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Abstract: The fast development of the Internet of Things (IoT) and widespread utilization in a
large number of areas, such as vehicle IoT, industrial control, healthcare, and smart homes, has
made IoT security increasingly prominent. Ransomware is a type of malware which encrypts the
victim’s records and demands a ransom payment for restoring access. The effective detection of
ransomware attacks highly depends on how its traits are discovered and how precisely its activities
are understood. In this article, we propose an Optimal Graph Convolutional Neural Network based
Ransomware Detection (OGCNN-RWD) technique for cybersecurity in an IoT environment. The
OGCNN-RWD technique involves learning enthusiasm for teaching learning-based optimization
(LETLBO) algorithms for the feature subset selection process. For ransomware classification, the
GCNN model is used in this study, and its hyperparameters can be optimally chosen by the harmony
search algorithm (HSA). For exhibiting the greater performance of the OGCNN-RWD approach, a
series of simulations were made on the ransomware database. The simulation result portrays the
betterment of the OGCNN-RWD system over other existing techniques with an accuracy of 99.64%.

Keywords: cybersecurity; ransomware; Internet of Things; feature selection; deep learning

1. Introduction

Recently, the use of interconnected smart devices commonly called the Internet of
Things (IoT) has seen exponential growth [1]. IoT gadgets can be accessed from any place,
home, vehicle and office to make daily tasks as simple as they can. Such smart devices
are utilised in smart cities, healthcare services, vehicular networks, industries, smart grids,
and smart homes [2]. These smart gadgets have unique features such as minimal power
consumption and lighter protocols, weight and compact size which make them more
adjustable. Expanded dispatch of smart gadgets in advertisements has decreased trust
regarding detecting gadgets and has made the web of things increasingly versatile [3]. With
the two downsides and upsides, the devices linked to the Internet are at risk of attacks and
digital threats, prompting failure of the administration to more dreadful conveyed refusal
of administration [4]. There are no confirmed security techniques that ensure the digital
safety of such gadgets. IoT infrastructure is prone to terrible security threats and various
attacks, because it lacks built-in security mechanisms and standard supporting systems [5].
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IoT has become a capitated platform for invaders since it has the potential to launch all
types of network attacks on the connected devices, which in most cases, result in some
serious losses.

Ransomware can be referred to as a malware type that can be devised to block access to
the user files, device, or operating system [6]. Figure 1 represents the process of ransomware
detection for cybersecurity in IoT platforms. Ransomware is commonly found in the form of
crypto-ransomware and locker ransomware. Crypto-ransomware encodes key documents
on a system of the user, utilizing complicated encryption methods and demand payments,
generally cryptocurrency for decoding the credentials of victims [7]. Locker ransomware
displays a lock screen that stops the victim from opening their system and demands money
for access to a computer. Ransomware is more destructive, prominent, and advanced [8].
In comparison to static code analysis methods, machine learning (ML) approaches have
proven to be effectual. ML has high potential in finding malware in Android and Windows
OS systems [9]. Further studies on ML in malware recognition as a substitute for the use of
signs has shown efficiency regarding the use of ML-related detection over signature-related
techniques [10]. The decision to assess ML and DL methods as opposed to other non-ML-
related methods has been considered due to their strong ability and adaptability to find
unseen samples of ransomware malware.
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Figure 1. Ransomware detection for cybersecurity in IoT platform.

This article focuses on the development of an Optimal Graph Convolutional Neural
Network based Ransomware Detection (OGCNN-RWD) technique for cybersecurity in an
IoT environment. Primarily, the OGCNN-RWD technique involves learning enthusiasm
for teaching learning-based optimization (LETLBO) algorithms for the feature selection
procedure. Next, the GCNN model is used for ransomware classification, and its hyperpa-
rameters can be optimally chosen by the harmony search algorithm (HSA). To demonstrate
the better results of the OGCNN-RWD system, a series of simulations were made on the
ransomware database.
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The rest of the paper is organized as follows. Section 2 provides the related works,
and Section 3 offers the proposed model. Then, Section 4 gives the results analysis, and
Section 5 concludes the paper.

