Relationship between HLB Number and Predominant Destabilization Process in Microfluidized Nanoemulsions Formulated with Lemon Essential Oil
Abstract
:Featured Application
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methods
2.2.1. Development of Nanoemulsions
2.2.2. Laser Diffraction Results
2.2.3. Rheology
2.2.4. Multiple Light Scattering
2.2.5. Statistical Analysis
3. Results and Discussion
3.1. Characterization of Emulsions Developed by Microfluidization
3.2. Influence of Aging Time on Microfluidized Nanoemulsions
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- McClements, D.J. Food Emulsions: Principles, Practices, and Techniques; CRC Press: Boca Raton, FL, USA, 2015; ISBN 1498726690. [Google Scholar]
- Leal-Calderon, F.; Schmitt, V.; Bibette, J. Emulsion Science: Basic Principles; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2007; ISBN 0387396837. [Google Scholar]
- Taylor, P. Ostwald Ripening in Emulsions. Adv. Colloid Interface Sci. 1998, 75, 107–163. [Google Scholar] [CrossRef]
- Sajjadi, S. Effect of Mixing Protocol on Formation of Fine Emulsions. Chem. Eng. Sci. 2006, 61, 3009–3017. [Google Scholar] [CrossRef]
- Al-Otaibi, W.A.; AlMotwaa, S.M. Preparation, Characterization, Optimization, and Antibacterial Evaluation of Nano-Emulsion Incorporating Essential Oil Extracted from Teucrium polium L. J. Dispers. Sci. Technol. 2021, 1–11. [Google Scholar] [CrossRef]
- Porras, M.; Solans, C.; Gonzalez, C.; Martínez, A.; Guinart, A.; Gutiérrez, J.M. Studies of Formation of W/O Nano-Emulsions. Colloids Surf. A Physicochem. Eng. Asp. 2004, 249, 115–118. [Google Scholar] [CrossRef]
- Mazarei, Z.; Rafati, H. Nanoemulsification of Satureja Khuzestanica Essential Oil and Pure Carvacrol; Comparison of Physicochemical Properties and Antimicrobial Activity against Food Pathogens. LWT 2019, 100, 328–334. [Google Scholar] [CrossRef]
- Harimurti, N.; Nasikin, M.; Mulia, K. Water-in-Oil-in-Water Nanoemulsions Containing Temulawak (Curcuma xanthorriza Roxb) and Red Dragon Fruit (Hylocereus polyrhizus) Extracts. Molecules 2021, 26, 196. [Google Scholar] [CrossRef]
- Crupi, M.L.; Costa, R.; Dugo, P.; Dugo, G.; Mondello, L. A Comprehensive Study on the Chemical Composition and Aromatic Characteristics of Lemon Liquor. Food Chem. 2007, 105, 771–783. [Google Scholar] [CrossRef]
- Li, X.; Xiao, N.; Xiao, G.; Bai, W.; Zhang, X.; Zhao, W. Lemon Essential Oil/Vermiculite Encapsulated in Electrospun Konjac Glucomannan-Grafted-Poly (Acrylic Acid)/Polyvinyl Alcohol Bacteriostatic Pad: Sustained Control Release and Its Application in Food Preservation. Food Chem. 2021, 348, 129021. [Google Scholar] [CrossRef]
- Perdones, Á.; Escriche, I.; Chiralt, A.; Vargas, M. Effect of Chitosan–Lemon Essential Oil Coatings on Volatile Profile of Strawberries during Storage. Food Chem. 2016, 197, 979–986. [Google Scholar] [CrossRef] [PubMed]
- Tadros, T.F. Emulsion Formation, Stability, and Rheology. In Emulsion Formation and Stability; John Wiley & Sons: Hoboken, NJ, USA, 2013; pp. 1–75. [Google Scholar]
- Perrier-Cornet, J.M.; Marie, P.; Gervais, P. Comparison of Emulsification Efficiency of Protein-Stabilized Oil-in-Water Emulsions Using Jet, High Pressure and Colloid Mill Homogenization. J. Food Eng. 2005, 66, 211–217. [Google Scholar] [CrossRef]
- Trujillo-Cayado, L.A.; Santos, J.; Alfaro, M.C.; Calero, N.; Muñoz, J. A Further Step in the Development of Oil-in-Water Emulsions Formulated with a Mixture of Green Solvents. Ind. Eng. Chem. Res. 2016, 55, 7259–7266. [Google Scholar] [CrossRef]
- Jafari, S.M.; Assadpoor, E.; He, Y.; Bhandari, B. Re-Coalescence of Emulsion Droplets during High-Energy Emulsification. Food Hydrocoll. 2008, 22, 1191–1202. [Google Scholar] [CrossRef]
- Buranasuksombat, U.; Kwon, Y.J.; Turner, M.; Bhandari, B. Influence of Emulsion Droplet Size on Antimicrobial Properties. Food Sci. Biotechnol. 2011, 20, 793–800. [Google Scholar] [CrossRef]
- Salvia-Trujillo, L.; Rojas-Graü, M.A.; Soliva-Fortuny, R.; Martín-Belloso, O. Impact of Microfluidization or Ultrasound Processing on the Antimicrobial Activity against Escherichia coli of Lemongrass Oil-Loaded Nanoemulsions. Food Control 2014, 37, 292–297. [Google Scholar] [CrossRef]
