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Abstract: Aiming at the problem that the augmented reality system is susceptible to complex scenes
and easily leads to the failure of tracking registration, a long-term augmented reality tracking
algorithm combining multi-attention and template updating is proposed. Firstly, we improved the
ResNet-50 network to extract richer semantic features instead of AlexNet. Secondly, the attention-
based feature fusion network effectively fuses the template and search area features through a
combination of dual self-attention and cross attention. Dual self-attention effectively enhances the
information in the context, whereas cross attention adaptively enhanced the features of both self-
attention branches. Thirdly, the ORB feature-matching algorithm is utilized to match the template
and search image features, with the template updated if more than 150 matching feature points
are found. Lastly, the anchor frameless mechanism is adopted in the classification and regression
network, resulting in a significant reduction in the number of parameters. The results of experiments
conducted on various public datasets demonstrate the algorithm’s high success rate and accuracy, as
well as its robustness in complex environments.
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1. Introduction

Augmented Reality (AR) [1] can seamlessly integrate virtual information with the real
world to achieve an immersive effect. It has been extensively used in industry, military,
gaming, medicine, and other fields, bringing great convenience to production and life. A
crucial technology of the AR system is the tracking registration technology, which deter-
mines whether the augmented reality system can accurately overlay virtual information
into the real scene in real time. Target-tracking technology can realize the tracking and
positioning of objects, scenes, people, and other targets, providing more accurate, stable
and reliable information support for augmented reality applications. However, challenges
such as occlusion, similar target interference, and motion blur often occur in long-term
tracking, which can easily lead to tracking failure and result in an incorrect superposition
of virtual objects (also known as the drift phenomenon). Therefore, it is of great practical
significance for augmented reality technology to improve tracking accuracy and real-time
performance of target-tracking technology in complex scenes.

In previous work, augmented reality target tracking is usually completed by tracking
based on feature points, optical flow method, and correlation filter tracking algorithm.
Among them, tracking methods based on feature points, such as SIFT [2], SURF [3], and
ORB [4], to name a few, mainly extract robust feature points in images, generate descriptors,
and then conduct feature matching to determine the target location. However, tracking
only by this feature-matching method is easy to be affected by illumination, changes in
the appearance of the target, and so on, leading to tracking failure, and the robustness is
not high in practical application. The optical flow method uses the brightness variation
between pixels to calculate the motion vector. This method is unstable in complex sce-
narios and will cause cumulative errors in long-term tracking, leading to tracking failure.
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Traditional correlation filtering algorithms, such as MOSSE [5], KCF [6], DSST [7], and
CSK [8], to name a few, usually adopt manual features, which have poor accuracy and
robustness compared with depth features. So, they usually face challenges in maintaining
accuracy in complex environments due to factors such as target occlusion, similar target
interference, and scale transformation, leading to tracking failures. Due to the continuous
development of deep learning technology in recent years, which provides new ideas for
target-tracking technology, researchers have worked extensively on target tracking based
on deep learning [9,10].

Among them, tracking-based Siamese networks [11–18] with both real time and robust-
ness have attracted wide attention. Most trackers based on Siamese networks mostly use
shallow convolutional networks (such as AlexNet [19]) for feature extraction. However, as
shallow networks cannot extract deep semantic information, their feature expression ability
is limited. At the same time, most well-known trackers (such as SINT [20], SiamFC [12],
and SiamRPN [13]) usually calculate the similarity between template branches and search
branches to achieve the function of feature fusion. However, it is easy to lose a lot of
context information by using only this linear matching method, and it is easy to lead
to tracking failure when encountering complex environments. In addition, most track-
ers (SiamDW [21], SiamRPN [13], and SiamFC [12]) do not have the operation of online
template updating, which makes it more difficult for trackers to track targets with large
appearance changes, occlusion, to name a few. Therefore, we choose the object-tracking
method based on Siamese to carry on in-depth research and make some improvements on
the basis of it.

To solve these problems, we have made some improvements on the basis of the Siamese
network. Our contributions are as follows: (1) Feature extraction using the improved
ResNet-50 [22] network to enhance the representation power of the feature embeddings.
(2) We introduced attention mechanisms to capture the relationships between the features,
leading to more accurate feature fusion. (3) The ORB feature-matching algorithm was
used to match the feature of the template image and the search image. If the number of
matched feature points was more than 150, the template will be updated with a threshold
set to ensure reasonable updates, which would greatly improve the stability of the tracker.
(4) Experiments on multiple public datasets demonstrate that our tracker achieves good
accuracy and also meets the real-time requirement of an augmented reality system.

2. Related Work

Since MOSSE [5], a variety of excellent target-tracking algorithms with correlation
filtering have come out one after another. However, because the shape and size of the
target are constantly changing, the correlation filtering algorithm cannot cope with the
tracking requirements in complex scenes. Deep learning can learn richer representations
of information.