2. Related Works

One author used deep learning (DL) approaches for the extraction of the latent rep-
resentation of high dimensions of the gathered dataset for precisely finding malevolent
behavior [11]. Specifically, this method rests on a hybridized feature engineering approach
of a variational and traditional autoencoder (AE). This approach was utilised to minimalize
the dimension of data and to extract a good representation of accumulated system activities.
Afterwards, the novel feature vector was sent to classifiers that can be framed on batch
normalization and deep neural network (DNN) methods. The authors in [12] presented
a detection system relevant to the stacked variational AE (VAE) with a fully connected
neural network (FC-NN) that learns the latent framework of system activities and exposes
the ransomware performance. In addition, the author came up with a data augmentation
approach that depends on VAE to produce novel datasets that can be utilised in training an
FC network to enhance the generalized capabilities of the presented recognition model.

Al-Hawawreh et al. [13] modelled a new aimed ransomware detection method devised
for the industrial IoT edge mechanism. It leverages DL and Asynchronous Peer-to-Peer
Federated Learning (AP2PFL) methods as targeted ransomware recognition methods. The
presented technique contains two modules. The Diagnostic and one Decision Module
(DDM) was utilized for finding targeted ransomware and its phases depend on DNN and
Batch Normalization (BN). Basnet et al. [14] introduced the DL-related new ransomware
detection structure in supervisory control and data acquisition-controlled electric vehicle
charging station (EVCS) with the performance analysis of three DL methods.

Alrawashdeh and Purdy [15] devised a fast ransomware identification approach utiliz-
ing Memory-based Stochastic-Dynamic-Fixed-Point arithmetic utilizing a four-layer deep
belief network (DBN) architecture. The technique stored random bit-streams in storage for
producing potential cross-correlation for stochastic computation in Field Programmable
Gate Arrays (FPGAs). Mathane and Lakshmi [16] presented a context-aware ransomware
predictive approach that leverages context ontology to derive data features (software up-
dates, connection requests, etc.) and ML techniques to predict ransomware. The presented
approaches rely on and focus on the initial detection and prediction of ransomware pene-
tration attempts to resource-limited IoT mechanisms. A weighted minimum Redundancy
maximum Relevance (WmRmR) algorithm has been modelled for superior feature impact
prediction in datasets captured at the primary stages of a ransomware attack [17]. This
presented approach can assess if the feature in the appropriate set was significant or not.
It includes a smaller number of evaluations and low-dimensional complexity than the
original mRmR approach.

Several models exist in the literature that perform the ransomware classification
process. Although several ML and DL models for ransomware classification are available
in the literature, a model is still needed that can enhance the classification performance.
Owing to the continual deepening of the model, the number of parameters of DL models
also increases quickly, which results in model overfitting. At the same time, different
hyperparameters have a significant impact on the efficiency of the CNN model. Particularly,
hyperparameters such as epoch count, batch size, and learning rate selection are essential
to attain effectual outcomes. Since the trial and error method for hyperparameter tuning is
a tedious and erroneous process, metaheuristic algorithms can be applied. Therefore, the
HSA algorithm can be applied to the parameter selection of the GCNN model.

3. The Proposed Model

In this study, a novel OGCNN-RWD system has been developed for cybersecurity in
the IoT platform. The OGCNN-RWD technique mainly intends to precisely distinguish
ransomware from legitimate activities. In the presented OGCNN-RWD approach, the
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LETLBO system is applied for the feature subset selection process. To classify ransomware,
the GCNN model is used in this study, and its hyperparameters can be optimally chosen
by the HSA. Figure 2 illustrates the workflow of the OGCNN-RWD system.
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3.1. Feature Selection: LETLBO Algorithm

