters with better enhancement performance, and many filters have been proposed, among
which the classical ones are the Wiener filter, minimum variance distortionless response
(MVDR) [10], minimum power distortionless response (MPDR) [11], etc.

Recently, low-distortion filters for single-channel speech enhancement have been
proposed, such as MFMVDR [12] and multi-frame Wiener filter (MFWF) [13]. Since single-
channel signals have no additional spatial information, these single-channel filters focus on
modeling the relationship between adjacent frames.

2.2. Speech Enhancement Based on DNNs

Existing speech enhancement methods can be divided into time-frequency (T-F) do-
main and time domain methods. For T-F domain methods, the input features are usually the
magnitude or the real and imaginary (RI) components of the short-time Fourier transform
(STFT) spectrum but the training targets can be different. Based on the training targets,
T-F domain methods can be further divided into mask-based methods and mapping-
based methods. Mask-based methods estimate a mask, which multiplies with the noisy
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T-F spectrum to get the enhanced spectrum. Commonly used masks include ideal ratio
mask (IRM) [14], phase-sensitive mask (PSM) [15], and complex ratio mask (CRM) [16].
Mapping-based methods estimate the enhanced spectrum directly. Common neural net-
work architectures used in T-F domain include long short-term memory (LSTM) [17],
convolutional recurrent network (CRN) [18], and U-Net [19].

Time domain methods directly estimate clean speech waveforms from noisy speech
waveforms. This end-to-end manner can work around the difficult phase estimation
problem and help the model learn proper representations that are suitable for enhancing
speech. Conv-TasNet [20] and dual-path recurrent neural network (DPRNN) [21] are two
typical works in time domain speech enhancement.

2.3. Combination of DNNs and Filters

A favorable property of multi-channel filters is that they introduce little distortion to
the enhanced speech. Thus, many studies in multi-channel speech enhancement combine
DNNs with multi-channel filters to obtain speech with higher quality and fewer distortions.

In [8], a two-stage approach was proposed for multi-channel speech enhancement.
First, the RI components of different channels are concatenated as input features for the
first DNN, which estimates the RI components of the target speech. The predicted speech
is then used to compute signal statistics for filters. Many kinds of filters have been tested,
such as MVDR, MPDR, multi-channel Wiener filter (MCWF), etc. Finally, the predicted
speech and the result of the filter are used as extra features to train the second DNN. This
model was modified into a multi-stage one in [9] and a multi-frame MCWF (MFMCWF) is
used to provide the filtering result.

The framework proposed in [8] has been migrated to single-channel scenarios. In [22],
a similar model is proposed for single-channel speech dereverberation and speaker separa-
tion. Since the filters used in [8] are originally designed for multi-channel speech signals,
the model proposed in [22] uses a linear-prediction module to estimate a dereverberation
filter based on the first DNN’s output. The predicted filter then provides the dereverberated
signal as extra features to help train the second DNN.

3. Method
3.1. Framework and Network Architecture

The proposed system is illustrated in Figure 1, with the objective of removing back-
ground noise while minimizing distortion, a more complex problem than simple noise
removal. To tackle this challenge, we adopted a problem decomposition approach and inte-
grated two neural networks, DNN1 and DNN2. DNN1 aims to suppress noise components
coarsely, while DNN2 is responsible for further noise removal and minimizing distortion
introduced during enhancement.

DNN"

Filter	
Module

!𝑋(")

𝑌

!𝑋(%) DNN$ !𝑋($)Cat

Figure 1. The framework of the proposed system.

To this end, we adopt the following two measures. Firstly, we introduced a filter
module that calculates a low-distortion filter based on the enhancement result of DNN1
(X̂(1)), and applies it to the noisy spectrum (Y). The filtered output (X̂(F)) is then con-
catenated with X̂(1) and fed into DNN2 as extra features. The purpose of this approach
is two-fold. First, since the single-channel signal has no spatial information that can be
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exploited, we hope the result of multi-frame filters can convey the interframe correlation
to DNN2. Second, we wish the low-distortion filtered result can provide information that
is complementary to the result of DNN1, thus helping DNN2 to produce less distorted
speech, which is benifical to downstream tasks such as ASR.

Secondly, we concatenate Y with X̂(1) and X̂(F) as the input for DNN2, inspired by [6].
Through theoretical analysis and experiments in [6], it was shown that adding a scaled
version of the noisy signal to the enhanced signal can monotonically increase the signal-to-
artifact ratio under mild conditions and improve ASR performance. Thus, we believe that
concatenating Y with X̂(1) and X̂(F) can provide essential information for DNN2 to reduce
distortion during the training process.

We employ the TCN-DenseUNet described in [8] and modify it into a single-channel
version for DNN1 and DNN2. Although both DNN1 and DNN2 adopt the TCN-DenseUNet
structure, it should be noted that they do not share parameters. The main reason is that
DNN1 and DNN2 focus on different tasks, while DNN1 is concerned with removing
background noise as much as possible, DNN2 aims to make the most of the filter output
and noisy speech to minimize distortion. We believe that not sharing parameters between
the two networks can lead to better performance, which is supported to some extent by the
experimental results in Section 5.4.

