Essential Oil of Origanum vulgare var. aureum L. from Western Romania: Chemical Analysis, In Vitro and In Silico Screening of Its Antioxidant Activity
Abstract
:1. Introduction
2. Materials and Methods
2.1. Raw Material and Chemicals
2.2. Extraction of OEO
2.3. Gas Chromatography-Mass Spectrometry Analysis
2.4. Antioxidant Activity by 1,1-Diphenyl-2-Picrylhydrazyl (DPPH) Radical Scavenging Assay
2.5. Antioxidant Activity by [2,2′-Azinobis(3-Ethylbenzothiazoline-6-Sulfonic Acid) Diammonium] (ABTS) Radical Scavenging Assay
2.6. Beta-Carotene/Linoleic Acid Bleaching Assay
2.7. In Silico Prediction of Bioactivity and Molecular Docking Studies
2.8. Statistical Analysis
3. Results and Discussion
3.1. OEO Yield and Chemical Composition
3.2. Assessment of Antioxidant Activity
3.3. In Silico Prediction of the Mechanism by Molecular Docking Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- FAO. Members Call for Action against Food Loss and Waste in the World’s Hungriest Region—Asia and the Pacific. 2021. Available online: http://www.fao.org/asiapacific/news/detail-events/en/c/1403168/ (accessed on 11 December 2022).
- Dorman, H.; Peltoketo, A.; Hiltunen, R.; Tikkanen, M. Characterisation of the antioxidant properties of de-odourised aqueous extracts from selected Lamiaceae herbs. Food Chem. 2003, 83, 255–262. [Google Scholar] [CrossRef]
- Viuda-Martos, M.; Ruiz Navajas, Y.; Sánchez Zapata, E.; Fernández-López, J.; Pérez-Álvarez, J.A. Antioxidant activity of essential oils of five spice plants widely used in a Mediterranean diet. Flavour Fragr. J. 2010, 25, 13–19. [Google Scholar] [CrossRef]
- Park, S.; Lee, J.-Y.; Lim, W.; You, S.; Song, G. Butylated hydroxyanisole exerts neurotoxic effects by promoting cytosolic calcium accumulation and endoplasmic reticulum stress in astrocytes. J. Agric. Food Chem. 2019, 67, 9618–9629. [Google Scholar] [CrossRef] [PubMed]
- Liang, X.; Zhao, Y.; Liu, W.; Li, Z.; Souders, C.L., II; Martyniuk, C.J. Butylated hydroxytoluene induces hyperactivity and alters dopamine-related gene expression in larval zebrafish (Danio rerio). Environ. Pollut. 2020, 257, 113624. [Google Scholar] [CrossRef] [PubMed]
- Ham, J.; Lim, W.; Park, S.; Bae, H.; You, S.; Song, G. Synthetic phenolic antioxidant propyl gallate induces male infertility through disruption of calcium homeostasis and mitochondrial function. Environ. Pollut. 2019, 248, 845–856. [Google Scholar] [CrossRef] [PubMed]
- Ashok, B.; Hariram, N.; Siengchin, S.; Rajulu, A.V. Modification of tamarind fruit shell powder with in situ generated copper nanoparticles by single step hydrothermal method. J. Bioresour. Bioprod. 2020, 5, 180–185. [Google Scholar] [CrossRef]
- Tagnaout, I.; Zerkani, H.; Bencheikh, N.; Amalich, S.; Bouhrim, M.; Mothana, R.A.; Alhuzani, M.R.; Bouharroud, R.; Hano, C.; Zair, T. Chemical Composition, Antioxidants, Antibacterial, and Insecticidal Activities of Origanum elongatum (Bonnet) Emberger & Maire Aerial Part Essential Oil from Morocco. Antibiotics 2023, 12, 174. [Google Scholar] [CrossRef] [PubMed]
