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Abstract: Path planning is an important aspect and component in the research of mobile-robot-related
technologies. Many path planning algorithms are only applicable to static environments, while in
practical tasks, the uncertainty in dynamic environments increases the difficulty of path planning
and obstacle avoidance compared with static environments. To address this problem, this paper
proposes an RRT*-FDWA algorithm. RRT* first generates a global optimal path, and then, when
obstacles exist nearby, an FDWA algorithm fixes the local path in real time. Compared with other
path planning algorithms, RRT*-FDWA can avoid local minima, rapidly perform path replanning,
generate a smooth optimal route, and improve the robot’s maneuvering amplitude. In this paper, the
effectiveness of the algorithm is verified through experiments in dynamic environments.

Keywords: RRT*-FDWA; maneuver amplitude; dynamic path planning; local minimum

1. Introduction

In the field of automatic navigation of wheeled mobile robots, path planning is a
frequently researched area. The main goal of a path planning algorithm is to plan a
collision-free path from the initial state to the target in the constructed space of the robot [1].
Path planning is divided into global path planning and local path planning. Global
planning [2–4] is able to accomplish the task in known static environments. However,
environments and obstacles change dynamically in most navigation processes. When a
mobile robot performs tasks according to global path planning, it must use various devices
on board, such as lidar, depth cameras, and IMUs, to sense the surrounding environment
and its own state and quickly plan local collision-free paths. For navigation, robots therefore
usually use a combination of global path planning and local path planning [5–7].

The Rapid Exploration Randomized Tree [8] (RRT) has been shown to be a very
effective global path planning algorithm; RRT can plan paths quickly and simply by
generating a tree structure at high-speed increments in the construction space to find a goal.
However, RRT algorithms also possess some constraints, such as not having asymptotic
optimality [9,10] and an the inability to avoid dynamic obstacles; variants of improved
RRT algorithms have, therefore, been proposed. Jin-Gukang [11] et al. proposed a “Post-
Triangular Rewiring” method, which reduces the path planning time, improves efficiency,
and creates an algorithm close to the global optimum. Moon C [12] et al. proposed a
dual-tree fast exploration random tree (DT-RRT) algorithm to decrease the computational
complexity of the RRT. In addition, DT-RRT reduces the length of the path and increases
the coverage of the sampling points. Nasir J et al. proposed an RRT* [13] algorithm which
can make the path asymptotically optimal. Chen L et al. [14] introduced the dual-tree
structure into an RRT* algorithm, thereby creating separate extension and optimization
processes and improving the convergence speed. In addition, some scholars have attempted
to improve global path planning methods such as RRT* to avoid dynamic obstacles. Qi
et al. [15] applied the RRT* algorithm to dynamic environments and introduced Pareto
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theory to propose a multi-objective dynamic fast exploration stochastic algorithm (MOD-
RRT*), which improved the effective performance of the RRT* algorithm in avoiding
unknown obstacles.

However, there are many limitations in global path planning and dynamic environ-
ments. Compared with static environments, there are many uncertainties, such as randomly
moving obstacles. It is, therefore, very difficult to predict the movement path of obsta-
cles. Thus, local path planning in dynamic environments is currently an area of great
research interest.

In recent years, researchers have proposed many local path planning algorithms, such
as the dynamic window approach [16] (DWA) and the artificial potential field method [17]
(APF). Furthermore, Young-In Choi [18] et al. proposed a collision avoidance algorithm
based on the D*Lite algorithm for mobile robots; this algorithm was applied to a logistics de-
livery scenario to effectively avoid collision and safely reset the robot’s optimal movement
route when the robot encounters a crossover situation at an intersection. Kumar [19] et al.
proposed a combination of the sine cosine algorithm and ant colony algorithm for multiple
environments such as static and dynamic, and applied the algorithm in multi-robot for-
mations. Guo [20] et al. constructed a risk region of dynamic obstacles using the Kalman
filter state estimation, combining it with a nonlinear model predictive control to achieve
safe obstacle avoidance. DWA has been extensively applied because of its dynamic charac-
teristics combined with those of the robot. Later, Zhong [21] et al. proposed an adaptive
rolling window method based on the edges of obstacles and the target point, which has
good safety and environmental applicability. Chang [22] et al. combined Q learning with
the DWA algorithm and proposed two new evaluation functions. This demonstrated a high
navigation efficiency and success rates in complex unknown environments, but incurred a
higher time cost. Xiang [23] et al. implemented adaptive weight coefficients for the DWA
algorithm for complex environments, making the path of the mobile robot smoother when
avoiding obstacles. Many new and improved algorithms have been derived for obstacle
avoidance in dynamic environments. Wu [24] et al. combined the A* algorithm and the
DWA algorithm to produce an algorithm that was closer to the global optimal path but
with less smoothness.