TCN-DenseUNet is a variant of U-Net, with a temporal convolutional network (TCN)
network inserted between the encoder and decoder. The DenseNet blocks are also inserted
between different layers of the encoder and decoder of the U-Net. Figure 2 shows the
diagram of the TCN-DenseUNet. The encoder contains a 2D convolution layer and seven
convolutional blocks, while the decoder contains seven deconvolutional blocks and a
2D deconvolution layer. Skip connections are added between the encoder and decoder.
Each convolutional block consists of a 2D convolution layer, an exponential linear units
(ELU) nonlinearity layer, and an instance normalization (IN) layer. The deconvolutional
block has the same structure as the convolutional block, except that the 2D convolution
layer is replaced with the 2D deconvolution layer. The DenseNet blocks consist of five
convolutional blocks and the TCN network contains four layers, each with seven dilated
convolutional blocks.
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DenseBlock(32, 32)

3 x 3, (1, 2), (1, 0), 32

DenseBlock(32, 32)

3 x 3, (1, 2), (1, 0), 64

3 x 3, (1, 2), (1, 0), 128
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reshape 4-layer TCN reshape
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Figure 2. The diagram of TCN-DenseUNet.
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The detailed setup for the TCN-DenseUNet is also shown in Figure 2. DenseNet block
is represented by DenseBlock(g1, g2), where g1 and g2 are the growth rates for the first four
and the last convolutional block, respectively. Other convolutional blocks are represented
in the form of (k, s, p, o), where k, s, p, o are the kernel size, stride, padding, and output
channels, respectively.

3.2. Two-Stage Training Strategy

A two-stage training strategy is employed to train the system. To be specific, in the
first stage, only DNN1 is trained. The input is the noisy spectrum Y, while DNN1 estimates
the spectrum of the clean speech. In the second stage, the well-trained DNN1 is fixed, and
its output X̂(1) is first fed into the Filter Module to calculate a multi-frame filter h. h is then
applied to Y to get the enhanced spectrum X̂(F). Finally, Y, X̂(1), and X̂(F) are concatenated
and fed into DNN2. DNN2 then outputs the final estimated spectrum of the clean speech.
In a nutshell, the training stage can be formulated as:
Stage 1:

X̂(1) = DNN1(Y) (1)

Stage 2:
h = FilterModule(X̂(1)) (2)

X̂(F) = hHY (3)

X̂(2) = DNN2(Cat(Y, X̂(1), X̂(F))) (4)

3.3. Multi-Frame MVDR

The MFMVDR was first proposed in [12]. It considers the correlation between consec-
utive time-frames to obtain better enhancement performance.

The signal model for MFMVDR is as follows:

y(t) = x(t) + n(t), (5)

where y(t), x(t), and n(t) are the noisy speech, clean speech, and the additive noise,
respectively. Using STFT, (5) can be rewritten as:

Y(t, f ) = X(t, f ) + N(t, f ). (6)

In order to model the interframe correlation, a L-dimensional noisy speech vector
y(t, f ) is defined as:

y(t, f ) =
[

Y(t, f ) · · · Y(t − L + 1, f )
]T , (7)

where L is the number of frames used to calculate the MFMVDR filter. x(t, f ) and n(t, f )
can be defined similarly.

The formula of MFMVDR is as follows:

hMFMVDR(t, f ) =
Φ−1

n (t, f )Φy(t, f )− IL×L

tr
[
Φ−1

n (t, f )Φy(t, f )
]
− L

i1, (8)

where IL×L is an L × L identity matrix, i1 is the first column of IL×L, tr[·] is the trace
operation, and

Φy = E[y(t, f )yH(t, f )], (9)

Φn = E[n(t, f )nH(t, f )]. (10)

By viewing X̂(1) as X, we can calculate N = Y − X̂(1). Then, we can calculate Φn using
Equation (10), and finally, we get the MFMVDR filter.
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It should be noted that calculating Φn using Equation (10) yields a matrix of rank 1,
i.e., a singular matrix, but in Equation (8) the inverse matrix of Φn is required. To address
this issue, we use the following methodology in this study. First, we calculate Φy and Φn
using the following equations, instead of Equations (9) and (10):

Φy(t, f ) = λyΦy(t, f − 1) +
(
1 − λy

)
y(t, f )yH(t, f ), (11)

Φv(t, f ) = λnΦn(t, f − 1) + (1 − λn)n(t, f )nH(t, f ), (12)

where 0 < λy < 1 and 0 < λn < 1 are the forgetting factors. Second, we apply diagonal
loading [23] to Φy and Φn to improve the robustness of training stage.

4. Experiment
4.1. Dataset and Evaluation Metrics

Experiments are performed on the WHAM! [24] dataset. WHAM! was originally
designed for speech separation in noisy environments. It pairs each two-speaker mixture
in the wsj0-2mix [25] dataset with a real-world noise. The noise was recorded in urban
environments, such as coffee shops, restaurants, bars, office buildings, parks, etc. [24].
Meanwhile, WHAM! also provides a version for speech enhancement, where only the
speech of the first speaker is mixed with the noise at SNRs randomly sampled between −6
and +3 dB. The training set, development set, and test set contain 20,000, 5000, and 3000 ut-
terances, respectively. The training and development sets share common speakers, but the
test set speakers are different. In order to evaluate the generalizability of the proposed
model, we further adopt the one-channel test set from CHiME-4 [26] for evaluation. Both
the simulated and the real-world noisy utterances are used.

