Effects of “S”-Type Bowed Guide Vanes on Unsteady Flow in 1.5-Stage Axial Compressors
Abstract
:1. Introduction
2. Methods
2.1. The 1.5-Stage Axial Compressor with the “S”-Type Bowed Guide Vane
2.2. Numerical Method
2.3. Numerical Validation
3. Results and Discussion
3.1. Unsteady Aerodynamic Results under the Design Condition
3.2. Unsteady Aerodynamic Results under Near-Blockage Conditions
4. Conclusions
- (1)
- The pressure ratio decreases with the increase in the guide vane bending coefficient. Compared with the original straight vane, the pressure ratio under the design condition and the near-blockage condition decreases by 0.18% and 0.22%, respectively, in the = 10 mm models. The total efficiency of the model with the “S”-type bowed guide vane is reduced. The total efficiency of the = −10 mm model decreases the most, which is 0.57% and 0.87% in the design condition and near-blockage condition, respectively.
- (2)
- The turbulence kinetic energy near the hub of the guide vane will increase with the increase in the absolute value of the bending coefficient. The turbulence kinetic energy of the guide vane wake under the near-blockage condition is higher than that under the design condition due to the higher velocity. However, in the moving vane passage and the wake of the moving vane, due to the low-pressure ratio under the near-blockage condition, the flow separation caused by the inverse pressure gradient is relatively small.
- (3)
- The = 5 mm model will increase the aerodynamic exciting force amplitude on the moving vane. The = −10 mm model can reduce the tangential and axial aerodynamic exciting force amplitudes under the first-order blade-passing frequency of the moving vane by 90.82% and 90.39% under the design condition, respectively. Under the near-blockage condition, the reduced values are 85.84% and 86.58%, respectively. This is because, for the = −10 mm model, at different blade heights, the relative position difference between the moving vane leading edge and the guide vane is very large. This means the uneven flow field at the guide vane outlet may have the opposite effect on the force of the moving vane at different blade heights.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Matsunuma, T. Unsteady flow field of an axial-flow turbine rotor at a low Reynolds number. J. Turbomach. 2007, 129, 360–371. [Google Scholar] [CrossRef]
- Maroldt, N.; Amer, M.; Seume, J.R. Forced Response Due to Vane Stagger Angle Variation in an Axial Compressor. J. Turbomach. 2022, 144, 081011. [Google Scholar] [CrossRef]
- Gallus, H.E.; Lambertz, J.; Wallmann, T. Blade-Row Interaction in an Axial-Flow Subsonic Compressor Stage. J. Eng. Power 1980, 102, 169–177. [Google Scholar] [CrossRef]
- Gallus, H.E.; Grollius, H.; Lambertz, J. The Influence of Blade Number Ratio and Blade Row Spacing on Axial-Flow Compressor Stator Blade Dynamic Load and Stage Sound Pressure Level. J. Eng. Power 1982, 104, 633–641. [Google Scholar] [CrossRef]
- Gorrell, S.E.; Okiishi, T.H.; Copenhaver, W.W. Stator-Rotor Interactions in a Transonic Compressor—Part 1: Effect of Blade-Row Spacing on Performance. J. Turbomach. 2003, 125, 328–335. [Google Scholar] [CrossRef]
- Douglas, M.B.; Sanford, F. Axial Compressor Blade-to-Blade Unsteady Aerodynamic Variability. J. Propuls. Power 2015, 19, 242–249. [Google Scholar]
- Burkhardt, O.; Nitsche, W.; Goller, M.; Swoboda, M.; Guemmer, V. Rotor-stator interaction in a highly-loaded, single-stage, low-speed axial compressor: Unsteady measurements in the rotor relative frame. In Unsteady Aerodynamics, Aeroacoustics and Aeroelasticity of Turbomachines; Hall, K.C., Kielb, R.E., Thomas, J.P., Eds.; Springer: Dordrecht, The Netherlands; Berlin/Heidelberg, Germany, 2006; pp. 603–614. [Google Scholar]
- Smith, N.R.; Key, N.L. Unsteady vane boundary layer response to rotor–rotor interactions in a multistage compressor. J. Propuls. Power 2014, 30, 416–425. [Google Scholar] [CrossRef]
- Lefcort, M.D. An Investigation into Unsteady Blade Forces in Turbomachines. J. Eng. Power 1965, 87, 345–354. [Google Scholar] [CrossRef]