At present, the most popular method is target tracking based on the Siamese net-
work. Bertinetto et al. proposed the SiamFC [12] tracker in 2016, which locates the target
by calculating the similarity between the template and the search branch, setting off a
research boom in target tracking based on Siamese networks. In 2018, Li et al. proposed
SiamRPN [13], which introduced a regional proposal network based on SiamFC to improve
tracking accuracy. However, the anchor frame operation introduced a large number of
hyperparameters, which was not effective in the face of large deformation and scale change.
DaSiamRPN [18] introduces template-based data enhancements based on SiamRPN [13]
to improve model robustness and generalization ability. As the above methods all use a
shallow backbone network (AlexNet) for feature extraction, the overall performance cannot
be greatly improved. SiamRPN++ [17] uses a modified ResNet-50 network for feature
extraction on the basis of SiamRPN and obtains good results.

In order to make the network pay more attention to useful information, the atten-
tion mechanism [23] has been widely used in the fields of natural language processing
and computer vision in recent years, bringing new ideas for target tracking. Hu et al.
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proposed that SENet [24] could strengthen important channel features and enhance net-
work representation ability by adaptively learning the weight of each channel. In 2018,
Wang et al. proposed a Non-Local [25] network, which can capture the global information
of all positions in the input feature map, so that the network has stronger modeling ability.
Woo et al. proposed CBAM [26] to improve model performance by integrating channel
attention and spatial attention. Wang et al. added three attention mechanisms into the
appearance branch, which enhanced the ability of feature representation, but limited the
ability of network representation because only one of the branches was used. The trackers
based on the attention mechanism above either act on only one of the branches or rely
on correlation operations for feature fusion in the end. In this paper, inspired by Trans-
former [23], we design a dual self-attention and mutual attention module to merge the
feature information of the two branches of the template and search branch without any
correlation operation.

3. Methods

Our tracker consists of the backbone network, the feature fusion network, and the
classification and regression network: (1) The backbone network adopts the modified
ResNet-50 network to extract the features of the template image and search image and
fuse the features of the last level of three layers to ensure the retention of rich foreground
and background information and avoid the loss of shallow information that is too deep
in the network. (2) The feature fusion network consists of dual self-attention and cross
attention, which can enhance and fuse the extracted features so that the tracker can focus
on useful information adaptively. (3) The ORB feature-matching algorithm was used to
match the features of the template image and the search image. If the number of matched
feature points was greater than 150, the template was updated and the threshold was set
to update the template, which would make the tracker more stable. (4) The classification
and regression network adopts the anchor-free method, leading to reduced complexity
and easier implementation. The architecture of the framework of the algorithm is shown
in Figure 1.
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Figure 1. Architecture of our tracking framework.

3.1. Backbone

Most of the previous tracking algorithms use the AlexNet network for feature extrac-
tion, but the shallow network cannot extract rich semantic information. Therefore, we
improved the ResNet-50 network instead of the shallow network to extract deeper features.
Because the original ResNet network cannot put spatial information to good use and is not
suitable for target tracking, the ResNet network is improved as follows:

• Reduce the effective stride of Res4 and Res5 to 8 pixels.
• In order to obtain greater feature resolution, we changed the convolution stride of the

downsampling unit of the last stage of ResNet-50 to the unit convolution step.
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• Adding a 1 × 1 convolution reduces the number of channels to 256, reduces the
number of parameters, and keeps the same number of channels (the number is 256).

• Res3, Res4, and Res5 were fused successively, and the shallow and deep feature infor-
mation was effectively fused layer by layer to obtain more refined feature information
and raise the accuracy of follow-up tracking.

3.2. Feature Fusion

We proposed a feature fusion network consisting of dual self-attention (DSAM) and
cross attention (CAM) by referring to the core idea of a transformer [23]. For the purpose of
getting more contextual information, we use channel attention and Non-local [25] networks
as inspiration to design a dual self-attention mechanism. Cross attention adaptively merges
the feature maps from two branches of self-attention and establishes the relationship
between the long-distant features well. The structure is shown in Figure 1.

3.2.1. Dual Self-Attention Module

The dual self-attention module consists of a channel attention network and a Non-
Local network. The attention mechanism is a good reference to people’s ability to observe
things and improves the defect of not being able to extract rich contextual information. It
can better focus on useful information, so as to facilitate the tracker to avoid the interference
of chaotic background information and improve tracking accuracy. Non-Local is a network
which can capture long-distance dependencies between features at any location. Channel
attention mechanisms can carry out adaptive weighting for each channel to improve the
effective use of relevant channel information and enhance the characterization ability of
the network. Therefore, a dual self-attention based on a Non-Local network and channel
attention is designed to learn more contextual information. In this work, the Non-Local
attention network made use of getting more spatial information. In addition, so as to
better utilize effective channel responses, we choose channel attention to calculate the
channel weight coefficient to weigh channels, reduce the influence of irrelevant channels,
and increase the characterization ability of networks. The structure of the DSAM module is
shown in Figure 2.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 4 of 17 
 

• In order to obtain greater feature resolution, we changed the convolution stride of 
the downsampling unit of the last stage of ResNet-50 to the unit convolution step. 