Four widely used objective metrics are used to evaluate the enhanced speech, namely
narrow-band Perceptual Evaluation of Speech Quality (PESQ-NB) [27], Short-Time Ob-
jective Intelligibility (STOI) [28], scale-invariant Source-to-Noise Ratio (SI-SNR) [29] and
Signal-to-Distortion Ratio (SDR) [30]. All of these metrics are the larger the better. The
Word Error Rate (WER) is used to indicate the performance of the enhanced speech on the
ASR task.

4.2. Baselines and Experimental Settings

The proposed model is compared with several popular baseline models, including
LSTM, Conv-TasNet, and DPRNN. Figure 3 shows the diagrams of these baseline models,
and detailed descriptions of all the models are provided below.

LSTM: Three-layers of bi-directional LSTM, where each layer has 512 hidden units,
followed by a linear layer with 257 output units and tanh activation function. A Dropout
layer with dropout probability equal to 0.4 is introduced on the outputs of each LSTM layer
except the last layer.

Conv-TasNet: The encoder and decoder are symmetric 1D convolution layers. The
mask estimator comprises a layer normalization and a 1D convolution layer with a kernel
size of 1 (1 × 1-conv block) and 256 output channels. It is then followed by 8 convolutional
blocks with a kernel size of 3, output channels of 512, and dilation factors ranging from 1
to 27, which are repeated 4 times. Ultimately, a 1 × 1-conv block with a ReLU activation
function is employed to estimate the mask.

DPRNN: The encoder and decoder are symmetric 1D convolution layers. Six DPRNN
blocks described in [21] are used to predict the mask. The DPRNN blocks utilize intra-block
and inter-block RNNs, both of which adopt residual connections. These RNNs consist of
bidirectional LSTMs with 128 hidden units, linear layers with 64 output units, and layer
normalization. A dropout layer with a 0.1 dropout rate is inserted between the LSTM and
linear layer.
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Figure 3. The diagrams of baseline models. (a) The diagram of LSTM model. (b) The diagram of the
Conv-TasNet. (c) The diagram of the DPRNN.

All utterances are resampled to 8 kHz. For T-F domain models used in the experiments,
STFT with frame size of 64 ms, frame shift of 16 ms, and a 64 ms Hanning window is
employed to extract the features. For Conv-TasNet the encoder is a 1D convolution layer
with kernel size 40, stride 20, and 256 output channels. For DPRNN, the kernel size and
stride for the convolutional encoder are 2 and 1, respectively, and the number of output
channels is 64.

The LSTM takes the magnitude of the speech as input and estimates the magnitude
mask. The batch size is set to 16. The Conv-TasNet and DPRNN accept raw waves as input
and directly output enhanced waves. The batch size for Conv-TasNet and DPRNN are 8
and 4, respectively. The input for the proposed model is the stacked RI components of the
noisy spectrum and the output is the estimated RI components. The batch size is set to 16.

All the models are optimized using Adam [31] with a learning rate of 1.0 × 10−3. The
negative Source-to-Noise Ratio (SNR) is used as the loss function. The maximum number
of training epoch is 100. For T-F domain models, the training will stop if the loss is not
decreasing on the development set for 10 consecutive epochs, and for time domain models,
this number is 4. We set the forgetting factors λy and λn to 0.6 in this study.

5. Results and Discussion
5.1. Effect of the Padding Mode on Multi-Frame Filters

The enhancement performance of the multi-frame filters produced by the Filter Mod-
ule has an impact on the proposed system. To improve the performance of the whole
system, we need to set appropriate hyperparameters for the filters. Since the MFMCWF
filter achieves better performance than the MVDR filter in [9], in this study, in addition
to the MFMVDR filter, we also tried to let the Filter Module output the multi-frame
Wiener filter (MFWF) filter, hoping to explore the performance gap between the two under
single-channel conditions.

There are two hyperparameters for the filters: one is the padding mode and the other
is the total number of frames. Here, the padding mode means the number of frames on the
left of the current frame when the total number of frames is determined.

In order to find the appropriate padding mode for multi-frame filters, we set the total
number of frames to 17 and feed the enhanced results from stage 1 and the noisy speeches
to the Filter Module. The calculated filter is used to enhance the noisy speeches.
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Table 1 shows the effect of the padding mode on MFMVDR, the impact on MFWF has
the same trend, for the sake of brevity, the corresponding table is not given here. In the first
row, all the frames are padded on the right side of the target frame, which means the system
only uses future information, similarly, the last row means the system only uses history
information. All the other rows mean the system uses both history and feature information.
From Table 1, we can tell that using both history and future information can make the filter
have better enhancement performance. Since the results in Table 1 are obtained when the
total number of frames is set to 17, without loss of generality, we decided to pad the same
number of frames on both sides of the target frames in subsequent experiments.

Table 1. The effect of the padding mode on MFMVDR.