In this work, the LETLBO algorithm is exploited for an optimal subset of features.
LETLBO is an improved version of the fundamental TLBO technique. A TLBO modification
increases the ability for searching for better solutions. LETLBO combines two novel
components such as the learning enthusiasm-based teacher and learner phases [18]. These
are added for improving the typical of worse learners by utilizing the worst student tutoring
stage and for raising searching potency. Based on the basic TLBO, all the learners have
similar abilities for obtaining the knowledge of others. However, LETLBO reached their
stimulus through the learning enthusiasm process, but all the learners have a unique group
of capabilities and enthusiasm for learning. A primary step contains a population of NP
learners (whereas the entire populations are referred to as x), with initialization as:

xj
i = xj

min + ab ×
(

xj
max − xj

min

)
(1)

where i ∈ {1, 2, . . . , NP}, j ∈ {1, 2, . . . , D}, xi,j refers to the ith solution from the jth
dimension; ab represents a random number between 0 and 1, and χmin/xmax defines the
lower as well as upper bounds, respectively. Next, the learner population is initialized, and
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every learner’s fitness was calculated. The maximum fitness learner is termed the teacher,
signified as the xteacher. The stages of the LETLBO technique are defined below.

3.1.1. Learning Enthusiasm-Based Teacher Phase

LETLBO is a learning enthusiasm-based paradigm, but students with optimum estima-
tions are more enthusiastic about learning, and thus, it is highly possible to learn with the
instructor. The estimated student is less inspired to learn, and it is less possible to receive
what the educator needs to tell.

During this stage, every learner can sort based on their fitness value:

f (x1) ≤ f (x2) ≤ · · · ≤ f (xNP) (2)

The learner learning enthusiasm value was determined as:

LEi = LE min + (LE max − LE min )
NP− i

NP
, i = 1, 2, . . . .NP (3)

where LEmax indicates the maximal learning enthusiasm, and LEmin refers to the minimal
learning enthusiasm, with referred values of LEmax = 1 and LE min ∈ [0.1, 0.5]. The
learning enthusiasm curve illustrates that the better learner reveals maximal learning
enthusiasm and the worse learner displays minimal learning enthusiasm.

Due to the characteristics of learning enthusiasm, all the students are classified as both
learning and gaining in the teacher and not learning in the instructor, depending on the
learning enthusiasm value LE. It generates an irrational number ri ∈ [0, 1] for student xi;
if ri ≤ LEi; afterwards, student xi is advantageous for the educator; otherwise, student xi
neglects the instructor’s teachings generally. If student xi obtains the skill of the teacher,
the position is restored by exploiting a change of upgraded displaying techniques in the
subsequent situations:

xd
i,new =

{
xd

i,old + rand
(

xd
teacher − TF · xd

mean

)
i f rand1 < 0.5

xd
r1
+ F · xd

r2
− xd

r3
otherwise

(4)

where r1, r2 and r3(r1 6= r2 6= r3 6= i) represent the arbitrarily created integers selected in
{1, 2, . . . , NP}; d ∈ {1, 2, . . . , D}; rand1 and rand2 signifies the arbitrarily created numbers
that are uniformly distributed in the range of zero and one, and F signifies the scaling factor
from range 0 to 1. Equation (4) is observed as a hybrid method of TLBO and DE.

3.1.2. Learning Enthusiasm-Based Learner Phase

The learner system for learning is also learning enthusiasm-based from LETLBO.
Related to the teaching approach, it integrates maximal learning enthusiasm to obtain
better grades, and it may be a higher probability region to attain the data. During this
learning enthusiasm-inspired learner stage, every learner can rank depending on the
efficiency of the grades as determined in Equation (3).

The count is created randomly amongst ri ∈ [0, 1] for learner xi; if ri ≤ LEi, then learner
xi is learned by the other learner; otherwise, the data of the learners are ignored by learner
xi. If learner xi acquires the data from the teacher, dependent upon a diversity-enhanced
teaching manner, their position is upgraded as:

χi,new =

{
xi,old + rand ·

(
x− χj

)
, i f f (χi) ≥ f

(
xj
)

xi,old + rand ·
(
χj − xj

)
i f f

(
xj
)
< f

(
xj
) (5)

where f (Xi) stands for the main function, and xi,old represents the preceding position
of ith learners. If xi,new is fitter than xi,old, then xi,new is accepted; otherwise, xi,old does
not changed.
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3.1.3. Poor Student Tutoring Phase

The basic TLBO can not be used for this stage; the initial purpose of this stage is for
enhancing the grades of worse students. A similar procedure was utilized under this stage
as well, with learners ranking from better to poor depending on their grades.