- Yuan, Y.; Sun, J.; Song, Y.; Raka, R.N.; Xiang, J.; Wu, H.; Xiao, J.; Jin, J.; Hui, X. Antibacterial activity of oregano essential oils against Streptococcus mutans in vitro and analysis of active components. BMC Complement. Med. Ther. 2023, 23, 61. [Google Scholar] [CrossRef] [PubMed]
- Mancianti, F.; Ebani, V.V. Biological activity of essential oils. Molecules 2020, 25, 678. [Google Scholar] [CrossRef]
- Saeed, K.; Pasha, I.; Jahangir Chughtai, M.F.; Ali, Z.; Bukhari, H.; Zuhair, M. Application of essential oils in food industry: Challenges and innovation. J. Essent. Oil Res. 2022, 34, 97–110. [Google Scholar] [CrossRef]
- Kačániová, M.; Galovičová, L.; Ivanišová, E.; Vukovic, N.L.; Štefániková, J.; Valková, V.; Borotová, P.; Žiarovská, J.; Terentjeva, M.; Felšöciová, S. Antioxidant, antimicrobial and antibiofilm activity of coriander (Coriandrum sativum L.) essential oil for its application in foods. Foods 2020, 9, 282. [Google Scholar] [CrossRef]
- Pezzani, R.; Vitalini, S.; Iriti, M. Bioactivities of Origanum vulgare L.: An update. Phytochem. Rev. 2017, 16, 1253–1268. [Google Scholar] [CrossRef]
- Skoula, M.; Harborne, J.B. The taxonomy and chemistry of Origanum. In Oregano: The genera Origanum and Lippia; CRC Press: Boca Raton, FL, USA, 2002; Volume 67. [Google Scholar]
- Shayista, C.; Zahoor, A.K.; Phalestine, S. Medicinal importance of genus Origanum: A review. J. Pharmacogn. Phytother. 2013, 5, 170–177. [Google Scholar]
- Verma, R.S.; Padalia, R.C.; Chauhan, A. Analysis of the hydrosol aroma of Indian oregano. Med. Aromat. Plants 2012, 1, 112. [Google Scholar] [CrossRef]
- Yan, F.; Azizi, A.; Janke, S.; Schwarz, M.; Zeller, S.; Honermeier, B. Antioxidant capacity variation in the oregano (Origanum vulgare L.) collection of the German National Genebank. Ind. Crops Prod. 2016, 92, 19–25. [Google Scholar] [CrossRef]
- Karioti, A.; Milošević-Ifantis, T.; Pachopos, N.; Niryiannaki, N.; Hadjipavlou-Litina, D.; Skaltsa, H. Antioxidant, anti-inflammatory potential and chemical constituents of Origanum dubium Boiss., growing wild in Cyprus. J. Enzym. Inhib. Med. Chem. 2015, 30, 38–43. [Google Scholar] [CrossRef] [PubMed]
- Coccimiglio, J.; Alipour, M.; Jiang, Z.H.; Gottardo, C.; Suntres, Z. Antioxidant, Antibacterial, and Cytotoxic Activities of the Ethanolic Origanum vulgare Extract and Its Major Constituents. Oxidative Med. Cell. Longev. 2016, 2016, 1404505. [Google Scholar] [CrossRef]
- Castilho, P.C.; Savluchinske-Feio, S.; Weinhold, T.S.; Gouveia, S.C. Evaluation of the antimicrobial and antioxidant activities of essential oils, extracts and their main components from oregano from Madeira Island, Portugal. Food Control 2012, 23, 552–558. [Google Scholar] [CrossRef]
- Şahin, F.; Güllüce, M.; Daferera, D.; Sökmen, A.; Sökmen, M.; Polissiou, M.; Agar, G.; Özer, H. Biological activities of the essential oils and methanol extract of Origanum vulgare ssp. vulgare in the Eastern Anatolia region of Turkey. Food Control 2004, 15, 549–557. [Google Scholar] [CrossRef]