Padding Mode
PESQ-NB STOI SI-SNR (dB) SDR (dB)

Left Frames Right Frames

0 16 2.33 0.90 9.55 10.08
1 15 2.35 0.91 9.86 10.44
2 14 2.36 0.91 9.99 10.59
3 13 2.36 0.91 10.05 10.67
4 12 2.36 0.91 10.09 10.72
5 11 2.36 0.91 10.11 10.75
6 10 2.36 0.91 10.13 10.77
7 9 2.36 0.91 10.13 10.79
8 8 2.36 0.91 10.14 10.80
9 7 2.37 0.91 10.14 10.80
10 6 2.37 0.91 10.14 10.81
11 5 2.38 0.91 10.12 10.81
12 4 2.39 0.91 10.11 10.80
13 3 2.40 0.91 10.08 10.78
14 2 2.41 0.91 10.04 10.73
15 1 2.41 0.91 9.93 10.63
16 0 2.38 0.91 9.62 10.01

5.2. Effect of the Total Number of Frames on Multi-Frame Filters

After determining the padding mode, we further explore the effect of the total number
of frames on multi-frame filters, since the total number of frames used to calculate the filters
represents the context information. If the total number of frames is too small, the available
information will be limited, which will affect the enhancement performance. However,
when the total number of frames increases to a certain size, the computing overhead will
exceed the performance gain.

Table 2 shows the effect of the total number of frames on MFMVDR and MFWF. The
first two rows are the enhancement metrics scores of the noisy speech and the speech
enhanced by DNN1. Both filters are calculated using the enhanced speech from the first
stage and are used to process the original noisy speech. From the results, we can observe
that both filters perform better as the total number of frames grows. It should be pointed
out that due to the limitation of computing resources, we only explored the case of up to
13 frames. When the total number of frames is further increased, whether the enhancement
performance will be improved remains to be verified. Another observation is that MFWF
performs much better than MFMVDR for the same total number of frames. The table
also shows that the enhancement results of DNN 1 are significantly better than the two
filters, which is reasonable because the input used to calculate the required parameters for
both filters is the enhanced results of DNN1 rather than clean speech, which leads to an
accumulation of errors.
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Table 2. The effect of the number of frames on different filters.

Filter # Frames PESQ-NB STOI SI-SNR (dB) SDR (dB)

noisy - 1.63 0.77 −2.76 −2.67
DNN1 - 2.79 0.94 13.24 13.69

MFMVDR
2 × 2 + 1 2.10 0.86 3.86 3.94
2 × 4 + 1 2.34 0.89 7.19 7.37
2 × 6 + 1 2.39 0.90 9.20 9.60

MFWF
2 × 2 + 1 2.35 0.90 10.62 10.98
2 × 4 + 1 2.47 0.91 11.15 11.63
2 × 6 + 1 2.46 0.91 11.35 12.04

5.3. Effect of Filter Type on System Performance

Although the results in Table 2 show that MFWF outperforms MFMVDR when used
alone, the effect of both on the overall system performance needs to be further verified. For
this purpose, we trained two models on WHAM!, both of which have the same configura-
tion except for the different types of filters used. Both filters set the total number of frames
to 13, with 6 frames on both sides of the target frame.

The performance of the two models on the WHAM! test set is shown in Table 3. The
WER metric in the table is obtained by feeding the speech enhanced by the model to
an ASR system. The ASR system used in this study is a joint Connectionist Temporal
Classification-Attention (CTC-Attention) model trained on wsj0 corpus resampled to 8 kHz.
In the decoding stage, a word-level language model is used to improve the decoding results.

It is observed that the system using MFMVDR as the filtering module performs slightly
better than the one using MFWF, which is different from the conclusion in [9]. The scores
on the enhancement metrics are the same for both, but the system using MFMVDR scores
better on the WER metric than the one using MFWF. We suppose this may be related to the
non-distortion property of MFMVDR; the model may learn this property from MFMVDR
in the second training stage so that the enhancement results of the system contain less
distortion. As the system using MFMVDR performs better, all models in subsequent
experiments will use the MFMVDR filter.

Table 3. The performance of the proposed system with different filtering modules.

Filtering Module PESQ-NB STOI SI-SNR (dB) SDR (dB) WER (%)

MFMVDR 2.84 0.94 13.50 13.92 19.60
MFWF 2.83 0.94 13.49 13.92 20.00

5.4. Effect of the Framework on System Performance

The framework shown in Figure 1 can integrate MFMVDR information into DNN2,
but incorporating two neural networks in the framework results in a relatively large
number of parameters for the model. A possible modification could be to use a single
neural network instead, reducing the total number of parameters in the entire system by
50%; the framework is shown in Figure 4. It is worth noting that we have depicted two
neural networks in Figure 4 to better illustrate the training process; however, both of these
networks are, in fact, identical.

The training of this framework still adopts a two-stage strategy. In the first stage, the
noisy spectrum Y are concatenated with two zero matrices of the same shape and fed to the
DNN to estimate the clean spectrum. In the second stage, two iterations are required to
produce the final output. In the first iteration, similar to the first stage, Y, concatenated with
two all-zero matrices, is fed into the DNN, and the initial estimate of the clean spectrum,
X̂(1), is obtained. X̂(1) and Y are used to calculate the filtered spectrum X̂(F). In the
second iteration, the noisy spectrum Y, the result of the previous iteration X̂(1), and the
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filtered spectrum X̂(F) are concatenated and fed into the neural network to obtain the final
output X̂(2).