A learner assumes a worse learner when it exists in the bottom 10%. This stage used
to is arbitrarily select learner xT in all the worse students χi, whose rank exists at the top
50%, and the learning is dependent upon the subsequent formula:

xd
i,new = xd

i,old + rand ·
(

xd
T − xd

i,old

)
(6)

If xi,new is superior to χj,old, xi,new is accepted; if not, Xj,old remains the same. The
students with worse grades have a lesser probability of upgrading their position from the
type of optimum students, but students with better grades take a comparatively superior
probability of upgrading their position. The worse student tutoring stage plays a vital role
in enhancing the grades of worse students into that of better students. This technique was
appropriate to real-time teaching–learning procedures, but the worst students of all the time
require tutorials for its enhancement, more tutorials than if related to other better students.

The fitness function of the LETLBO technique considers the count of selective features
and the classifier performance. It minimises the set size of selective features and maximizes
classification accuracy. Thus, the subsequent fitness function is utilized for evaluating
individual solutions as follows:

Fitness = α× ErrorRate + (1− α)× #SF
#All_F

(7)

where ErrorRate denotes the classifier rate of errors exploiting the selective feature. ErrorRate
can be evaluated as the percentage of inappropriate classifications to the count of classifiers
developed in the formula as a value within [0, 1]. #SF implies the selective feature count,
and #All_F indicates the overall amount of features from the original data. α is exploited
for controlling the importance of subset length and classifier quality. Here, α is fixed to 0.9.

3.2. Ransomware Detection: Optimal GCNN Model

To classify ransomware from legitimate activities, the GCNN model is used. The
GCNN is a DL framework which works on graph-structured data. CNN is used to work
on arbitrary graphs (with any number of edges and nodes, and graphs of some structure,
cyclic or not) rather than on images [19]. Consider the image as a “grid graph” (all the
nodes represent a pixel, and the pixel matrix of an image represents the adjacent matrix of
grid graphs). To exploit the similar concept of filtering an image on the graph, rather than
having a pixel that applies the data contained in its adjacent pixel to upgrade its value, it
takes a node where it applies its adjacent node to upgrade its features.

The GCNN classifies the edges or examines the existence of a connection between
two nodes, classifies every node individually, or classifies the overall graph. To construct
a GCNN, we begin to construct the adjacent matrix A of the graphs. For instance, non-
oriented graphs consider Aij = 1 (with Aij being a component of the adjacent matrix A)
when there is a connection between the ith and jth nodes, and Aij = 0 if ith and jth nodes are
mess linked. In addition, the node matrix H is constructed that contains stored information
or a message in all the nodes, and later constructs the matrix H′ = σ

(
D̂−1 ÂHW

)
, where W

indicates a learnable node-wise shared linear conversion (linear layer in a DL architecture),
σ denotes the non-linear function, for example, ReLU, Â = A + I, where Â does not
remove the central node, it forces a node to stay connected with itself, D̂ denotes the degree
matrix, which provides the degree of all the nodes, D̂ is incorporated into the equation for
normalizing A and enforcing the feature not to explode, while summing is named as the
mean-pooling upgrade rule:

H′ = σ
(

D̂−
1
2 ÂD̂−

1
2 HW

)
(8)
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The GCN update rule can be obtained using the above equation. Currently, this is the
more commonly known graph convolution layer. Generally, nodes can transmit arbitrary
messages alongside the edge

→
eij and then aggregate each message it receives through the

permutable-invariant function, where
→

mij denotes the message transmitted from ith to jth
nodes, evaluated by the message function fe:

→
mij = fe

(→
hi,
→
hj,
→
eij

)
, (9)

Then, each message which enters the nodes is aggregated through a readout function
as follows:

fb :
→
h′i = fv

(
→
hv, ∑

j∈Ni

→
mji

)
, (10)

In Equation (10), Ni. represents the group of neighbors of ith nodes. This provides the
message-passing neural network (MPNN), which applies only to smaller graphs. fe and ft
are generally smaller multilayer perceptron and are generally expressed as follows:

→
h′i = σ

(
∑

j∈Ni

αijW
→
hj

)
, (11)

In Equation (11), αij denotes the coefficient that is explicitly determined to cause certain
deficiencies, or

αij =
exp

(
aij
)

∑jεNi
exp (aik)

, (12)

where

aij = a
(→

h v,
→
h j,
→
eij

)
, (13)

From the expression, a is a shared, learnable, self-attention model. It is named as the
graph attention network upgrade rule.