Nevertheless, the improved DWA algorithms are still unable to avoid the problem of
local optimal solutions and may fail to complete the task due to the lack of global planning.
An algorithm may get stuck at local minima during planning and consume more energy. A
suitable path planning algorithm should be able to plan a complete collision-free path that
satisfies the robot dynamics.

Therefore, to resolve the path planning problem in a dynamic environment, this paper
proposes an RRT*-FDWA algorithm. The contribution of the proposed algorithm to the
path planning problem is as follows:

• A fuzzy controller is added to the adaptive weight index of the DWA algorithm. This
makes the weights adaptive, improves the safety of path planning, and enables timely
avoidance of dynamic obstacles.

• By combining the RRT* algorithm with the FDWA algorithm, local planning can avoid
hitting local minima. The RRT*-based path re-planning is able to replan the global
path after local path planning; this enhances the robot’s maneuverability and improves
target fit.

The manuscript is divided into the following parts: Section 2 explains the original
algorithm, the dynamics required to move the robot, and the related work. Section 3
discusses the FDWA algorithm and the fuzzy control principle. Section 4 discusses the RRT*-
FDWA algorithm. Section 5 provides experimental results to demonstrate the effectiveness
of the RRT*-FDWA. Section 6 discusses the results and future work.
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2. Related Work

Collision-free path planning is usually divided into two stages. The first stage is global
path planning—RRT* in this paper. The second stage is local path planning, for which this
paper adopts the FDWA algorithm.

2.1. RRT* and DWA Algorithm

The RRT* algorithm is mainly improved by the RRT algorithm. The RRT* algorithm
adds Rewire, by routing the algorithm to reselect the parent node, thereby achieving
the global optimal. The RRT* algorithm, therefore, has probabilistic completeness and
asymptotic optimality.

Path planning in the DWA first calculates the current sampled velocity range based
on the mobile robot’s own characteristics. The sampled acceleration and angular velocity
are used to simulate the trajectory of the robot in a certain range, and the trajectory in the
range is evaluated using an evaluation function with certain rules; after the trajectory in
the range has been obtained, the optimal path is selected to enable the robot to move.

2.2. Kinematic Model

Mobile robots can be divided into omnidirectional and non-omnidirectional robots ac-
cording to the kinematics of casters, and the robot used in this paper is a non-omnidirectional
mobile robot. In Figure 1, XOY represents the global coordinate system. x1Py1 is the local
coordinate system, x1 is the linear movement direction of the robot, y1 is perpendicular to
the x1 axis, P is the center of the robot as the origin of the local coordinate system, and θ
is the heading angle. Thus, the robot’s global coordinates, position ε, can be obtained, as
shown in Equation (1). To map the global coordinate system to the local coordinate system,
the rotation matrix Rθ is used. Equation (3) is converted from global coordinates to local
coordinates Rε.

ε =

 x
y
θ

 (1)

Rθ =

 cos θ
− sin θ

0

sin θ
cos θ

0

0
0
1

 (2)

Rε = Rθ × ε (3)
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In a non-omnidirectional moving robot, the robot only has a linear velocity V in the
x1 direction and an angular velocity ω of rotation. Suppose the sampling time is ∆T, the
distance the robot travels is ∆S, and the coordinates of the robot are ∆X, ∆Y.