DNN𝑌 !𝑋(")

Filter	
Module

DNN !𝑋($)Cat

!𝑋(%)

Cat

𝟎

𝟎

Figure 4. The framework of the system with a single DNN.

Table 4 displays the performance of systems utilizing the two different frameworks on
the WHAM! test set. The results indicate that the framework using two DNNs outperforms
the one using only one DNN. We hypothesize that there are two possible reasons for this
observation. Firstly, it may be challenging for a single neural network to learn both noise
reduction and the utilization of MFMVDR results to reduce distortion in the final output.
Secondly, it is more probable that when using only a single neural network, the network
parameters keep changing, which cannot ensure the accuracy of the input provided to
the filter module. In contrast, a dual neural network-based framework can ensure the
accuracy of the input provided to the filter module, resulting in superior filtered results
and ultimately improving the overall performance.

Given the results shown in Tables 3 and 4, the system proposed in this study is based on
the framework utilizing two neural networks and employs MFMVDR as the filter module.

Table 4. Performance of systems using different frameworks.

Framework #Para (M) PESQ-NB STOI SI-SNR (dB) SDR (dB) WER (%)

Two DNNs 15.44 2.84 0.94 13.50 13.92 19.60
Single DNN 7.72 2.75 0.94 12.69 13.11 23.90

5.5. Comparison with Baselines on WHAM!

Table 5 shows the performance of the proposed model and baseline models on the test
set of WHAM!. From the table, we can see that compared to noisy speech, speech after
enhancement achieves significant improvement in WER, which to some extent illustrates
the help of speech enhancement for back-end ASR tasks. The proposed model performs
significantly better than the LSTM model in all the metrics, even though both of them
are time-frequency domain models and the number of parameters of them is close to
each other.

The proposed model has a larger number of parameters than Conv-TasNet, which is
reasonable as the latter is a time domain model and usually has a smaller parameter size.
Though Conv-TasNet contains half as many parameters as the proposed model, there is still
a large gap between its performance and the proposed one, especially on the WER score.

Thanks to its dual-path structure, DPRNN can deliver high-quality enhancement
results with a limited number of parameters and performs well in terms of WER metrics.
Despite having a larger number of parameters than DPRNN, the proposed model requires
less memory and time to train a single epoch during the training phase. Moreover, it
outperforms DPRNN in all metrics.
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Table 5. Comparison with other methods on WHAM!.

Model #Para (M) PESQ-NB STOI SI-SNR (dB) SDR (dB) WER (%)

noisy - 1.63 0.77 −2.76 −2.67 73.20
LSTM [17] 16.41 2.50 0.89 9.77 10.43 30.60

Conv-TasNet [20] 8.66 2.27 0.92 11.44 11.94 40.10
DPRNN [21] 2.59 2.68 0.94 13.09 13.65 20.10

proposed 15.44 2.84 0.94 13.50 13.92 19.60

5.6. Ablation Study

We also perform an ablation test to evaluate the effectiveness of the two-stage training
strategy and the incorporation of MFMVDR results. The results are shown in Table 6.
The first row corresponds to a single TCN-DenseUNet model. The second row uses the
MFMVDR as a post-processing module for the TCN-DenseUNet. The model in the third
row only takes the noisy input and the enhanced speech from the first stage as inputs in
the second training stage. The fourth row is the results of the proposed model.

By comparing the first and fourth rows, we can observe that our chosen base net-
work, TCN-DenseUNet, achieves strong performance, but there is still room for noticeable
improvement by training it in two stages and fusing the MFMVDR information. When
we compare the first and second rows, it can be seen that post-processing the output of
the neural network with the MFMVDR filter alone does not work and even leads to a
significant drop in all metrics of the processed speech. However, by adopting the two-stage
training approach as shown in the first and third rows, we can achieve improvements in
both enhancement and WER metrics. Furthermore, comparing the third and fourth rows,
it becomes apparent that combining the information from the MFMVDR in the second
training phase can further improve the performance of the system. This finding suggests
that the results of the MFMVDR can also contribute to the overall system’s performance
improvement.

Table 6. Ablation study of two-stage training strategy and MFMVDR.

2 Stage Training MFMVDR PESQ-NB STOI SI-SNR (dB) SDR (dB) WER (%)

% % 2.79 0.94 13.24 13.69 21.80
% ! 2.39 0.90 9.20 9.60 50.80
! % 2.79 0.94 13.47 13.92 19.90
! ! 2.84 0.94 13.50 13.92 19.60

5.7. Generalizability of the Proposed System

To evaluate the generalization of the proposed system, we used the system trained
on the WHAM! dataset to directly enhance the noisy speech from the CHiME-4 dataset;
the results are shown in Table 7. The proposed system outperforms the other methods
significantly on all the metrics for both simulated data and real-world data, indicating its
superior generalizability.

Table 7. Comparison with other methods on CHiME-4.