- Botsoglou, N.; Florou-Paneri, P.; Christaki, E.; Fletouris, D.; Spais, A. Effect of dietary oregano essential oil on performance of chickens and on iron-induced lipid oxidation of breast, thigh and abdominal fat tissues. Br. Poult. Sci. 2002, 43, 223–230. [Google Scholar] [CrossRef]
- Jianu, C.; Rusu, L.-C.; Muntean, I.; Cocan, I.; Lukinich-Gruia, A.T.; Goleț, I.; Horhat, D.; Mioc, M.; Mioc, A.; Șoica, C.; et al. In Vitro and In Silico Evaluation of the Antimicrobial and Antioxidant Potential of Thymus pulegioides Essential Oil. Antioxidants 2022, 11, 2472. [Google Scholar] [CrossRef]
- Adams, R.P. Identification of Essential Oil Components by Gas Chromatography/Mass Spectrometry; Allured Publishing Corporation: Carol Stream, IL, USA, 2007; Volume 456. [Google Scholar]
- Jianu, C.; Mihail, R.; Muntean, S.G.; Pop, G.; Daliborca, C.V.; Horhat, F.G.; Nitu, R. Composition and antioxidant capacity of essential oils obtained from Thymus vulgaris, Thymus pannonicus and Satureja montana grown in Western Romania. Rev. Chim. 2015, 66, 2157–2160. [Google Scholar]
- Rădulescu, M.; Jianu, C.; Lukinich-Gruia, A.T.; Mioc, M.; Mioc, A.; Șoica, C.; Stana, L.G. Chemical composition, in vitro and in silico antioxidant potential of Melissa officinalis subsp. officinalis essential oil. Antioxidants 2021, 10, 1081. [Google Scholar] [CrossRef]
- Xin, X.; Fan, R.; Gong, Y.; Yuan, F.; Gao, Y. On-line HPLC-ABTS•+ evaluation and HPLC-MS n identification of bioactive compounds in hot pepper peel residues. Eur. Food Res. Technol. 2014, 238, 837–844. [Google Scholar] [CrossRef]
- Berman, H.M.; Westbrook, J.; Feng, Z.; Gilliland, G.; Bhat, T.N.; Weissig, H.; Shindyalov, I.N.; Bourne, P.E. The Protein Data Bank. Nucleic Acids Res. 2000, 28, 235–242. [Google Scholar] [CrossRef]
- Kim, S.; Chen, J.; Cheng, T.; Gindulyte, A.; He, J.; He, S.; Li, Q.; Shoemaker, B.A.; Thiessen, P.A.; Yu, B.; et al. PubChem 2023 update. Nucleic Acids Res. 2022, 51, D1373–D1380. [Google Scholar] [CrossRef] [PubMed]
- Morris, G.M.; Huey, R.; Lindstrom, W.; Sanner, M.F.; Belew, R.K.; Goodsell, D.S.; Olson, A.J. AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. J. Comput. Chem. 2009, 30, 2785–2791. [Google Scholar] [CrossRef]
- Trott, O.; Olson, A.J. AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Comput. Chem. 2010, 31, 455–461. [Google Scholar] [CrossRef]
- Burdock, G.A. Fenaroli’s Handbook of Flavor Ingredients; CRC Press: Boca Raton, FL, USA, 2016. [Google Scholar]
- Popa, C.L.; Lupitu, A.; Mot, M.D.; Copolovici, L.; Moisa, C.; Copolovici, D.M. Chemical and biochemical characterization of essential oils and their corresponding hydrolats from six species of the Lamiaceae family. Plants 2021, 10, 2489. [Google Scholar] [CrossRef]
- Moisa, C.; Copolovici, L.; Pop, G.; Lupitu, A.; Ciutina, V.; Copolovici, D. Essential oil composition, total phenolic content, and antioxidant activity-Determined from leaves, flowers and stems of Origanum vulgare L. Var. Aureum. Sciendo 2018, 1, 555–561. [Google Scholar] [CrossRef]
- Baj, T.; Sieniawska, E.; Ludwiczuk, A.; Widelski, J.; Kiełtyka-Dadasiewicz, A.; Skalicka-Woźniak, K.; Głowniak, K. Thin-layer chromatography—Fingerprint, antioxidant activity, and gas chromatography—Mass spectrometry profiling of several Origanum L. species. JPC-J. Planar Chromatogr.-Mod. TLC 2017, 30, 386–391. [Google Scholar] [CrossRef]