∆S = V ∗ ∆T (4)

{
∆X = V ∗ ∆T cos θT
∆Y = V ∗ ∆T sin θT

(5)

According to the coordinates of the robot, Xn,Yn, the current sampling time can be
obtained by summing up its state and increment.{

Xn = Xn−1 + V ∗ ∆T cos θT
Yn = Yn−1 + V ∗ ∆T sin θT

(6)

The DWA algorithm [25–27], in Equation (6), has three evaluation metrics. They are the
azimuth evaluation function, heading(v, w), which denotes the angular difference between
the robot and the target point. dist(v, w), which denotes the distance between the robot and
the nearest detected obstacle, is the distance function. velocity(v, w) denotes the relative
velocity magnitude of the robot trajectory. α, β, and γ denote the weight coefficients of
the function and σ denotes the normalization required to obtain the evaluation function
G(v, w).

γ = 1− β− α (7)

G(ν, ω) = σ(α ∗ heading(ν, ω) + β ∗ dist(ν, ω) + γ ∗ velocity(ν, ω)) (8)

3. FDWA Algorithm

The RRT* algorithm is able to perform global path planning in an already established
map model environment or with static obstacles. However, in the real environment, there
are many uncertainties, such as unknown obstacles. If global path planning alone is
used, the robot will easily collide with obstacles in such unknown environments. There-
fore, in order to achieve the dynamic obstacle avoidance capability of a mobile robot,
this paper incorporates a local path planning algorithm—the FDWA—for local dynamic
obstacle avoidance.

3.1. FDWA Fuzzy Distribution

In the DWA algorithm, the percentage of weights has a very strong influence on the
results of the path planning algorithm. Therefore, in order to improve the efficiency of the
algorithm and be better able to adapt to the complex environment, the fuzzy inference and
DWA algorithm are combined, enabling adaption of the evaluation index weights. Fuzzy
inference is performed on the azimuth evaluation function weights α and distance function
weights β, (β, α ∈ [0, 0.5]), and a dual-input, dual-output fuzzy controller is designed.
The angle θd at which the actual trajectory of the robot deviates from the predetermined
trajectory and the distance Od to the nearest obstacle are used as dual inputs, and the
azimuth evaluation function weight, α, and the distance function weight, β, are used as
dual outputs. The membership function of the fuzzy system uses trigonometric functions,
which are suitable for describing well-defined ranges and information precisely. The input
membership functions θd and θd are shown in Equation (10): (µ(u) ∈ [0, 1]]). The output
affiliation function of weight α is µ(o), shown in Equation (11): (µ(o) ∈ [0, 1]). Figure 2a
shows the input membership function and Figure 2b shows the output.

µ(u) ∈ [Od, θd], µ(o) ∈ [β, α] (9)
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µ(u) =


1− 2u 0 ≤ u ≤ 0.25
2u 0.25 < u < 0.5
2− 2u 0.5 ≤ u ≤ 0.75
2u− 1 0. 75 < u < 1

(10)

µ(o) =



8o 0 ≤ o ≤ 0.125
1− 8o 0.125 ≤ o ≤ 0.1875
8o− 1 0.1875 ≤ o ≤ 0.25
3− 8o 0.25 ≤ o ≤ 0.2975
8o− 2 0.2975 ≤ o ≤ 0.375
4− 8o 0.375 ≤ o ≤ 0.5

(11)
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3.2. Fuzzy Rules and Clarification

First, the input and output variable domains of the fuzzy controller are defined as [0, 1],
which is a continuous domain. The fuzzy sets are defined as 0, PS, PM, and PB, i.e., zero,
positive small, positive medium, and positive large. Tables 1 and 2 show the design method
fuzzy rules, α and β, as follows.

1. When Od, θd, ∈ PB. The mobile robot should reduce the value of θd,θd as shown in
Figure 3, θd =|θ1 − θ2|, and should reduce the value of α and β so that the difference
between the current trajectory and the desired trajectory is reduced and the path is
smoother. This will make, the velocity function increase in weight and make the robot
accelerate toward the target.

2. When θd ∈ PB, Od ∈ PS. The robot will reduce the value of α to make the path smoother.
The β value should be large to make the robot avoid the obstacle.

3. When θd ∈ PS, Od ∈ PB. The value of α should be made moderate to maintain the
smoothness. The value of β should be deceased; this will make the velocity function
increase its share in the weight and make the robot accelerate toward the target.