- Salvia-Trujillo, L.; Rojas-Graü, A.; Soliva-Fortuny, R.; Martín-Belloso, O. Physicochemical Characterization and Antimicrobial Activity of Food-Grade Emulsions and Nanoemulsions Incorporating Essential Oils. Food Hydrocoll. 2015, 43, 547–556. [Google Scholar] [CrossRef]
- Santos, J.; Jiménez, M.; Calero, N.; Undabeytia, T.; Muñoz, J. A Comparison of Microfluidization and Sonication to Obtain Lemongrass Submicron Emulsions. Effect of Diutan Gum Concentration as Stabilizer. LWT 2019, 114, 108424. [Google Scholar] [CrossRef]
- Yang, F.; Yang, J.; Qiu, S.; Xu, W.; Wang, Y. Tannic Acid Enhanced the Physical and Oxidative Stability of Chitin Particles Stabilized Oil in Water Emulsion. Food Chem. 2021, 346, 128762. [Google Scholar] [CrossRef] [PubMed]
- Yue, M.; Huang, M.; Zhu, Z.; Huang, T.; Huang, M. Effect of Ultrasound Assisted Emulsification in the Production of Pickering Emulsion Formulated with Chitosan Self-Assembled Particles: Stability, Macro, and Micro Rheological Properties. LWT 2022, 154, 112595. [Google Scholar] [CrossRef]
- Santos, J.; Alcaide-González, M.A.; Trujillo-Cayado, L.A.; Carrillo, F.; Alfaro-Rodríguez, M.C. Development of Food-Grade Pickering Emulsions Stabilized by a Biological Macromolecule (Xanthan Gum) and Zein. Int. J. Biol. Macromol. 2020, 153, 747–754. [Google Scholar] [CrossRef]
- Hong, I.K.; Kim, S.I.; Lee, S.B. Effects of HLB Value on Oil-in-Water Emulsions: Droplet Size, Rheological Behavior, Zeta-Potential, and Creaming Index. J. Ind. Eng. Chem. 2018, 67, 123–131. [Google Scholar] [CrossRef]
- Derkach, S.R. Rheology of Emulsions. Adv. Colloid Interface Sci. 2009, 151, 1–23. [Google Scholar] [CrossRef] [PubMed]
- Schmitt, V.; Cattelet, C.; Leal-Calderon, F. Coarsening of Alkane-in-Water Emulsions Stabilized by Nonionic Poly (Oxyethylene) Surfactants: The Role of Molecular Permeation and Coalescence. Langmuir 2004, 20, 46–52. [Google Scholar] [CrossRef] [PubMed]
- Urbina-Villalba, G.; Forgiarini, A.; Rahn, K.; Lozsán, A. Influence of Flocculation and Coalescence on the Evolution of the Average Radius of an O/W Emulsion. Is a Linear Slope of R [Combining Macron] 3 vs. t an Unmistakable Signature of Ostwald Ripening? Phys. Chem. Chem. Phys. 2009, 11, 11184–11195. [Google Scholar] [CrossRef]
- Delmas, T.; Piraux, H.; Couffin, A.-C.; Texier, I.; Vinet, F.; Poulin, P.; Cates, M.E.; Bibette, J. How to Prepare and Stabilize Very Small Nanoemulsions. Langmuir 2011, 27, 1683–1692. [Google Scholar] [CrossRef] [PubMed]
- Nazarzadeh, E.; Anthonypillai, T.; Sajjadi, S. On the Growth Mechanisms of Nanoemulsions. J. Colloid Interface Sci. 2013, 397, 154–162. [Google Scholar] [CrossRef] [PubMed]
HLB | 11 | 12 | 13 | 14 | 15 |
---|---|---|---|---|---|
D3,2 (µm) | 0.224 ± 0.010 | 0.203 ± 0.012 | 0.257 ± 0.034 | 0.246 ± 0.013 | 0.341 ± 0.011 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Santos, J.; Alfaro-Rodríguez, M.-C.; Vega, L.; Muñoz, J. Relationship between HLB Number and Predominant Destabilization Process in Microfluidized Nanoemulsions Formulated with Lemon Essential Oil. Appl. Sci. 2023, 13, 5208. https://doi.org/10.3390/app13085208
Santos J, Alfaro-Rodríguez M-C, Vega L, Muñoz J. Relationship between HLB Number and Predominant Destabilization Process in Microfluidized Nanoemulsions Formulated with Lemon Essential Oil. Applied Sciences. 2023; 13(8):5208. https://doi.org/10.3390/app13085208
Chicago/Turabian StyleSantos, Jenifer, Maria-Carmen Alfaro-Rodríguez, Lili Vega, and José Muñoz. 2023. "Relationship between HLB Number and Predominant Destabilization Process in Microfluidized Nanoemulsions Formulated with Lemon Essential Oil" Applied Sciences 13, no. 8: 5208. https://doi.org/10.3390/app13085208
APA StyleSantos, J., Alfaro-Rodríguez, M. -C., Vega, L., & Muñoz, J. (2023). Relationship between HLB Number and Predominant Destabilization Process in Microfluidized Nanoemulsions Formulated with Lemon Essential Oil. Applied Sciences, 13(8), 5208. https://doi.org/10.3390/app13085208