- Vinciguerra, V.; Rojas, F.; Tedesco, V.; Giusiano, G.; Angiolella, L. Chemical characterization and antifungal activity of Origanum vulgare, Thymus vulgaris essential oils and carvacrol against Malassezia furfur. Nat. Prod. Res. 2019, 33, 3273–3277. [Google Scholar] [CrossRef] [PubMed]
- Verma, R.S.; Padalia, R.C.; Chauhan, A. Volatile constituents of Origanum vulgare L., ‘thymol’chemotype: Variability in North India during plant ontogeny. Nat. Prod. Res. 2012, 26, 1358–1362. [Google Scholar] [CrossRef] [PubMed]
- Laothaweerungsawat, N.; Sirithunyalug, J.; Chaiyana, W. Chemical compositions and anti-skin-ageing activities of Origanum vulgare L. essential oil from tropical and mediterranean region. Molecules 2020, 25, 1101. [Google Scholar] [CrossRef]
- Antolovich, M.; Prenzler, P.D.; Patsalides, E.; McDonald, S.; Robards, K. Methods for testing antioxidant activity. Analyst 2002, 127, 183–198. [Google Scholar] [CrossRef]
- Niki, E. Assessment of antioxidant capacity in vitro and in vivo. Free. Radic. Biol. Med. 2010, 49, 503–515. [Google Scholar] [CrossRef]
- Foti, M.C. Use and Abuse of the DPPH• Radical. J. Agric. Food Chem. 2015, 63, 8765–8776. [Google Scholar] [CrossRef]
- Gulcin, İ. Antioxidants and antioxidant methods: An updated overview. Arch. Toxicol. 2020, 94, 651–715. [Google Scholar] [CrossRef]
- Gruľová, D.; Caputo, L.; Elshafie, H.S.; Baranová, B.; De Martino, L.; Sedlák, V.; Gogaľová, Z.; Poráčová, J.; Camele, I.; De Feo, V. Thymol chemotype Origanum vulgare L. essential oil as a potential selective bio-based herbicide on monocot plant species. Molecules 2020, 25, 595. [Google Scholar] [CrossRef]
- Cid-Pérez, T.S.; Ávila-Sosa, R.; Ochoa-Velasco, C.E.; Rivera-Chavira, B.E.; Nevárez-Moorillón, G.V. Antioxidant and antimicrobial activity of Mexican oregano (Poliomintha longiflora) essential oil, hydrosol and extracts from waste solid residues. Plants 2019, 8, 22. [Google Scholar] [CrossRef]
- Ozkan, G.; Baydar, H.; Erbas, S. The influence of harvest time on essential oil composition, phenolic constituents and antioxidant properties of Turkish oregano (Origanum onites L.). J. Sci. Food Agric. 2010, 90, 205–209. [Google Scholar] [CrossRef]
- Shehadeh, M.; Jaradat, N.; Al-Masri, M.; Zaid, A.N.; Hussein, F.; Khasati, A.; Suaifan, G.; Darwish, R. Rapid, cost-effective and organic solvent-free production of biologically active essential oil from Mediterranean wild Origanum syriacum. Saudi Pharm. J. 2019, 27, 612–618. [Google Scholar] [CrossRef] [PubMed]
- Morshedloo, M.R.; Mumivand, H.; Craker, L.E.; Maggi, F. Chemical composition and antioxidant activity of essential oils in Origanum vulgare subsp. gracile at different phenological stages and plant parts. J. Food Process. Preserv. 2018, 42, e13516. [Google Scholar] [CrossRef]
- Sharopov, F.; Braun, M.S.; Gulmurodov, I.; Khalifaev, D.; Isupov, S.; Wink, M. Antimicrobial, antioxidant, and anti-inflammatory activities of essential oils of selected aromatic plants from Tajikistan. Foods 2015, 4, 645–653. [Google Scholar] [CrossRef]