Model CHiME-4 SIMU CHiME-4 REAL
PESQ-NB STOI SI-SNR (dB) SDR (dB) WER (%) WER (%)

noisy 1.74 0.81 5.07 5.18 76.60 81.80
LSTM [17] 2.45 0.89 12.21 12.84 45.80 61.90

Conv-TasNet [20] 2.24 0.89 10.86 12.56 47.50 62.80
DPRNN [21] 2.47 0.90 10.17 13.19 38.30 45.40

proposed 2.69 0.93 14.23 14.87 30.50 41.40



Appl. Sci. 2023, 13, 4926 12 of 14

6. Conclusions

In this study, a two-stage model for single-channel speech enhancement is proposed.
There are two DNNs in the proposed model—in the first stage, one of the two DNNs is
trained first. In the second stage, the other DNN uses the enhanced speech from the trained
DNN as extra input features. To further improve the enhancement performance and reduce
the distortion introduced by neural networks, the result of a single-channel filter is also
used in the second stage to guide the training of the model. Two different single-channel
filters are investigated in this study, namely, MFMVDR and MFWF. We investigate the
influence of the number of frames used to calculate the filter and the padding mode on the
performance of the two filters. We also compare the impact of MFMVDR and MFWF on
the final model performance and find that MFMVDR delivers more improvement.

Our main contribution is proposing a two-stage training approach in the single-
channel scenario, which utilizes the information from MFMVDR filters to assist in neural
network training. As a result, our method achieves improved speech enhancement perfor-
mance and higher speech recognition accuracy. Experiments on two datasets containing
both synthetic and real-world noisy speech show that the proposed model has better en-
hancement performance and generalization ability. On the WHAM! test set, our model
exhibited a relative improvement of 3% in SI-SNR and 2% in WER compared to the best-
performing baseline model, DPRNN. On the synthetic test set of CHiME-4, our model
demonstrated substantial relative improvements of 40% and 20% in SI-SNR and WER,
respectively. Additionally, our model exhibited a noteworthy relative improvement of 9%
in WER on the more challenging real test set of CHiME-4. The ablation study demonstrates
the effectiveness of the two-stage training strategy and the incorporation of MFMVDR
results in training.

Possible directions for future improvements include:

• Smaller model parameters. In this study, we employ TCN-DenseUNet, a time-
frequency domain model, for both DNN1 and DNN2. Our future research will explore
the use of time-domain models, such as DPRNN, as the structure for DNN1 and DNN2
to reduce the number of model parameters.

• Improved training strategies. For example, using the parameters of DNN1 to initialize
DNN2 in the second stage, followed by fine-tuning DNN2, or jointly training DNN1
and DNN2 with DNN1 using a smaller learning rate to speed up model convergence
and further improve performance.

• More refined information fusion methods. In this study, the input of DNN2 is a simple
concatenation of X̂(1), X̂(F), and Y. In future research, more sophisticated methods
can be explored to fuse the information of the three, such as attention mechanisms.

• Diversified model selection. We could make DNN1 or DNN2 a time-frequency domain
model, and the other a time-domain model. It is hoped that these two models can
complement each other to achieve better enhancement performance.

Author Contributions: Conceptualization, W.Z. and S.L.; methodology, W.Z. and S.L.; software,
W.Z. and S.L.; validation, S.L., W.Z. and Y.Q.; investigation, S.L.; resources, Y.Q.; data curation, S.L.;
writing—original draft preparation, S.L.; writing—review and editing, W.Z. and Y.Q.; visualization,
S.L.; supervision, Y.Q.; project administration, Y.Q.; funding acquisition, Y.Q. All authors have read
and agreed to the published version of the manuscript.

Funding: This work was supported in part by China NSFC projects under Grants 62122050 and
62071288, and in part by Shanghai Municipal Science and Technology Major Project under Grant
2021SHZDZX0102 and in part by Jiangsu Technology Project (No.BE2022059-4).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: No new data were created or analyzed in this study. Data sharing is
not applicable to this article.



Appl. Sci. 2023, 13, 4926 13 of 14

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Boll, S. Suppression of acoustic noise in speech using spectral subtraction. IEEE Trans. Acoust. Speech Signal Process. 1979,

27, 113–120. [CrossRef]
2. Wiener, N.; Wiener, N.; Mathematician, C.; Wiener, N.; Wiener, N.; Mathématicien, C. Extrapolation, Interpolation, and Smoothing of

Stationary Time Series: With Engineering Applications; MIT Press: Cambridge, MA, USA, 1949; Volume 113.
3. Lee, D.D.; Seung, H.S. Learning the parts of objects by non-negative matrix factorization. Nature 1999, 401, 788–791. [CrossRef]

[PubMed]
4. Bedoui, R.A.; Mnasri, Z.; Benzarti, F. On the Use of Spectrogram Inversion for Speech Enhancement. In Proceedings of the 2021

18th International Multi-Conference on Systems, Signals & Devices (SSD), Monastir, Tunisia, 22–25 March 2021; pp. 852–857.
[CrossRef]

5. Chang, S.; Kwon, Y.; Yang, S.i.; Kim, I.j. Speech enhancement for non-stationary noise environment by adaptive wavelet packet.
In Proceedings of the 2002 IEEE International Conference on Acoustics, Speech, and Signal Processing, Orlando, FL, USA,
13–17 May 2002; Volume 1, pp. I-561–I-564. [CrossRef]