- Daigji, H.; Shirahara, H. A finite element solution of cascade flow in a large-distorted periodic flow. Bull. JSME 1978, 21, 824–831. [Google Scholar] [CrossRef]
- Mailach, R.; Müller, L.; Vogeler, K. Rotor-stator interactions in a four-stage low-speed axial compressor—Part II: Unsteady aerodynamic forces of rotor and stator blades. J. Turbomach. 2004, 126, 519–526. [Google Scholar] [CrossRef]
- Smith, N.R.; Key, N.L. Blade-row interaction effects on unsteady stator loading in an embedded compressor stage. J. Propuls. Power 2017, 33, 248–255. [Google Scholar] [CrossRef]
- Monk, D.J.; Key, N.L.; Fulayter, R.D. Reduction of aerodynamic forcing through introduction of stator asymmetry in axial compressors. J. Propuls. Power 2016, 32, 134–141. [Google Scholar] [CrossRef]
- Wenjie, W.; Peter, J.T. Acoustic Improvement of Stator-Rotor Interactionwith Nonuniform Trailing Edge Blowing. Appl. Sci. 2018, 8, 994–1004. [Google Scholar]
- Milidonis, K.; Semlitsch, B.; Hynes, T. Effect of Clocking on Compressor Noise Generation. AIAA J. 2018, 56, 4225–4231. [Google Scholar] [CrossRef]
- Weir, D.S.; Podboy, G.G. Flow Measurements and Multiple Pure Tone Noise from a Forward Swept Fan. In Proceedings of the 43rd AIAA Aerospace Sciences Meeting and Exhibit, Reno, NV, USA, 10–13 January 2005. [Google Scholar]
- Bamberger, K.; Carolus, T. Optimization of axial fans with highly swept blades with respect to losses and noise reduction. Noise Control. Eng. J. 2012, 60, 716–725. [Google Scholar] [CrossRef]
- Bohn, D.E.; Ren, J.; Tümmers, C.; Sell, M. Unsteady 3D-numerical investigation of the influence of the blading design on the stator-rotor interaction in a 2-stage turbine. In Proceedings of the ASME Turbo Expo 2005: Power for Land, Sea, and Air, Reno, NV, USA, 6–9 June 2005. [Google Scholar]
- Laborderie, J.D.; Blandeau, V.; Node-Langlois, T.; Moreau, S. Extension of a Fan Tonal Noise Cascade Model for Camber Effects. AIAA J. 2015, 53, 863–876. [Google Scholar] [CrossRef]
- Ling, J.; Du, X.; Wang, S.; Wang, Z. Relationship between optimum curved blade generate line and cascade parameters in subsonic axial compressor. In Proceedings of the ASME Turbo Expo 2014: Turbine Technical Conference and Exposition, Düsseldorf, Germany, 16–20 June 2014. [Google Scholar]
- Rajesh, E.; Roy, B. Numerical study of variable camber inlet guide vane on low speed axial compressor. In Proceedings of the ASME 2015 Gas Turbine India Conference, Hyderabad, India, 2–3 December 2015. [Google Scholar]
- Wadia, A.R.; Szucs, P.N.; Gundy-Burlet, K.L. Design and Testing of Swept and Leaned Outlet Guide Vanes to Reduce Stator–Strut–Splitter Aerodynamic Flow Interactions. J. Turbomach. 1999, 121, 416–427. [Google Scholar] [CrossRef]
- Keke, G.; Yonghui, X.; Di, Z. Effects of stator blade camber and surface viscosity on unsteady flow in axial turbine. Appl. Therm. Eng. 2017, 118, 748–764. [Google Scholar]
- Chen, X.; Chu, W.; Wang, G.; Yan, S.; Shen, Z.; Guo, Z. Effect of span range of variable-camber inlet guide vane in an axial compressor. Aerosp. Sci. Technol. 2021, 116, 106–136. [Google Scholar] [CrossRef]
- Luo, L.; Wang, C.; Wang, L.; Sundén, B.; Wang, S. Endwall heat transfer and aerodynamic performance of bowed outlet guide vanes (OGVs) with on- and off-design conditions. Numer. Heat Transf. Part A Appl. 2016, 69, 352–368. [Google Scholar] [CrossRef]
- Niu, X.; Wang, L.; Li, D.; Du, Q. Reduction of Turbine Blade Unsteady Forces by Shape Modification of Vanes for Industrial Gas Turbines. In Proceedings of the ASME Turbo Expo 2016: Turbomachinery Technical Conference and Exposition, Seoul, South Korea, 13–17 June 2016. [Google Scholar]
- Liu, H.J.; Ouyang, H.; Tian, J.; Wu, Y.D.; Du, Z.H. Aeroacoustics benefit of stator lean effect for rotor-stator interactions. Noise Control. Engr. J. 2013, 61, 389–399. [Google Scholar] [CrossRef]
- Zhu, Y.; Luo, J.; Liu, F. Influence of blade lean together with blade clocking on the overall aerodynamic performance of a multi-stage turbine. Aerosp. Sci. Technol. 2018, 80, 329–336. [Google Scholar]