• Adding a 1 × 1 convolution reduces the number of channels to 256, reduces the num-
ber of parameters, and keeps the same number of channels (the number is 256). 

• Res3, Res4, and Res5 were fused successively, and the shallow and deep feature in-
formation was effectively fused layer by layer to obtain more refined feature infor-
mation and raise the accuracy of follow-up tracking. 

3.2. Feature Fusion 
We proposed a feature fusion network consisting of dual self-attention (DSAM) and 

cross attention (CAM) by referring to the core idea of a transformer [23]. For the purpose 
of getting more contextual information, we use channel attention and Non-local [25] net-
works as inspiration to design a dual self-attention mechanism. Cross attention adaptively 
merges the feature maps from two branches of self-attention and establishes the relation-
ship between the long-distant features well. The structure is shown in Figure 1. 

3.2.1. Dual Self-Attention Module 
The dual self-attention module consists of a channel attention network and a Non-

Local network. The attention mechanism is a good reference to people’s ability to observe 
things and improves the defect of not being able to extract rich contextual information. It 
can better focus on useful information, so as to facilitate the tracker to avoid the interfer-
ence of chaotic background information and improve tracking accuracy. Non-Local is a 
network which can capture long-distance dependencies between features at any location. 
Channel attention mechanisms can carry out adaptive weighting for each channel to im-
prove the effective use of relevant channel information and enhance the characterization 
ability of the network. Therefore, a dual self-attention based on a Non-Local network and 
channel attention is designed to learn more contextual information. In this work, the Non-
Local attention network made use of getting more spatial information. In addition, so as 
to better utilize effective channel responses, we choose channel attention to calculate the 
channel weight coefficient to weigh channels, reduce the influence of irrelevant channels, 
and increase the characterization ability of networks. The structure of the DSAM module 
is shown in Figure 2. 

 
Figure 2. Dual Self-attention Module (DSAM). 

The attention mechanism improves the defect that the feature extraction network 
cannot extract rich context information due to the limitation of the receptive field, better 
focuses on useful information, facilitates the tracker to avoid the interference of chaotic 
background information, and improves the tracking accuracy. 

The channel attention mechanism is used to address the issue of irrelevant channel 
information interfering with model calculation and negatively impacting target position-
ing accuracy. By weighing each channel adaptively, the effective utilization of relevant 
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The attention mechanism improves the defect that the feature extraction network
cannot extract rich context information due to the limitation of the receptive field, better
focuses on useful information, facilitates the tracker to avoid the interference of chaotic
background information, and improves the tracking accuracy.

The channel attention mechanism is used to address the issue of irrelevant channel
information interfering with model calculation and negatively impacting target positioning
accuracy. By weighing each channel adaptively, the effective utilization of relevant channel
information is improved, the characterization ability of the network is enhanced, and the
tracking accuracy is increased. The mechanism leverages location information to identify
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the richest part of the image information in each channel, thus complementing the channel’s
attention and helping distinguish the target from the complex background. The structure is
illustrated in Figure 3.
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Figure 3. Channel Attention.

Non-Local attention network: different from traditional local operations such as
convolution operation and cyclic operation, traditional convolution operation can only
calculate the relationship between adjacent features, while Non-Local is a kind of network,
which can capture the long-distance dependence relationship between any location features.
Therefore, our work introduces a Non-Local network to extract location information. The
structure is shown in Figure 4.
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Figure 4. Non-Local Network.

The input of the Non-Local network is X1 ∈ HX1×WX1×C and X2 ∈ HX2×WX2×C,
respectively, and the input X1 and X2 are assigned to three matrices, namely, q, k, and
v, respectively, and q, f , and g are the convolution operators of q, k, and v, respectively.
After the 1× 1 convolution of these three input matrices, the matrix transpose operation is
carried out, and the matrix multiplication operation is carried out twice. After the 1× 1
convolution, the addition of the original matrix X1 is carried out to obtain the final output
Z∗. The expression is as follows:

X2v = g(X2)M, (1)

X2k = φ(X2)M
T , (2)

X1q = θ(X1)M, (3)

X1qk = so f tmax(X1q · X2k), (4)

X1qkv = X1qk · X2v, (5)

Z = γ(X1qkv), (6)
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Z∗ = Z + X1. (7)

After matrix multiplication of X1q ∈ HX1 ×WX1 × C and X2k ∈ HX2 ×WX2 × C,
X1qk ∈ (HX1 ×WX1)× (HX2 ×WX2) is obtained through softmax, and matrix multipli-
cation with X2v ∈ HX2 ×WX2 × C is to obtain X1qkv, matrix Z is obtained through γ

convolution, and the final result is obtained by adding with input X1 matrix.