- Babili, F.E.; Bouajila, J.; Souchard, J.P.; Bertrand, C.; Bellvert, F.; Fouraste, I.; Moulis, C.; Valentin, A. Oregano: Chemical analysis and evaluation of its antimalarial, antioxidant, and cytotoxic activities. J. Food Sci. 2011, 76, C512–C518. [Google Scholar] [CrossRef] [PubMed]
- Alvarez, M.V.; Ortega-Ramirez, L.A.; Silva-Espinoza, B.A.; Gonzalez-Aguilar, G.A.; Ayala-Zavala, J.F. Antimicrobial, antioxidant, and sensorial impacts of oregano and rosemary essential oils over broccoli florets. J. Food Process. Preserv. 2019, 43, e13889. [Google Scholar] [CrossRef]
- Hazra, B.; Sarkar, R.; Biswas, S.; Mandal, N. Comparative study of the antioxidant and reactive oxygen species scavenging properties in the extracts of the fruits of Terminalia chebula, Terminalia belerica and Emblica officinalis. BMC Complement. Altern. Med. 2010, 10, 20. [Google Scholar] [CrossRef] [PubMed]
- Wettasinghe, M.; Shahidi, F. Scavenging of reactive-oxygen species and DPPH free radicals by extracts of borage and evening primrose meals. Food Chem. 2000, 70, 17–26. [Google Scholar] [CrossRef]
- Ghannay, S.; Aouadi, K.; Kadri, A.; Snoussi, M. GC-MS Profiling, Vibriocidal, Antioxidant, Antibiofilm, and Anti-Quorum Sensing Properties of Carum carvi L. Essential Oil: In Vitro and In Silico Approaches. Plants 2022, 11, 1072. [Google Scholar] [CrossRef]
- Wu, X.; Hu, Q.; Liang, X.; Fang, S. Fabrication of colloidal stable gliadin-casein nanoparticles for the encapsulation of natamycin: Molecular interactions and antifungal application on cherry tomato. Food Chem. 2022, 391, 133288. [Google Scholar] [CrossRef]
- Costa, J.d.S.; Ramos, R.d.S.; Costa, K.d.S.L.; Brasil, D.d.S.B.; Silva, C.H.T.d.P.d.; Ferreira, E.F.B.; Borges, R.d.S.; Campos, J.M.; Macêdo, W.J.d.C.; Santos, C.B.R.d. An In Silico Study of the Antioxidant Ability for Two Caffeine Analogs Using Molecular Docking and Quantum Chemical Methods. Molecules 2018, 23, 2801. [Google Scholar] [CrossRef] [PubMed]
- de Souza Siqueira Quintans, J.; Menezes, P.P.; Santos, M.R.V.; Bonjardim, L.R.; Almeida, J.R.G.S.; Gelain, D.P.; Araújo, A.A.d.S.; Quintans-Júnior, L.J. Improvement of p-cymene antinociceptive and anti-inflammatory effects by inclusion in β-cyclodextrin. Phytomedicine 2013, 20, 436–440. [Google Scholar] [CrossRef] [PubMed]
- Cutillas, A.-B.; Carrasco, A.; Martinez-Gutierrez, R.; Tomas, V.; Tudela, J. Thyme essential oils from Spain: Aromatic profile ascertained by GC–MS, and their antioxidant, anti-lipoxygenase and antimicrobial activities. J. Food Drug Anal. 2018, 26, 529–544. [Google Scholar] [CrossRef] [PubMed]
- Baylac, S.; Racine, P. Inhibition of 5-lipoxygenase by essential oils and other natural fragrant extracts. Int. J. Aromather. 2003, 13, 138–142. [Google Scholar] [CrossRef]
- Huang, C.-Y.; Chang, Y.-Y.; Chang, S.-T.; Chang, H.-T. Xanthine Oxidase Inhibitory Activity and Chemical Composition of Pistacia chinensis Leaf Essential Oil. Pharmaceutics 2022, 14, 1982. [Google Scholar] [CrossRef]
