Optimal Graph Convolutional Neural Network-Based Ransomware Detection for Cybersecurity in IoT Environment
Abstract
:1. Introduction
2. Related Works
3. The Proposed Model
3.1. Feature Selection: LETLBO Algorithm
3.1.1. Learning Enthusiasm-Based Teacher Phase
3.1.2. Learning Enthusiasm-Based Learner Phase
3.1.3. Poor Student Tutoring Phase
3.2. Ransomware Detection: Optimal GCNN Model
Algorithm 1 Pseudocode of HSA |
Initialize the parameters HMCR, HMS, BW, PAR, Tax |
Initialize the HM |
Repeat |
Create a New Harmony as: |
for every , perform |
if , then |
end if |
end for |
if the new harmony vector is superior to that of the worse one in the novel HM, then |
Upgrade HM |
end if |
Until is satisfied |
Return better harmony |
4. Performance Validation
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Fernando, D.W.; Komninos, N.; Chen, T. A study on the evolution of ransomware detection using machine learning and deep learning techniques. IoT 2020, 1, 551–604. [Google Scholar] [CrossRef]
- Urooj, U.; Al-rimy, B.A.S.; Zainal, A.; Ghaleb, F.A.; Rassam, M.A. Ransomware detection using the dynamic analysis and machine learning: A survey and research directions. Appl. Sci. 2021, 12, 172. [Google Scholar] [CrossRef]
- Damaševičius, R.; Venčkauskas, A.; Toldinas, J.; Grigaliūnas, Š. Ensemble-Based classification using neural networks and machine learning models for windows pe malware detection. Electronics 2021, 10, 485. [Google Scholar] [CrossRef]
- Tien, C.W.; Chen, S.W.; Ban, T.; Kuo, S.Y. Machine learning framework to analyze iot malware using elf and opcode features. Digit. Threat. Res. Pract. 2020, 1, 1–19. [Google Scholar] [CrossRef]
- Bae, S.I.; Lee, G.B.; Im, E.G. Ransomware detection using machine learning algorithms. Concurr. Comput. Pract. Exp. 2020, 32, e5422. [Google Scholar] [CrossRef]
- Sharma, S.; Krishna, C.R.; Kumar, R. Android Ransomware Detection using Machine Learning Techniques: A Comparative Analysis on GPU and CPU. In Proceedings of the 2020 21st International Arab Conference on Information Technology (ACIT), Giza, Egypt, 28–30 November 2020; IEEE: Piscataway, NJ, USA, 2020; pp. 1–6. [Google Scholar]
- Dion, Y.; Brohi, S.N. An experimental study to evaluate the performance of machine learning alogrithms in ransomware detection. J. Eng. Sci. Technol. 2020, 15, 967–981. [Google Scholar]
- Noorbehbahani, F.; Rasouli, F.; Saberi, M. Analysis of machine learning techniques for ransomware detection. In Proceedings of the 2019 16th International ISC (Iranian Society of Cryptology) Conference on Information Security and Cryptology (ISCISC), Mashhad, Iran, 28–29 August 2019; IEEE: Piscataway, NJ, USA, 2019; pp. 128–133. [Google Scholar]
- Almaiah, M.A.; Almomani, O.; Alsaaidah, A.; Al-Otaibi, S.; Bani-Hani, N.; Hwaitat, A.K.A.; Al-Zahrani, A.; Lutfi, A.; Awad, A.B.; Aldhyani, T.H. Performance Investigation of Principal Component Analysis for Intrusion Detection System Using Different Support Vector Machine Kernels. Electronics 2022, 11, 3571. [Google Scholar] [CrossRef]