3.2.2. Cross-Attention Module

To prevent the phenomenon of tracking drift caused by similar target interference
or target occlusion, background information is particularly important to target tracking.
Thus, we designed the cross attention inspired by Transformer [23], which performs feature
mapping between the target template and the information of the two branches of the search
area, which can retain effective background information. Additionally, to enrich the use of
information from different locations, we introduced multiple attention to integrating the
full range of attention. The structure is shown in Figure 5.
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Figure 5. Cross Attention Module (CAM).

This module is composed of a residual network connecting a multi-head attention
mechanism and a feedforward network, and finally, layer normalization is carried out.
Among them, a feedforward network is composed of two linear transformations and a
ReLU function. The calculation process of the CAM module is as follows:

XCAM = X̃CAM + FFN(X̃CAM) (8)

X̃CAM = Xq + MultiHead(Xq + Pq, Xkv + Pkv, Xkv) (9)
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where Xq is one of the input branches. Meanwhile, the spatial position code generated by
the cosine function is introduced to distinguish the position information of input features.
Pq is the corresponding spatial position code of Xq, Xkv is the input of another branch, Pkv is
the corresponding position code of Xkv, XCAM is the output of the CAM module. The CAM
module fuses the features of the two branches and finally enhances the characterization
ability of the model by means of a feedforward neural network. CAM is responsible
for accepting feature mappings from two dual branches of self-attention simultaneously,
forming a complete feature fusion network.

3.3. The Matching Feature Points Threshold Template Updating

Traditional Siamese network algorithms (such as SiamFC and SiamRPN, to name a
few.) always set the target-tracking template to the first frame, and do not update the
template during tracking. This can result in decreased tracking accuracy due to changes
in the target’s appearance in complex environments such as occlusion, illumination, and
motion. Updating the template frequently would increase computational complexity and
increase tracking errors. To balance this, this article uses thresholds to determine whether
a template update is required. Firstly, the ORB feature-matching algorithm was used to
match the extracted features. Then, the matched feature points threshold is set to determine
whether to update the template. If the number of matched points is below the threshold
(150 in this method), the target is considered lost, and the template is initialized again. If
the number of matched feature points is more than the threshold, update the template.

The ORB algorithm is utilized for feature matching in this study due to its high
description and matching efficiency as well as good real-time performance compared with
traditional algorithms, such as SIFT and SURF. The feature-matching process is roughly
as follows:

Firstly, the ORB algorithm was used to detect and describe key points in the extracted
feature vectors, and the key points in the image and corresponding BRIEF descriptors were
obtained. Secondly, the Hamming distance is used to match the key points. If the Hamming
distance between feature points is less than the set threshold (set as 150 in this work),
they are considered a match. In other words, by comparing the bit values of two feature
descriptors, if different, the counter will be increased by one. The final counter result is the
Hamming distance between the two binary numbers. As shown in Formula (10), ORBpre
and ORBnext are the feature descriptors of two adjacent feature points, respectively. Finally,
the image is registered based on the homography matrix and the number of interior points.
If the number of matching points is more than 150, the template is updated.

Ham
(
ORBpre, ORBnext

)
=

255

∑
0

ORBpre ⊕ORBnext (10)

3.4. Classification and Regression Network

The regional proposal network places the center of the anchor frame at the center of
the search area with the largest responsiveness as the bounding frame of the regression.
In this work, the bounding frame is directly determined by the method of classification
regression for each position. This approach eliminates the need for precise adjustment
of hyperparameters, which is a challenge for the tracker to deal with large deformation,
our work accurately completes the classification and regression without using anchors for
regional proposal, which greatly reduces the number of hyperparameters and makes the
network structure simple. The structure diagram of this module is shown in Figure 6:
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3.5. Loss

We train many positive and negative samples to construct the loss function, which
will be positive samples with the feature vector in the enclosing box, but negative samples
anyway. In this work, the standard binary cross entropy loss is adopted for classification,
and the definition of the formula is as follows:

Lc = −∑
pos

[
ypos log(ppos) + (1− ypos) log(1− ppos)

]
(11)

where ypos is the true label, which is either 0 or 1. The location’s prospects are embodied in
ypos = 1, and ppos represents the probability of the prospect predicted by the model. For
the regression branch, a linear combination of norm loss L1(., .) and generalized loss IoU is
adopted. Regression loss can be expressed as follows:

Lr = ∑
pos

[
αLGIoU

(
ypos, y

)
+ βL1

(
ypos, y

)]
(12)

A positive sample refers to an instance or data point in which the target value (ypos) is
equal to 1, ppos is the predictive boundary box of the position, and y is the normalized true
value boundary box. The regularization parameter is set to α = 1 and β = 4.