Briefly, the presented graph was encoded using three matrices: W, A, H, and D.
Using the aforementioned parameters, a matrix H′ can be evaluated after the selected
update rule formula. The description of a GCNN is the process of encoding the graphs as
matrix H′.

At the final stage, the HSA is applied for the optimal hyperparameter selection process,
a new intelligent optimized technique. Similar to how the SA simulates physical annealing,
the GA simulates biological evolution, the harmony algorithm simulates the principles
of concert performance, and the PSO algorithm [20] simulates flocks of birds. Briefly, for
HSA, every solution vector (decision variable set) is stored in harmony memory (HM).
The key parameter of HSA includes pitch adjusting rate (PAR), harmony memory size
(HMS), distance bandwidth (BW), stopping criterion or several improvisations (NI), and
harmony memory consideration rate (HMCR). Generally, the global optimization problems
are discussed below. Minimize f (x) subjected to

χj ∈ Xii = 1, 2, · · · , N. (14)

where f (x) indicates the main function, χ denotes the group of decision parameters xi, N
shows the count of decision parameters, Xi represents the group of the potential range of
value for every decision parameter, the upper boundary for every decision parameter is
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B(i), and the lower boundary is LB(i); afterwards, LB(i) ≤ Xi ≤ UB(i). The HM with the
size of HMS is produced based on solution space.

HM =


x1

1 x1
2 . . . x1

N−1 x1
N

x2
1 x2

2 . . . x2
N−1 x2

N
...

... . . .
...

...
xHMS−1

1 xHMS−1
2 . . . xHMS−1

n−1 xHMS−1
N

xHMS
1 xHMS

2 . . . xHMS
N−1 xHMS

N

 (15)

Every decision parameter is produced by: xj
i = LB(i) + (UB(i)− LB(i)) ∗ r for

i = 1, 2, . . . , N and j = 1, 2, . . . , HMS, where r denotes the arbitrary value within [0, 1].
A new harmony vector is produced using the following rules, such as pitch adjustment,
random selection, and memory consideration. Initially, a random number r1 is generated
within [0, 1] and compares r1 with the initialized HMCR. When r1 < HMCR, a random
parameter in the initial HM is taken that is named memory consideration. Otherwise, it is
attained by random selection (produced randomly between the search boundary). Lastly, a
new harmony parameter is taken. Once it can be upgraded by the memory consideration,
it should be attuned, and a parameter r2 within [0, 1] is produced randomly as explained in
Algorithm 1 below. When r2 < PAR, the parameter based on the initial BW is adjusted and
a newly generated parameter that is named pitch adjustment is obtained:

x′new
i = xnew

i ± r ∗ BiV (16)

where r denotes the randomly generated value within [0, 1].

Algorithm 1 Pseudocode of HSA

Initialize the parameters HMCR, HMS, BW, PAR, Tax
Initialize the HM
Repeat

Create a New Harmony as:
for every i, perform

xnew →
{

memory consideration with probability HMCR
random selection with probability 1−HMCR

if xnew
i ∈ HM, then

x′new
i =

{
xnew

i ± r ∗ BW with probability PAR
xnew

i with probability 1− PAR
end if
end for
if the new harmony vector is superior to that of the worse one in the novel HM, then
Upgrade HM

end if
Until Tmax is satisfied
Return better harmony

The newly attainted harmony is evaluated by (x). Once the new harmony has the best
main function solution when compared to the worst solution in the abovementioned HM,
the new harmony substitutes the worst harmony from the HM. If the present amount of
times of creation are attained, the abovementioned maximal times Tmax of formation are
checked. Fitness selection is a critical factor in the HSA technique. Solution encoding can
be used to assess the aptitude (goodness) of the candidate solution. Here, the accuracy
value is the main condition used to design a fitness function.

Fitness = max (P) (17)
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P =
TP

TP + FP
(18)

From the expression, TP represents the true positive, and FP denotes the false posi-
tive value.