Protein | PDB ID | Native Ligand | Grid Box Center Coordinates and Size (Å) |
---|---|---|---|
Lipoxygenase | 1N8Q | Protocatechuic acid | center_x = 20.6778 center_y = 2.2697 center_z = 19.5423 size_x = 8.5358 size_y = 9.1096 size_z = 9.9453 |
CYP2C9 | 1OG5 | S-Warfarin | center_x = −20.4200 center_y = 85.2723 center_z = 38.2181 size_x = 9.6524 size_y = 10.6625 size_z = 11.5535 |
NADPH-oxidase | 2CDU | Adenosine-5’-diphosphate | center_x = 18.4683 center_y = −5.1659 center_z = −0.0901 size_x = 12.3286 size_y = 15.3831 size_z = 15.1287 |
Xanthine oxidase | 3NRZ | Hypoxanthine | center_x = 37.6450 center_y = 19.2898 center_z = 17.5578 size_x = 11.6388 size_y = 9.8519 size_z = 10.1251 |
Myeloperoxidase | 5QJ2 | 7-{[3-(1-methyl-1H-pyrazol-3-yl) phenyl]methoxy}-1H-[1,2,3]triazolo[4,5-b]pyridin-5-amine | center_x = −20.1951 center_y = 11.9649 center_z = 32.9278 size_x = 9.7712 size_y = 12.5445 size_z = 11.9903 |
No. | Compound Name | MW (g/mol) | RIexp. | Area % |
---|---|---|---|---|
1 | Alpha-thujene | 136.23 | 912 | 0.83 |
2 | Alpha-pinene | 136.23 | 919 | 0.35 |
3 | Camphene | 136.23 | 934 | 0.16 |
4 | Beta-phellandrene | 136.23 | 955 | 2.44 |
5 | Beta-pinene | 136.23 | 960 | 0.26 |
6 | Beta-myrcene | 136.23 | 970 | 1.31 |
7 | Alpha-phellandrene | 136.23 | 987 | 0.15 |
8 | 3-Carene | 136.23 | 990 | 0.05 |
9 | Alpha-terpinene | 136.23 | 998 | 1.84 |
10 | Para-cymene | 134.21 | 1007 | 14.72 |
11 | Beta-terpinyl acetate | 196.29 | 1011 | 0.35 |
12 | Beta-trans-ocimene | 136.23 | 1018 | 9.81 |
13 | Cis-beta-ocimene | 136.23 | 1030 | 7.65 |
14 | Gamma-terpinene | 136.23 | 1044 | 22.96 |
15 | Beta-linalool | 154.25 | 1087 | 3.61 |
16 | Isothymol methyl ether | 164.24 | 1243 | 3.34 |
17 | Dihydroedulan | 194.31 | 1299 | 1.01 |
18 | Carvacrol | 150.22 | 1309 | 0.62 |
19 | Alpha-cubebene | 204.35 | 1363 | 0.06 |
20 | Alpha-copaene | 204.35 | 1394 | 0.27 |
21 | Beta-bourbonene | 204.35 | 1402 | 0.97 |
22 | Beta-elemene | 204.35 | 1408 | 0.71 |
23 | Beta-caryophyllene | 204.35 | 1439 | 2.35 |
24 | Beta-cubebene | 204.35 | 1450 | 0.45 |
25 | Alpha-caryophyllene | 204.35 | 1476 | 0.46 |
26 | Alloaromadendrene | 204.35 | 1481 | 0.75 |
27 | Germacrene D | 204.35 | 1503 | 11.64 |
28 | Gamma-elemene | 204.35 | 1517 | 0.98 |
29 | Alpha-muurolene | 204.35 | 1520 | 0.52 |
30 | Alpha-farnesene | 204.35 | 1525 | 1.55 |
31 | Alpha-himalachene | 222.37 | 1529 | 1.29 |
32 | Gamma-cadinene | 206.37 | 1534 | 0.51 |
33 | Beta-cadinene | 206.37 | 1540 | 1.78 |
34 | (-)-Spathulenol | 220.35 | 1595 | 1.35 |
35 | Caryophyllene oxide | 220.35 | 1600 | 0.35 |
36 | Alpha-cadinol | 222.37 | 1669 | 0.49 |
37 | Chamazulene | 184.28 | 1735 | 0.14 |
38 | Isoaromadendrene epoxide | 220.35 | 1806 | 0.51 |
Total identified (%): | 98.59% |
Samples Tested | Parameters | ||
---|---|---|---|
DPPH, IC50 (μg/mL) | ABTS, IC50 (μg/L) | β-Carotene/Linoleic Acid (% Inhibition Rate) | |
OEO | 93.12 ± 0.03 | 27.63 ± 0.01 | 82.36 ± 0.14 |
BHA | 10.11 ± 0.01 | 8.71 ± 0.01 | 100 |
Ascorbic acid | 127.39 ± 0.45 | 35.89 ± 0.05 | n.d. |
Target PDB ID | 1N8Q | 1OG5 | 2CDU | 3NRZ | 5QJ2 |
---|---|---|---|---|---|