6. Iwamoto, K.; Ochiai, T.; Delcroix, M.; Ikeshita, R.; Sato, H.; Araki, S.; Katagiri, S. How bad are artifacts?: Analyzing the impact of
speech enhancement errors on ASR. arXiv 2022, arXiv:2201.06685. [CrossRef]

7. Ochiai, T.; Delcroix, M.; Ikeshita, R.; Kinoshita, K.; Nakatani, T.; Araki, S. Beam-TasNet: Time-domain Audio Separation Network
Meets Frequency-domain Beamformer. In Proceedings of the ICASSP 2020–2020 IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP), Virtual, 4–9 May 2020; pp. 6384–6388. [CrossRef]

8. Wang, Z.Q.; Wichern, G.; Roux, J.L. Leveraging low-distortion target estimates for improved speech enhancement. arXiv 2021,
arXiv:2110.00570. [CrossRef]

9. Lu, Y.J.; Cornell, S.; Chang, X.; Zhang, W.; Li, C.; Ni, Z.; Wang, Z.Q.; Watanabe, S. Towards Low-Distortion Multi-Channel
Speech Enhancement: The ESPNET-SE Submission to the L3DAS22 Challenge. In Proceedings of the ICASSP 2022–2022 IEEE
International Conference on Acoustics, Speech and Signal Processing (ICASSP), Singapore, 22–27 May 2022; pp. 9201–9205.
[CrossRef]

10. Van Veen, B.; Buckley, K. Beamforming: A versatile approach to spatial filtering. IEEE ASSP Mag. 1988, 5, 4–24. [CrossRef]
[PubMed]

11. Van Trees, H.L. Optimum Array Processing: Part IV of Detection, Estimation, and Modulation Theory; John Wiley & Sons: New York,
NY, USA, 2002; pp. 480–510, ISBN 9780471221104. [CrossRef]

12. Benesty, J.; Huang, Y. A single-channel noise reduction MVDR filter. In Proceedings of the ICASSP 2011–2011 IEEE International
Conference on Acoustics, Speech and Signal Processing (ICASSP), Prague, Czech Republic, 22–27 May 2011; pp. 273–276.
[CrossRef]

13. Huang, Y.A.; Benesty, J. A Multi-Frame Approach to the Frequency-Domain Single-Channel Noise Reduction Problem. IEEE
Trans. Audio Speech Lang. Process. 2012, 20, 1256–1269. [CrossRef]

14. Srinivasan, S.; Roman, N.; Wang, D. Binary and ratio time-frequency masks for robust speech recognition. Speech Commun. 2006,
48, 1486–1501. [CrossRef]

15. Erdogan, H.; Hershey, J.R.; Watanabe, S.; Le Roux, J. Phase-sensitive and recognition-boosted speech separation using deep
recurrent neural networks. In Proceedings of the ICASSP 2015–2015 IEEE International Conference on Acoustics, Speech and
Signal Processing (ICASSP), Queensland, Australia, 19–24 April 2015; pp. 708–712. [CrossRef]

16. Williamson, D.S.; Wang, Y.; Wang, D. Complex ratio masking for monaural speech separation. IEEE/ACM Trans. Audio Speech
Lang. Process. 2015, 24, 483–492. [CrossRef] [PubMed]

17. Hochreiter, S.; Schmidhuber, J. Long Short-Term Memory. Neural Comput. 1997, 9, 1735–1780. [CrossRef] [PubMed]
18. Tan, K.; Wang, D. A Convolutional Recurrent Neural Network for Real-Time Speech Enhancement. In Proceedings of the

Interspeech 2018, Hyderabad, India, 2–6 September 2018; pp. 3229–3233. [CrossRef]
19. Ronneberger, O.; Fischer, P.; Brox, T. U-net: Convolutional networks for biomedical image segmentation. In Proceedings of the

International Conference on Medical Image Computing and Computer-Assisted Intervention, Singapore, 18–22 September 2015;
Springer: Berlin/Heidelberg, Germany, 2015; pp. 234–241. [CrossRef]

20. Luo, Y.; Mesgarani, N. Conv-TasNet: Surpassing Ideal Time–Frequency Magnitude Masking for Speech Separation. IEEE/ACM
Trans. Audio Speech Lang. Process. 2019, 27, 1256–1266. [CrossRef] [PubMed]

21. Luo, Y.; Chen, Z.; Yoshioka, T. Dual-Path RNN: Efficient Long Sequence Modeling for Time-Domain Single-Channel Speech
Separation. In Proceedings of the ICASSP 2020–2020 IEEE International Conference on Acoustics, Speech and Signal Processing
(ICASSP), Barcelona, Spain, 4–8 May 2020; pp. 46–50. [CrossRef]

22. Wang, Z.Q.; Wichern, G.; Le Roux, J. Convolutive prediction for monaural speech dereverberation and noisy-reverberant speaker
separation. IEEE/ACM Trans. Audio Speech Lang. Process. 2021, 29, 3476–3490. [CrossRef]

23. Carlson, B.D. Covariance matrix estimation errors and diagonal loading in adaptive arrays. IEEE Trans. Aerosp. Electron. Syst.
1988, 24, 397–401. [CrossRef]