4. Performance Validation

The proposed model is simulated using Python 3.6.5 tool on PC i5-8600k, GeForce
1050Ti 4GB, 16GB RAM, 250GB SSD, and 1TB HDD. The parameter settings are given as
follows: learning rate: 0.01, dropout: 0.5, batch size: 5, epoch count: 50, and activation:
ReLU. In this section, the ransomware classification performance of the OGCNN-RWD
technique can be observed on a database comprising 840 samples [21] as represented in
Table 1.

Table 1. Details of the dataset.

Class Number of Instances

Goodware 420

Ransomware 420

Total No. of Samples 840

The confusion matrix of the OGCNN-RWD technique is demonstrated in Figure 3. The
outcomes ensure that the OGCNN-RWD system has properly recognized goodware and
ransomware samples. For instance, on 100 epochs, the OGCNN-RWD technique identifies
359 goodware and 386 ransomware samples. Moreover, on 200 epochs, the OGCNN-
RWD method identifies 372 goodware and 401 ransomware samples. Furthermore, on
300 epochs, the OGCNN-RWD method identifies 372 goodware and 408 ransomware
samples. Lastly, on 500 epochs, the OGCNN-RWD approach identifies 417 goodware and
420 ransomware samples.
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In Table 2, the overall ransomware classification outcomes of the OGCNN-RWD tech-
nique are inspected in several epochs. The OGCNN-RWD technique properly recognized
goodware and ransomware. For the sample, with 100 epochs, the OGCNN-RWD method-
ology obtained an accubal of 88.69%, sensy of 88.69%, specy of 88.69%, Fscore of 88.68%, and
MCC of 77.54%. In the meantime, with 100 epochs, the OGCNN-RWD approach attained
an accubal of 92.02%, sensy of 92.02%, specy of 92.02%, Fscore of 92.01%, and MCC of 84.25%.
Finally, with 100 epochs, the OGCNN-RWD method achieved an accubal of 92.86%, sensy
of 92.86%, specy of 92.86%, Fscore of 92.84%, and MCC of 86.03%. Also, with 100 epochs,
the OGCNN-RWD method reached an accubal of 99.52%, sensy of 99.52%, specy of 99.52%,
Fscore of 99.52%, and MCC of 99.05%. At last, with 100 epochs, the OGCNN-RWD method
attained an accubal of 99.64%, sensy of 99.64%, specy of 99.64%, Fscore of 99.64%, and MCC
of 99.29%.

Table 2. Ransomware classifier outcome of OGCNN-RWD algorithm with distinct epochs.

Class Accuracybal Sensitivity Specificity F-Score MCC

Epoch—100

Goodware 85.48 85.48 91.90 88.31 77.54

Ransomware 91.90 91.90 85.48 89.04 77.54

Average 88.69 88.69 88.69 88.68 77.54

Epoch—150

Goodware 88.10 88.10 93.57 90.58 81.79

Ransomware 93.57 93.57 88.10 91.08 81.79

Average 90.83 90.83 90.83 90.83 81.79

Epoch—200

Goodware 88.57 88.57 95.48 91.74 84.25

Ransomware 95.48 95.48 88.57 92.29 84.25

Average 92.02 92.02 92.02 92.01 84.25

Epoch—250

Goodware 88.57 88.57 95.71 91.85 84.50

Ransomware 95.71 95.71 88.57 92.41 84.50

Average 92.14 92.14 92.14 92.13 84.50

Epoch—300

Goodware 88.57 88.57 97.14 92.54 86.03

Ransomware 97.14 97.14 88.57 93.15 86.03

Average 92.86 92.86 92.86 92.84 86.03
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Table 2. Cont.