4. Experimental Analysis
4.1. Implementation Details

The experimental platform is Ubuntu20.03 operating system, Pytorch1.7.1, Python
3.8.8, and the GPU used is NVIDIA GeForce GTX 1080Ti and 11 GB video memory.

We use COCO [27], TrackingNet [28], LaSOT [29] and GOT-10k [30] datasets to train
the model. For the TrackingNet, LaSOT, and GOT-10k datasets, we sampled images from a
video sequence as training samples, while for COCO data sets, we first adopted traditional
data enhancement methods, such as translation and rotation, to expand the dataset.

The size of the template image is 127 × 127 × 3, and the size of the search image is
255 × 255 × 3, both of which are RGB three-channel graphs. After massive data training,
the ResNet-50 network sets the learning rate of the trunk as le-5, the learning rate of other
parameters as le-4, and the weight attenuation as le-4. We trained the network on the
NVIDIA GeForce GTX 1080Ti GPU with the epoch set to 500. At the 350th epoch, the
learning rate began to drop by 10 times. In the test and evaluation stage, we used the
OTB100 [31], LaSOT [29], VOT-LT2020, and OxUvA datasets to evaluate the algorithm.
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4.2. Analysis of Results
4.2.1. Quantitative Analysis

OTB100. The OTB100 dataset is a widely used benchmark for evaluating the perfor-
mance of object-tracking algorithms in computer vision. It contains 100 video sequences of
different object categories, such as pedestrians, vehicles, and animals, in various scenarios,
such as in-the-wild, urban, and indoor environments. The video sequences vary in terms of
object size, camera motion, object motion, and occlusions, providing a comprehensive and
challenging evaluation for object-tracking algorithms. The dataset provides ground truth
annotations for the objects’ location, making it easier to quantify the accuracy of tracking
algorithms. The OTB100 dataset has become a standard benchmark in the field of object
tracking and is widely used by researchers and developers to evaluate and compare the
performance of different tracking algorithms.

OTB100 dataset is a widely used benchmark for evaluating the performance of object-
tracking algorithms in computer vision. It has 100 sequences, including different object
categories, such as pedestrians, vehicles, and animals, in various scenarios, such as in-
the-wild, urban, and indoor environments. In addition, there are hand-marks with nine
attributes on the test sequences to represent challenging aspects, for example, object size,
camera motion, object motion, and occlusions, providing a comprehensive and challeng-
ing evaluation of object-tracking algorithms. Two evaluation indicators are used, an
accuracy score and a successful score. The accuracy score is the percentage of frames
with the true distance between the center of the tracking result and the ground below
20 pixels. The success rate graph shows the percentage of successfully tracked frames at
different thresholds.

We compared with other public algorithms in the OTB100 data set, and the exper-
imental results are shown in Table 1 and Figure 7. Table 1 and Figure 7 show that our
tracker achieves a success of 69%, which is 10.3% higher than SiamFC and 6.1% higher
than SiamRPN.

As we can see from Table 1 and Figure 7, the success rate of our method is 0.690,
and the accuracy rate is 0.889. The success rate is 15.6% higher than SiamFC and 11.4%
higher than SiamRPN, and the accuracy rate is 14.8% higher than SiamFC and 7.3% higher
than SiamRPN.

Several video sequences were selected to test the performance of the algorithm under
different attributes such as occlusion, deformation, and motion blur, to name a few. These
attributes are common challenges in the field of target tracking, which can lead to changes
in the shape, position, and other features of the target or reduce the difference between the
target and the background, thus affecting the tracking results. The experimental results
are shown in Tables 2 and 3. The best three results are marked in red, green, and blue
bold fonts, respectively. Tables 2 and 3 indicate that our tracker can achieve the top three
performances under most of the attributes.

Table 1. Evaluation results on OTB100.

Trackers Success Precision

KCF [6] 0.477 0.696
SiamFC [12] 0.587 0.772
CFNet [32] 0.587 0.778

SiamDW [20] 0.627 0.828
SaimRPN [13] 0.629 0.847
GradNet [33] 0.639 0.861

DaSiamRPN [18] 0.658 0.880
ours 0.690 0.889
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Table 2. Precision under different attributes. The best three results are marked in red, green, and blue
bold fonts, respectively.