24. Wichern, G.; Antognini, J.; Flynn, M.; Zhu, L.R.; McQuinn, E.; Crow, D.; Manilow, E.; Roux, J.L. WHAM!: Extending Speech
Separation to Noisy Environments. arXiv 2019, arXiv:1907.01160. [CrossRef]

http://doi.org/10.1109/TASSP.1979.1163209
http://dx.doi.org/10.1038/44565
http://www.ncbi.nlm.nih.gov/pubmed/10548103
http://dx.doi.org/10.1109/SSD52085.2021.9429339
http://dx.doi.org/10.1109/ICASSP.2002.5743779
http://dx.doi.org/10.21437/Interspeech.2022-318
http://dx.doi.org/10.1109/ICASSP40776.2020.9053575
http://dx.doi.org/10.48550/arXiv.2110.00570
http://dx.doi.org/10.1109/ICASSP43922.2022.9747146
http://dx.doi.org/10.1109/53.665
http://www.ncbi.nlm.nih.gov/pubmed/36855518
http://dx.doi.org/10.1002/0471221104
http://dx.doi.org/10.1109/ICASSP.2011.5946393
http://dx.doi.org/10.1109/TASL.2011.2174226
http://dx.doi.org/10.1016/j.specom.2006.09.003
http://dx.doi.org/10.1109/ICASSP.2015.7178061
http://dx.doi.org/10.1109/TASLP.2015.2512042
http://www.ncbi.nlm.nih.gov/pubmed/27069955
http://dx.doi.org/10.1162/neco.1997.9.8.1735
http://www.ncbi.nlm.nih.gov/pubmed/9377276
http://dx.doi.org/10.21437/Interspeech.2018-1405
http://dx.doi.org/10.1007/978-3-319-24574-4_28
http://dx.doi.org/10.1109/TASLP.2019.2915167
http://www.ncbi.nlm.nih.gov/pubmed/31485462
http://dx.doi.org/10.1109/ICASSP40776.2020.9054266
http://dx.doi.org/10.1109/TASLP.2021.3129363
http://dx.doi.org/10.1109/7.7181
http://dx.doi.org/10.21437/Interspeech.2019-2821


Appl. Sci. 2023, 13, 4926 14 of 14

25. Hershey, J.R.; Chen, Z.; Le Roux, J.; Watanabe, S. Deep clustering: Discriminative embeddings for segmentation and separation.
In Proceedings of the ICASSP 2016–2016 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP),
Shanghai, China, 20–25 March 2016; pp. 31–35. [CrossRef]

26. Vincent, E.; Watanabe, S.; Nugraha, A.A.; Barker, J.; Marxer, R. An analysis of environment, microphone and data simulation
mismatches in robust speech recognition. Comput. Speech Lang. 2017, 46, 535–557. [CrossRef]

27. Rix, A.; Beerends, J.; Hollier, M.; Hekstra, A. Perceptual evaluation of speech quality (PESQ)—A new method for speech quality
assessment of telephone networks and codecs. In Proceedings of the ICASSP 2001–2001 IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP), Salt Lake City, UT, USA, 7–11 May 2001; Volume 2, pp. 749–752. [CrossRef]

28. Taal, C.H.; Hendriks, R.C.; Heusdens, R.; Jensen, J. A short-time objective intelligibility measure for time-frequency weighted
noisy speech. In Proceedings of the ICASSP 2010–2010 IEEE International Conference on Acoustics, Speech and Signal Processing
(ICASSP), Dallas, TX, USA, 14–19 March 2010; pp. 4214–4217. [CrossRef]

29. Roux, J.L.; Wisdom, S.; Erdogan, H.; Hershey, J.R. SDR—Half-baked or Well Done? In Proceedings of the ICASSP 2019–2019 IEEE
International Conference on Acoustics, Speech and Signal Processing (ICASSP), Brighton, UK, 12–17 May 2019; pp. 626–630.
[CrossRef]

30. Vincent, E.; Gribonval, R.; Févotte, C. Performance measurement in blind audio source separation. IEEE Trans. Audio Speech Lang.
Process. 2006, 14, 1462–1469. [CrossRef]

31. Kingma, D.P.; Ba, J. Adam: A method for stochastic optimization. arXiv 2015, arXiv:1412.6980. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1109/ICASSP.2016.7471631
http://dx.doi.org/10.1016/j.csl.2016.11.005
http://dx.doi.org/10.1109/ICASSP.2001.941023
http://dx.doi.org/10.1109/ICASSP.2010.5495701
http://dx.doi.org/10.1109/ICASSP.2019.8683855
http://dx.doi.org/10.1109/TSA.2005.858005
http://dx.doi.org/10.48550/arXiv.1412.6980

	Introduction
	Related Research
	Speech Enhancement Based on Filters
	Speech Enhancement Based on DNNs
	Combination of DNNs and Filters

	Method
	Framework and Network Architecture
	Two-Stage Training Strategy
	Multi-Frame MVDR

	Experiment
	Dataset and Evaluation Metrics
	Baselines and Experimental Settings

	Results and Discussion
	Effect of the Padding Mode on Multi-Frame Filters
	Effect of the Total Number of Frames on Multi-Frame Filters
	Effect of Filter Type on System Performance
	Effect of the Framework on System Performance
	Comparison with Baselines on WHAM! 
	Ablation Study
	Generalizability of the Proposed System

	Conclusions
	References