4. When θd, Od ∈ PS. The value of α should be increased and the value of β should be
increased to ensure that the robot passes the obstacle safely.
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Table 1. α rule list.

θd

Od
0 PS PM PB

0 PB PB PS 0
PS PB PB PS 0
PM PB PM PM 0
PB PB PM PM PS

Table 2. β rule list.

θd

Od
0 PS PM PB

0 PB PB PM PS
PS PB PB PM PS
PM PB PB PM 0
PB PB PB PS 0
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The fuzzy logic inference uses the Mamdani inference method. The clarity value U
is (α, β). The exact value of α, β at the current moment is obtained after defuzzification to
prevent the FDWA algorithm from falling into local minima. The maximum membership
averaging method can effectively eliminate extreme cases, so the maximum membership
averaging method is used to solve the problem, as in Equation (12). A(oj) = max(A(o)),
j = 1, 2 . . . n.

U = ∑ n
j=1 A(oj)/2 (12)

4. Dynamic Path Planning Algorithm Based on RRT*-FDWA
4.1. RRT*-FDWA Algorithm Flow

The RRT*-FDWA path planning algorithm uses both the RRT* and FDWA algorithms.
When the global optimal path is completed according to the RRT* algorithm, a path
replanning judgment is performed. When a moving obstacle is encountered, the FDWA
algorithm is used for local path planning; after successfully avoiding the obstacle, the
RRT* algorithm plans a new global path for the mobile robot to continue driving. The
RRT*-FDWA process algorithm is shown in Figure 4.



Appl. Sci. 2023, 13, 5234 7 of 17Appl. Sci. 2023, 13, 5234 8 of 19 
 

 
Figure 4. RRT*-FDWA flow chart. 

The algorithm flows as follows: 
Step 1: Create a map of the known environment and set target points. 
Step 2: The RRT* algorithm plans a collision-free global optimal path based on the already 

established map environment and its own sensors, such as lidar. 
Step 3: Determine whether the robot can reach the target point according to the end con-

dition of the algorithm; if so, end the algorithm; if not, continue the execution. 
Step 4: Determine whether there is an environment or moving obstacle in the established 

map; if the lidar determines that the moving obstacle is dangerous, jump to the 
FDWA algorithm for local path planning to avoid the obstacle. 

Figure 4. RRT*-FDWA flow chart.

The algorithm flows as follows:

Step 1: Create a map of the known environment and set target points.
Step 2: The RRT* algorithm plans a collision-free global optimal path based on the already

established map environment and its own sensors, such as lidar.
Step 3: Determine whether the robot can reach the target point according to the end

condition of the algorithm; if so, end the algorithm; if not, continue the execution.
Step 4: Determine whether there is an environment or moving obstacle in the established

map; if the lidar determines that the moving obstacle is dangerous, jump to the
FDWA algorithm for local path planning to avoid the obstacle.
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Step 5: Perform a new global path plan, determine the optimal path, and continue driving
along the global path. Judge whether it is possible to reach the target point: if ‘No’,
jump to the Step 3 loop; if ‘Yes’, end the algorithm. Figure 5 represents the global
path planning, encountering moving obstacles in the path replanning process.
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4.2. RRT*-FDWA Local Minima and Pseudocode

In the DWA algorithm, the overall generation value increases as the value of its weight
coefficient increases the closer it gets to the obstacle. This will cause the robot to fall into
local minima during local path planning. In the RRT*-FDWA algorithm, to avoid local
minima, the robot can quickly enter global path planning once it has successfully avoided
an obstacle, as shown in Equation (13). K is the reward and punishment function of the
DWA algorithm.