Trackers Illumination
Variation Occlusion Deformation Motion Blur Fast Motion Out-of-View Background

Clutters

KCF 0.728 0.749 0.740 0.650 0.602 0.650 0.753
SiamFC 0.709 0.802 0.744 0.700 0.721 0.777 0.732

SaimRPN 0.817 0.790 0.810 0.777 0.831 0.824 0.813
CFNet 0.743 0.768 0.669 0.676 0.718 0.721 0.785

Staple [34] 0.727 0.775 0.788 0.670 0.642 0.669 0.730
DaSiamRPN 0.848 0.838 0.900 0.786 0.791 0.757 0.868

SiamDW 0.841 0.855 0.906 0.716 0.732 0.734 0.847
ours 0.888 0.884 0.860 0.946 0.959 0.805 0.869

Table 3. Success under different attributes. The best three results are marked in red, green, and blue
bold fonts, respectively.

Trackers Illumination
Variation Occlusion Deformation Motion Blur Fast Motion Out-of-View Background

Clutters

KCF 0.581 0.618 0.671 0.595 0.557 0.650 0.672
SiamFC 0.679 0.769 0.705 0.666 0.699 0.754 0.705

SaimRPN 0.757 0.736 0.719 0.715 0.784 0.824 0.777
CFNet 0.688 0.727 0.628 0.618 0.680 0.706 0.725
Staple 0.692 0.732 0.774 0.628 0.605 0.586 0.698

DaSiamRPN 0.822 0.817 0.877 0.731 0.758 0.761 0.847
SiamDW 0.772 0.808 0.846 0.699 0.705 0.726 0.775

ours 0.771 0.845 0.852 0.804 0.844 0.776 0.848

LaSOT. LaSOT is a large-scale dataset for object tracking. It contains a total of 1400 high-
resolution sequences, of which 1120 are for training and 280 are for testing. We compared
the success rate (Success) and accuracy (P,PNorm) scores of various advanced trackers on
LaSOT datasets. As shown in Figure 8 and Table 4, our tracker obtains a success of 65.1%,
which is 13.6% higher than DaSiamRPN and 15.6% higher than SiamRPN++. At the same
time, we compare the success for different attributes in LaSOT, such as ROT (the target
rotates in the image), DEF (the target is deformable during tracking), IV (the illumination in
the target region changes), OV (the target completely leaves the video frame), SV (the ratio
of bounding box is outside the range), BC (the background has a similar appearance to the
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target), and ARC (the ratio of the bounding box aspect ratio is outside the range). Table 5
indicates that our tracker performs better than others in most cases (including STARK [35]).
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Table 4. Comparison on LaSOT. The best three results are marked in red, green, and blue bold
fonts, respectively.

Trackers Success Norm Precision Precision

KCF 0.178 0.190 0.166
Staple 0.243 0.27 0.239

SiamFC 0.336 0.420 0.339
SiamDW 0.347 0.437 0.329

SiamPPN++ 0.495 0.570 0.493
ATOM 0.499 0.570 0.497

DaSiamRPN 0.515 0.605 0.529
STARK 0.671 0.770 0.713

ours 0.651 0.740 0.692

Table 5. Comparison of success rates for different attributes. The best three results are marked in red,
green, and blue bold fonts, respectively.

Trackers ROT DEF IV OV SV BC ARC

KCF 0.198 0.256 0.179 0.345 0.278 0.197 0.252
Staple 0.256 0.287 0.367 0.268 0.398 0.376 0.296

SiamFC 0.348 0.395 0.486 0.269 0.365 0.285 0.342
SiamDW 0.375 0.435 0.414 0.376 0.459 0.398 0.452

SiamPPN++ 0.469 0.548 0.534 0.598 0.497 0.398 0.586
ATOM [36] 0.496 0.534 0.601 0.576 0.612 0.614 0.409

DaSiamRPN 0.565 0.676 0.698 0.549 0.538 0.659 0.711
STARK [35] 0.790 0.765 0.734 0.854 0.789 0.613 0.654

ours 0.658 0.787 0.790 0.804 0.817 0.657 0.531

Results evaluated on the VOT-LT2020 and OxUvA:
VOT-LT2020. The VOT-LT2020 dataset is a long-term tracking dataset consisting of

50 video sequences with a total of more than 23,000 frames of images and covers various
challenges in target tracking, such as target occlusion, target disappearing for long periods
of time, background interference, etc. It uses Precision (Pr) and Recall (Re) to measure the
performance of the tracker, and the calculation process of F-score is F = 2PrRe

Pr+Re . We compare
the performance of the trackers on the VOT-LT2020 and report the results in Table 6. Our
tracker achieves the top three performances. Our tracker obtains a recall rate of 0.713,
which is 1.8% higher than STARK-ST50.
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Table 6. Comparisons on VOT-LT2020 benchmark. The best three results are marked in red, green,
and blue bold fonts, respectively.