- Mohammad, A.H.; Alwada’n, T.; Almomani, O.; Smadi, S.; ElOmari, N. Bio-Inspired Hybrid Feature Selection Model for Intrusion Detection. Comput. Mater. Contin. 2022, 73, 133–150. [Google Scholar] [CrossRef]
- Al-Hawawreh, M.; Sitnikova, E. Leveraging deep learning models for ransomware detection in the industrial Internet of things environment. In Proceedings of the 2019 Military Communications and Information Systems Conference (MilCIS), Canberra, Australia, 12–14 November 2019; IEEE: Piscataway, NJ, USA, 2019; pp. 1–6. [Google Scholar]
- Al-Hawawreh, M.; Sitnikova, E. Industrial Internet of Things based ransomware detection using stacked variational neural network. In Proceedings of the 3rd International Conference on Big Data and Internet of Things, Melbourn, VIC, Australia, 22–24 August 2019; pp. 126–130. [Google Scholar]
- Al-Hawawreh, M.; Sitnikova, E.; Aboutorab, N. Asynchronous Peer-to-Peer Federated Capability-Based Targeted Ransomware Detection Model for Industrial IoT. IEEE Access 2021, 9, 148738–148755. [Google Scholar] [CrossRef]
- Basnet, M.; Poudyal, S.; Ali, M.H.; Dasgupta, D. Ransomware detection using deep learning in the SCADA system of electric vehicle charging station. In Proceedings of the 2021 IEEE PES Innovative Smart Grid Technologies Conference-Latin America (ISGT Latin America), Brisbane, Australia, 5–8 September 2021; IEEE: Piscataway, NJ, USA, 2021; pp. 1–5. [Google Scholar]
- Alrawashdeh, K.; Purdy, C. Ransomware detection using limited precision deep learning structure in fpga. In Proceedings of the NAECON 2018-IEEE National Aerospace and Electronics Conference, Dayton, OH, USA, 24–26 July 2018; IEEE: Piscataway, NJ, USA, 2018; pp. 152–157. [Google Scholar]
- Mathane, V.; Lakshmi, P.V. Predictive analysis of ransomware attacks using context-aware AI in IoT systems. Int. J. Adv. Comput. Sci. Appl. 2021, 12, 0120432. [Google Scholar] [CrossRef]
- Ahmed, Y.A.; Huda, S.; Al-rimy, B.A.S.; Alharbi, N.; Saeed, F.; Ghaleb, F.A.; Ali, I.M. A Weighted Minimum Redundancy Maximum Relevance Technique for Ransomware Early Detection in Industrial IoT. Sustainability 2022, 14, 1231. [Google Scholar] [CrossRef]
- Kaur, G.; Jyoti, K.; Mittal, N.; Mittal, V.; Salgotra, R. Optimized Approach for Localization of Sensor Nodes in 2D Wireless Sensor Networks Using Modified Learning Enthusiasm-Based Teaching–Learning-Based Optimization Algorithm. Algorithms 2023, 16, 11. [Google Scholar] [CrossRef]
- Mezair, T.; Djenouri, Y.; Belhadi, A.; Srivastava, G.; Lin, J.C.W. A sustainable deep learning framework for fault detection in 6G Industry 4.0 heterogeneous data environments. Comput. Commun. 2022, 187, 164–171. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, J.; Li, L. A Reward Population-Based Differential Genetic Harmony Search Algorithm. Algorithms 2022, 15, 23. [Google Scholar] [CrossRef]
- Alissa, K.A.; Elkamchouchi, D.H.; Tarmissi, K.; Yafoz, A.; Alsini, R.; Alghushairy, O.; Mohamed, A.; Al Duhayyim, M. Dwarf Mongoose Optimization with Machine-Learning-Driven Ransomware Detection in Internet of Things Environment. Appl. Sci. 2022, 12, 9513. [Google Scholar] [CrossRef]