Docked OEO Component ID | Binding Free Energy ∆G (kcal/mol) | ||||
Native ligand | −5.7 | −9.8 | −9.3 | −6.7 | −8.5 |
1 | −6.4 | −5.7 | −5.5 | −5 | −6.3 |
2 | −5.3 | −5.6 | −5.1 | −0.9 | −5.6 |
3 | −4 | −5.6 | −5.2 | 0.1 | −5.7 |
4 | −5.7 | −6.2 | −5.8 | −6.5 | −6 |
5 | −5 | −5.6 | −5.2 | −0.9 | −5.8 |
6 | −5.5 | −5.4 | −5 | −5.8 | −5.5 |
7 | −5.7 | −6.2 | −5.6 | −6.6 | −6.3 |
8 | −6.4 | −5.7 | −5.5 | −2.8 | −6.1 |
9 | −5.9 | −6.1 | −5.6 | −6.7 | −6.4 |
10 | −5.9 | −6.2 | −5.7 | −7 | −6.5 |
11 | −3.1 | −6.6 | −5.8 | −2.7 | −6.5 |
12 | −5.2 | −5.5 | −5.2 | −6.2 | −5.7 |
13 | −4.9 | −5.5 | −5 | −5.8 | −5.6 |
14 | −5.7 | −6.2 | −5.6 | −6.8 | −6.5 |
15 | −4.9 | −5.3 | −5.2 | −5 | −5.8 |
16 | −4.6 | −6.3 | −6.1 | −6.9 | −6.4 |
17 | −2.2 | −7.1 | −6.3 | 1.4 | −7.1 |
18 | −6 | −6.2 | −6 | −7.1 | −7 |
19 | −1.7 | −7.3 | −6.6 | 2.7 | −7.7 |
20 | −2.4 | −7.5 | −6.3 | 2.1 | −7.3 |
21 | −3.9 | −7 | −7 | −1.5 | −7.7 |
22 | −2.3 | −7.1 | −6.4 | −1.2 | −6.9 |
23 | −2.9 | −7.4 | −6.9 | 1.6 | −7 |
24 | −1.7 | −7.5 | −6.5 | 2.9 | −7.7 |
25 | −1.2 | −7.1 | −5.9 | 3.4 | −6.8 |
26 | −1.2 | −7.4 | −6.5 | 5.5 | −7.3 |
27 | −2.2 | −7.4 | −6.5 | −1.4 | −7.6 |
28 | −1.1 | −7 | −5.8 | −0.1 | −7.2 |
29 | −2.6 | −7.2 | −6.3 | 6.2 | −7.3 |
30 | −4.1 | −6.8 | −6.2 | −7.3 | −6.5 |
31 | 0.2 | −7.3 | −6.5 | 9.9 | −7.3 |
32 | −3.5 | −7.2 | −7.2 | −1.6 | −7.3 |
33 | −3 | −7.5 | −7.4 | −1.3 | −7.6 |
34 | 0.5 | −7.1 | −6.5 | 5.9 | −6.9 |
35 | −0.9 | −7.4 | −6.5 | 5.1 | −6.5 |
36 | −2.3 | −7.1 | −6.9 | −0.3 | −6.9 |
37 | −4.9 | −7.9 | −7.5 | −6.1 | −7.8 |
38 | −0.2 | −7.2 | −7.1 | 6.8 | −7 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jianu, C.; Lukinich-Gruia, A.T.; Rădulescu, M.; Mioc, M.; Mioc, A.; Șoica, C.; Constantin, A.T.; David, I.; Bujancă, G.; Radu, R.G. Essential Oil of Origanum vulgare var. aureum L. from Western Romania: Chemical Analysis, In Vitro and In Silico Screening of Its Antioxidant Activity. Appl. Sci. 2023, 13, 5076. https://doi.org/10.3390/app13085076
Jianu C, Lukinich-Gruia AT, Rădulescu M, Mioc M, Mioc A, Șoica C, Constantin AT, David I, Bujancă G, Radu RG. Essential Oil of Origanum vulgare var. aureum L. from Western Romania: Chemical Analysis, In Vitro and In Silico Screening of Its Antioxidant Activity. Applied Sciences. 2023; 13(8):5076. https://doi.org/10.3390/app13085076
Chicago/Turabian StyleJianu, Călin, Alexandra Teodora Lukinich-Gruia, Matilda Rădulescu, Marius Mioc, Alexandra Mioc, Codruța Șoica, Albert Titus Constantin, Ioan David, Gabriel Bujancă, and Roxana Ghircău Radu. 2023. "Essential Oil of Origanum vulgare var. aureum L. from Western Romania: Chemical Analysis, In Vitro and In Silico Screening of Its Antioxidant Activity" Applied Sciences 13, no. 8: 5076. https://doi.org/10.3390/app13085076
APA StyleJianu, C., Lukinich-Gruia, A. T., Rădulescu, M., Mioc, M., Mioc, A., Șoica, C., Constantin, A. T., David, I., Bujancă, G., & Radu, R. G. (2023). Essential Oil of Origanum vulgare var. aureum L. from Western Romania: Chemical Analysis, In Vitro and In Silico Screening of Its Antioxidant Activity. Applied Sciences, 13(8), 5076. https://doi.org/10.3390/app13085076