Trackers F-Score Pr Re

ADiMPLT 0.501 0.489 0.514
SuperDiMP 0.503 0.510 0.496
CoCoLoT 0.584 0.591 0.577

SaimDW_LT 0.601 0.618 0.585
SpLT [37] 0.635 0.587 0.544

CLGS 0.640 0.689 0.598
LTMU_B [38] 0.650 0.665 0.635
STARK-ST50 0.702 0.710 0.695

ours 0.695 0.678 0.713

OxUVA. The OxUVA dataset contained 166 test sequences and 200 development
sequences using the true positive rate (TPR), true negative rate (TNR), and the maximum
geometric mean of TPR and TNR (MaxGM). True negative rate (TNR) and the maximum
geometric mean of TPR and TNR (MaxGM). Table 7 indicates that our tracker performs
well and is second only to STARK, but STARK runs lower than us.

Table 7. Comparisons on the Ox-UvA [33] long-term dataset. The best three results are marked in
red, green, and blue bold fonts, respectively.

Trackers MaxGM TPR TNR

Staple 0.261 0.273 -
BACF [39] 0.281 0.316 -
EBT [40] 0.283 0.321 -
SiamFC 0.313 0.391 -

ECO-HC 0.314 0.395 -
LCT [41] 0.396 0.292 0.537

DaSiam_LT 0.415 0.689 -
TLD [42] 0.431 0.208 0.895

MBMD [43] 0.544 0.609 0.485
GlobalTrack [44] 0.603 0.574 0.633

SPLT [37] 0.622 0.498 0.776
STARK 0.782 0.841 0.727

ours 0.733 0.723 0.743

4.2.2. Visualization of the Tracking Effect

We selected some challenging video sequences on the OTB100 dataset to test our
method in complex environments, and the tracking effect is shown in Figure 9.

We selected the Diving, David, Biker, Jump, and Lemming sequences in the OTB100
dataset to test our method, respectively. During the Diving video sequence, the diver’s
target constantly underwent scale changes, rotation, and deformation. In the David video
sequence, as the target kept moving, we could find that the illumination of the environment
was constantly changing, while the target also underwent scale changes, deformation,
and rotation. In the Biker sequence, with the rapid rotation of the bicycle, the target goes
through continuous scale change, occlusion, motion blur, fast movement, out-of-vision,
and low resolution. In the Girl video sequence, the target is persistently affected by scale
change, occlusion, and rotation, while in the Jump video sequence, the target has constantly
undergone scale change, occlusion, deformation, motion blur, and rotation. Lemming
video sequence targets constantly undergo scale change, occlusion, rapid movement, and
rotation. The information displayed in Figure 9 shows that the robustness of our method
remains good even when confronted with many challenges.
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4.2.3. Tracking Registration Experiment

In addition, we adopted Unity3D as the development engine, used OpenCV and
Vuforia development kits to develop the app for mobile phones in an augmented reality
system, and replaced the tracking module in Vuforia with the algorithm proposed in this
paper for testing. The mobile phone camera is used to collect the realistic scene image,
then the tracking algorithm proposed in this paper is used to track the target, then the
feature matching and pose estimation are carried out, and, finally, the virtual-real fusion is
completed. We took textbooks as the target for registration and accurately registered small
blocks on the textbooks. We conducted registration experiments when there is a change
in scale, angle, rotation, and occlusion, respectively. The registration effects are shown in
Figure 10, where (a) is the registration effect under normal conditions, (b) is the registration
effect under certain occlusion, and (c) is the registration effect under different perspectives.
(d) is the registration effect under rotation. As can be seen from the registration renderings
in the following situations, the improved, augmented reality long-term tracking algorithm
in this work can also achieve good accuracy and real-time performance in the subsequent
registration stage.

4.2.4. Ablation Study

In order to prove the effectiveness of multiple attention mechanisms and template
updating based on matching feature point thresholds in the proposed method, three sets
of ablation experiments were conducted based on the LaSOT datasets, which were the
algorithm after removing the DSAM module in our tracker and the algorithm after replacing
the CAM module in the tracker with correlation operations in traditional Siamese networks,
respectively. After removing the template updating module, the algorithm results are
shown in Table 8. The blank said the component has been removed, Xsaid this component
is used.
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Table 8. Ablation results on LASOT dataset.

Method DSAM CAM Template Update Success PNorm P

ours X X X 0.651 0.740 0.692

ours X X 0.524 0.621 0.534

ours X X 0.623 0.697 0.649

ours X X 0.576 0.637 0.590

4.2.5. Speed, FLOPs, and Params

Compared with some classic trackers, a substantial decrease in the number of param-
eters is seen in this work, and the operation speed is greatly improved. The details are
shown in Table 9. We can see that our tracker can run in real time at 47.9 fps. The params of
our tracker are 20.579M less than STARK, and the FLOPs are 7.089G less than STARK. Our
network is lighter.
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Table 9. Comparison of the speed, FLOPs, and Params.