Class Accuracybal Sensitivity Specificity F-Score MCC

Epoch—350

Goodware 99.29 99.29 100.00 99.64 99.29

Ransomware 100.00 100.00 99.29 99.64 99.29

Average 99.64 99.64 99.64 99.64 99.29

Epoch—400

Goodware 99.29 99.29 99.76 99.52 99.05

Ransomware 99.76 99.76 99.29 99.52 99.05

Average 99.52 99.52 99.52 99.52 99.05

Epoch—450

Goodware 99.29 99.29 100.00 99.64 99.29

Ransomware 100.00 100.00 99.29 99.64 99.29

Average 99.64 99.64 99.64 99.64 99.29

Epoch—500

Goodware 99.29 99.29 100.00 99.64 99.29

Ransomware 100.00 100.00 99.29 99.64 99.29

Average 99.64 99.64 99.64 99.64 99.29

The TACY and VACY of the OGCNN-RWD method under distinct epochs are repre-
sented in Figure 4. The figure states that the OGCNN-RWD approach has shown higher
performance with enhanced values of TACY and VACY. Notably, the OGCNN-RWD algo-
rithm has achieved maximal TACY outcomes.
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The TLOS and VLOS of the OGCNN-RWD technique under distinct epochs are given
in Figure 5. The figure infers that the OGCNN-RWD approach has demonstrated improved
performance with the least values of TLOS and VLOS. Visibly, the OGCNN-RWD method
has reduced VLOS outcomes. The lesser values indicate the effectual detection performance
of the proposed model.
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A brief precision–recall examination of the OGCNN-RWD method under distinct
epochs is shown in Figure 6. The figure designates that the OGCNN-RWD algorithm has
higher precision–recall values under two class labels.
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A clear ROC investigation of the OGCNN-RWD system under distinct epochs is
portrayed in Figure 7. The results represent that the OGCNN-RWD algorithm has exhibited
its capability in classifying different two-class labels.
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To assure the improved outcomes of the OGCNN-RWD approach, a brief comparative
investigation is made in Table 3 [21,22]. Figure 8 investigates the comparative examination
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of the OGCNN-RWD technique in terms of accuy. The experimental values indicate that
the OGCNN-RWD technique reaches a maximum accuy of 99.64% while the DWOML,
bagging, AdaBoost-M1, ROF, DT, and RF models result in a minimum accuy of 99.09%,
98.47%, 96.13%, 95.79%, 97.63%, and 98.83%, respectively.

Table 3. Comparative outcome of OGCNN-RWD approach with existing systems.

Methods Accuy Sensy Specy

OGCNN-RWD 99.64 99.64 99.64

DWOML Model [21] 99.09 99.43 99.17

Bagging [22] 98.47 93.66 96.06

AdaBoost-M1 [22] 96.13 94.50 94.60

Rotation Forest (ROF) [22] 95.79 96.77 97.38

Decision Tree (DT) [22] 97.63 97.82 98.12

Random Forest (RF) [22] 98.83 98.79 98.26
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Figure 9 inspects the comparative investigation of the OGCNN-RWD algorithm in
terms of sensy and specy. Based on sensy, the OGCNN-RWD technique reaches a maximum
accuy of 99.64% while the DWOML, bagging, AdaBoost-M1, ROF, DT, and RF methods
result in minimal sensy of 99.43%, 93.66%, 94.50%, 96.77%, 97.82% and 98.79%, respec-
tively. Likewise, based on specy, the OGCNN-RWD technique reaches a maximum specy of
99.64% while the DWOML, bagging, AdaBoost-M1, ROF, DT, and RF approaches result in
minimum specy of 99.17%, 96.06%, 94.60%, 97.38%, 98.12% and 98.26%, respectively.
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These results show the enhanced performance of the OGCNN-RWD technique over
other models.

5. Conclusions

In this article, we established a novel OGCNN-RWD methodology for cybersecurity
in an IoT environment. The OGCNN-RWD technique mainly intends to precisely dis-
tinguish ransomware from legitimate activities. In the presented OGCNN-RWD system,
three subprocesses are involved, namely, the LETLBO approach-based feature subset selec-
tion, GCNN-based ransomware detection, and HSA based hyperparameter tuning. For
exhibiting greater performance of the OGCNN-RWD algorithm, a series of simulations
were made on the ransomware database. The simulation results portray the betterment of
the OGCNN-RWD system over other existing systems with a maximum accuracy of 99.64%.
Thus, the OGCNN-RWD methodology is employed for accurate ransomware detection
in the IoT platform. In the future, we plan to extend the OGCNN-RWD technique by the
design of an ensemble learning process.
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