- Hwang, S.; Son, C.; Seo, D.; Rhee, D.H.; Cha, B. Comparative study on steady and unsteady conjugate heat transfer analysis of a high pressure turbine blade. Appl. Therm. Eng. 2016, 99, 765–775. [Google Scholar] [CrossRef]
- Cornelius, C.; Biesinger, T.; Galpin, P.; Braune, A. Experimental and computational analysis of a multistage axial compressor including stall prediction by steady and transient CFD methods. J. Turbomach. 2014, 136, 061013. [Google Scholar] [CrossRef]
- Strazisar, A.J.; Powell, J.A. Laser Anemometer Measurements in a Transonic Axial Flow Compressor Rotor. J. Eng. Gas Turbines Power 1981, 103, 430–437. [Google Scholar] [CrossRef]
- Zhu, G.; Liu, X.; Yang, B.; Song, M. A Study of influences of inlet total pressure distortions on clearance flow in an axial compressor. J. Eng. Gas Turbines Power 2021, 143, 101010. [Google Scholar] [CrossRef]
- Song, M.R.; Yang, B.; Dong, G.M.; Liu, X.L.; Wang, J.Q.; Xie, H.; Lu, Z.H. Research on Accuracy of Flowing Field Based on Numerical Simulation for Tonal Noise Prediction in Axial Compressor. In Proceedings of the ASME Turbo Expo 2018: Turbomachinery Technical Conference and Exposition, Oslo, Norway, 11–15 June 2018. [Google Scholar]
- Yang, B.; Gu, C.G. The Effects of Radially Distorted Incident Flow on Performance of Axial-Flow Fans with Forward-Skewed Blades. J. Turbomach. 2013, 135, 011039. [Google Scholar] [CrossRef]
Parameters | Guide Vane | Moving Vane | Stator Vane |
---|---|---|---|
number of blades | 54 | 36 | 45 |
inner diameter of vane/mm | 260 | 260 | 260 |
outer diameter of vane/mm | 447 | 445 | 442 |
rated speed/rpm | — | 4830 | — |
Parameters | Design Condition | Near-Blockage Condition |
---|---|---|
inlet total pressure/kPa | 101.32 | 101.32 |
inlet total temperature/K | 288.15 | 288.15 |
outlet flow rate/kg·s−1 | 48.75 | 56 |
Bending Coefficient /mm | −10 | −5 | 0 | 5 | 10 |
---|---|---|---|---|---|
pressure ratio | 1.1908 | 1.1904 | 1.1903 | 1.1901 | 1.1882 |
total efficiency/% | 82.39 | 82.66 | 82.93 | 82.64 | 82.51 |
Bending Coefficient /mm | −10 | −5 | 0 | 5 | 10 |
---|---|---|---|---|---|
tangential exciting force mean value/N | 131.2 | 132.8 | 131.9 | 131.4 | 132.2 |
axial exciting force mean value/N | 181.1 | 182.3 | 182.2 | 181.6 | 180.7 |
tangential exciting force amplitude value/N | 0.448 | 3.033 | 4.882 | 5.609 | 4.460 |
axial exciting force amplitude value/N | 0.578 | 3.722 | 6.013 | 6.876 | 5.423 |
Bending Coefficient /mm | −10 | −5 | 0 | 5 | 10 |
---|---|---|---|---|---|
pressure ratio | 1.1651 | 1.1637 | 1.1636 | 1.1632 | 1.1610 |
total efficiency/% | 80.87 | 81.59 | 81.74 | 81.72 | 81.21 |
Bending Coefficient /mm | −10 | −5 | 0 | 5 | 10 |
---|---|---|---|---|---|
tangential exciting force mean value/N | 138.2 | 136.1 | 137.3 | 137.9 | 136.1 |
axial exciting force mean value/N | 169.7 | 167.2 | 168.3 | 168.7 | 166.6 |
tangential exciting force amplitude value/N | 0.719 | 3.114 | 5.081 | 6.051 | 5.223 |
axial exciting force amplitude value/N | 0.823 | 3.641 | 6.133 | 7.184 | 6.010 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, Y.; Liao, G.; Li, Y.; Xie, Y.; Zhang, D. Effects of “S”-Type Bowed Guide Vanes on Unsteady Flow in 1.5-Stage Axial Compressors. Appl. Sci. 2023, 13, 5071. https://doi.org/10.3390/app13085071
Liu Y, Liao G, Li Y, Xie Y, Zhang D. Effects of “S”-Type Bowed Guide Vanes on Unsteady Flow in 1.5-Stage Axial Compressors. Applied Sciences. 2023; 13(8):5071. https://doi.org/10.3390/app13085071
Chicago/Turabian StyleLiu, Yupeng, Guangqing Liao, Yunzhu Li, Yonghui Xie, and Di Zhang. 2023. "Effects of “S”-Type Bowed Guide Vanes on Unsteady Flow in 1.5-Stage Axial Compressors" Applied Sciences 13, no. 8: 5071. https://doi.org/10.3390/app13085071
APA StyleLiu, Y., Liao, G., Li, Y., Xie, Y., & Zhang, D. (2023). Effects of “S”-Type Bowed Guide Vanes on Unsteady Flow in 1.5-Stage Axial Compressors. Applied Sciences, 13(8), 5071. https://doi.org/10.3390/app13085071