Trackers Speed (fps) Params (M) FLOPs (G)

SiamFC 68.2 6.596 9.562
ATOM 55.7 18.965 50.623

SiamRPN 38.5 22.633 36.790
SaimRPN++ 35.4 54.355 48.900
STARK-ST50 41.8 28.238 12.812

ours 51.9 12.659 10.723

5. Conclusions

Our method has a simple tracking framework and abandons any data post-processing
and anchor frame operation and has a few parameters. Firstly, the fusion feature is used
to extract the last three layers of the network to prevent the network from being too deep.
Secondly, to merge the extracted features, a feature fusion network consisting of a dual
self-attention module and a cross-attention module is utilized. Among them, the dual
attention module adopts the combination of a Non-Local network and channel attention
mechanism to enhance the contextual information and reduce computation. The cross-
attention mechanism designed by Transformer is used to establish the correlation between
long-distance features and effectively combine the contextual information. The tracker’s
stability is increased in complex surroundings. Finally, the template update module is
designed to update the template in real time, avoiding the problem of tracking accuracy
degradation caused by the target deformation during long-time tracking while still using
the first frame as the template. A large number of experiments show that our method has
shown excellent accuracy and real-time performance on multiple benchmarks, achieving a
success rate of 69.0% on the OTB100 dataset, which is 15.6% higher than that of SiamFC
and 11.4% higher than that of SiamRPN. A success rate of 65.1% is achieved on the LaSOT
dataset. Our tracker performs well on both VOT-LT2020 and OxUvA and is second only to
STARK. The number of parameters is only 12.659M, and our tracker runs faster than STARK.
The network structure is simple, and the robustness shown in various challenges also
indicates that our method can meet the requirement for long-term tracking in augmented
reality. Future research will focus on further simplifying the network structure to better
adapt to mobile augmented reality applications.

Author Contributions: M.G.; methodology, writing—original draft preparation, M.G. and Q.C.; for-
mal analysis, investigation, resources, Q.C.; writing—review and editing, visualization, supervision.
All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Informed Consent Statement: Not applicable.

Data Availability Statement: Where data are unavailable due to privacy.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Thomas, P.C.; David, W.M. Augmented reality: An application of heads-up display technology to manual manufacturing

processes. In Proceedings of the Hawaii International Conference on System Sciences, Kauai, HI, USA, 7–10 January 1992;
Volume 2.

2. Lowe, D.G. Distinctive image features from scale-invariant keypoints. Int. J. Comput. Vis. 2004, 60, 91–110. [CrossRef]
3. Bay, H.; Tuytelaars, T.; Van Gool, L. Surf: Speeded up robust features. Lect. Notes Comput. Sci. 2006, 3951, 404–417.
4. Rublee, E.; Rabaud, V.; Konolige, K.; Bradski, G. ORB: An efficient alternative to SIFT or SURF. In Proceedings of the International

Conference on Computer Vision, Barcelona, Spain, 6–13 November 2011.
5. Bolme, D.S.; Beveridge, J.R.; Draper, B.A.; Lui, Y.M. Visual object tracking using adaptive correlation filters. In Proceedings of the

2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, San Francisco, CA, USA, 13–18 June 2010;
pp. 2544–2550.

https://doi.org/10.1023/B:VISI.0000029664.99615.94


Appl. Sci. 2023, 13, 5015 16 of 17

6. Henriques, J.F.; Caseiro, R.; Martins, P.; Batista, J. High-Speed Tracking with Kernelized Correlation Filters. IEEE Trans. Pattern
Anal. Mach. Intell. 2014, 37, 583–596. [CrossRef] [PubMed]

7. Danelljan, M.; Häger, G.; Khan, F.; Felsberg, M. Accurate scale estimation for robust visual tracking. In British Machine Vision
Conference, Nottingham, UK, 1–5 September 2014; BMVA Press: Durham, UK, 2014.

8. Henriques, J.F.; Caseiro, R.; Martins, P.; Batista, J. Exploiting the circulant structure of tracking-by-detection with kernels. In Com-
puter Vision–ECCV 2012: 12th European Conference on Computer Vision, Florence, Italy, 7–13 October 2012; Springer: Berlin/Heidelberg,
Germany, 2012; pp. 702–715.

9. Liu, C.; Chen, X.F.; Bo, C.J.; Wang, D. Long-term Visual Tracking: Review and Experimental Comparison. Mach. Intell. Res. 2022,
19, 512–530. [CrossRef]

10. Li, X.; Hu, W.; Shen, C.; Zhang, Z.; Dick, A.; Hengel, A.V.D. A survey of appearance models in visual object tracking. ACM Trans.
Intell. Syst. Technol. 2013, 4, 1–48. [CrossRef]
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