- Khammas, B.M. Ransomware detection using random forest technique. ICT Express 2020, 6, 325–331. [Google Scholar] [CrossRef]
Class | Number of Instances |
---|---|
Goodware | 420 |
Ransomware | 420 |
Total No. of Samples | 840 |
Class | Accuracybal | Sensitivity | Specificity | F-Score | MCC |
---|---|---|---|---|---|
Epoch—100 | |||||
Goodware | 85.48 | 85.48 | 91.90 | 88.31 | 77.54 |
Ransomware | 91.90 | 91.90 | 85.48 | 89.04 | 77.54 |
Average | 88.69 | 88.69 | 88.69 | 88.68 | 77.54 |
Epoch—150 | |||||
Goodware | 88.10 | 88.10 | 93.57 | 90.58 | 81.79 |
Ransomware | 93.57 | 93.57 | 88.10 | 91.08 | 81.79 |
Average | 90.83 | 90.83 | 90.83 | 90.83 | 81.79 |
Epoch—200 | |||||
Goodware | 88.57 | 88.57 | 95.48 | 91.74 | 84.25 |
Ransomware | 95.48 | 95.48 | 88.57 | 92.29 | 84.25 |
Average | 92.02 | 92.02 | 92.02 | 92.01 | 84.25 |
Epoch—250 | |||||
Goodware | 88.57 | 88.57 | 95.71 | 91.85 | 84.50 |
Ransomware | 95.71 | 95.71 | 88.57 | 92.41 | 84.50 |
Average | 92.14 | 92.14 | 92.14 | 92.13 | 84.50 |
Epoch—300 | |||||
Goodware | 88.57 | 88.57 | 97.14 | 92.54 | 86.03 |
Ransomware | 97.14 | 97.14 | 88.57 | 93.15 | 86.03 |
Average | 92.86 | 92.86 | 92.86 | 92.84 | 86.03 |
Epoch—350 | |||||
Goodware | 99.29 | 99.29 | 100.00 | 99.64 | 99.29 |
Ransomware | 100.00 | 100.00 | 99.29 | 99.64 | 99.29 |
Average | 99.64 | 99.64 | 99.64 | 99.64 | 99.29 |
Epoch—400 | |||||
Goodware | 99.29 | 99.29 | 99.76 | 99.52 | 99.05 |
Ransomware | 99.76 | 99.76 | 99.29 | 99.52 | 99.05 |
Average | 99.52 | 99.52 | 99.52 | 99.52 | 99.05 |
Epoch—450 | |||||
Goodware | 99.29 | 99.29 | 100.00 | 99.64 | 99.29 |
Ransomware | 100.00 | 100.00 | 99.29 | 99.64 | 99.29 |
Average | 99.64 | 99.64 | 99.64 | 99.64 | 99.29 |
Epoch—500 | |||||
Goodware | 99.29 | 99.29 | 100.00 | 99.64 | 99.29 |
Ransomware | 100.00 | 100.00 | 99.29 | 99.64 | 99.29 |
Average | 99.64 | 99.64 | 99.64 | 99.64 | 99.29 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khalid Alkahtani, H.; Mahmood, K.; Khalid, M.; Othman, M.; Al Duhayyim, M.; Osman, A.E.; Alneil, A.A.; Zamani, A.S. Optimal Graph Convolutional Neural Network-Based Ransomware Detection for Cybersecurity in IoT Environment. Appl. Sci. 2023, 13, 5167. https://doi.org/10.3390/app13085167
Khalid Alkahtani H, Mahmood K, Khalid M, Othman M, Al Duhayyim M, Osman AE, Alneil AA, Zamani AS. Optimal Graph Convolutional Neural Network-Based Ransomware Detection for Cybersecurity in IoT Environment. Applied Sciences. 2023; 13(8):5167. https://doi.org/10.3390/app13085167
Chicago/Turabian StyleKhalid Alkahtani, Hend, Khalid Mahmood, Majdi Khalid, Mahmoud Othman, Mesfer Al Duhayyim, Azza Elneil Osman, Amani A. Alneil, and Abu Sarwar Zamani. 2023. "Optimal Graph Convolutional Neural Network-Based Ransomware Detection for Cybersecurity in IoT Environment" Applied Sciences 13, no. 8: 5167. https://doi.org/10.3390/app13085167
APA StyleKhalid Alkahtani, H., Mahmood, K., Khalid, M., Othman, M., Al Duhayyim, M., Osman, A. E., Alneil, A. A., & Zamani, A. S. (2023). Optimal Graph Convolutional Neural Network-Based Ransomware Detection for Cybersecurity in IoT Environment. Applied Sciences, 13(8), 5167. https://doi.org/10.3390/app13085167