G′(ν, ω) = K · G(ν, ω) (13)

∆t(ν, ω) = ∆S/∆V (14)

K =


a t < 0.5
1 t= 0.5
b 0.5 < t < 1
0 t > 1

(15)

In Equation (14), ∆t(v, ω) is the time function with the obstacle. In Equation (15), a
and b represent the reward and punishment function K, where a < 1 < b. When the value
of t is less than 0.5, it is not caught in the local minimum; when t is greater than 0.5, it is
regarded that the robot is caught in the local minimum. Global path planning uses the
RRT* [25] algorithm, while local path planning uses the FDWA algorithm. The pseudo
code of the RRT*-FDWA algorithm is shown in Algorithm 1; Algorithm 2 is the Rewire in
Algorithm 1.
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Algorithm 1 RRT*-FDWA Algorithm.

input: pini, pgoal , Map, v, w, K
output: pini→pgoal path
WHILE Target_not_reach DO

FOR i in range(n): prand ← Sample(Map
pnearest ← Nodelist ( prand, pini)
pnew ←Steer( pnearest, prand)
Cost( xnew)←d( pnerarest, pnew) + Cost(pnearest)

IF (Check_collision( pnearest, pnew)) THEN
pnear ← f indnearnodes(pnew)

pnew ← C_parent( pnear, pnew)
Node_list← append(p new)
pparent ← Rewire(pnew, pnear)

IF (Check_ Moving obstacle ( pnearest, pnew)) THEN
DWA( pnear, pnew) ← G′(v, w), K
G′(v, w), K ← Rule(α, β)

α, β← clari f ication
IF (Check_collision( pnearest, pnew)) THEN
end

IF
(

pnew → pgoal

)
THEN

IF(Check_conlision(pnew, pgoal)) THEN

Temppath← cunrrrent
(

pini → pgoal

)
Return path
End while

Algorithm 2 Rewire (P1,P2).

IF Collision_free ( p1, p2)THEN
pparent2 ← p2[i− 1]
IFCost(p2)> Cost(p 1)) THEN

IF(Check_collision(pnearest, p2))THEN
pparent ← p2

Cost ← Cost(p2)
End if

End if

In Algorithms 1 and 2 in this paper, the following terms are used:
Sample (Map): The number of sampling points generated randomly on the map towards

the target node is in the range [0, 100].
Node_list (p1, p2): The set of Euclidean distances between the sampling point and the

parent node, where the coordinates of the random sampling point and the parent node are
ps (x1, y2) and pp (x2, y2), respectively.

pnearest: Minimum of Node_list (p1, p2) min (Node_list)
Steer (p1, p2): The angle between p1 and the line connecting p1 and p2 of its parent

node; multiply the steering angle by the step size β to get pnew. Let the steering angle be θ;
pnew is obtained by the following Equations (16) and (17).

pnew,x = β cos θ (16)

pnew,y = β sin θ (17)

Check_collision (p1, p2): Check if there are obstacles between p1 and p2.
Target_not_reach: If or not the target point is reached: the return value is 1 if the target

point is reached and 0 if the opposite is true.
Cost(x): Return along the total path length of the target node from node p.
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find near_nodes (p1): Find a new parent node near node p again at random.
C_parent (p1, p2): Add a new optional parent node and define its length, angle, and

generation value.
D (p1, p2): Denotes the Euclidean distance between nodes p1 and p2.
Rewire (p1, p2): Determine whether p2 can replace p1 as the new parent node.
Collision_free (p1, p2): Check whether it is feasible and that there are no obstacles

between node p1 and node p2.
G’ (v, ω): Evaluation function of the DWA algorithm with local minimum judgment

added.
Rule (α, β): Fuzzy rule table for α and β.

5. Experimental Results

In this paper, the algorithm was simulated in an AMD Ryzen 7 5800H 3.2 GHz and 16
G RAM computer, and a Matlab simulation was used (Matlab version 2019b). A two-wheel
differential speed mobile robot with a universal wheel-manipulable wheel in the front
was used.

5.1. RRT*-FDWA Global Path Planning

First, RRT* was used to simulate the global planning path. As shown in Figure 6, for
the random moving obstacle environment, dashed and solid lines represent the global path.
The dashed line shows the process of the RRT* algorithm rewiring and selecting a new
node for the first time; the blue circle represents pnew and the black objects represent the
moving obstacles. A size [10,10] map with a start point of [1.2,1.2] and a target point of [9,9]
was used.
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5.2. FDWA Lobal Path Planning

In order to verify its effectiveness, the FDWA algorithm was simulated. First, the
initial values of the weight coefficients in the evaluation function were set at α = 0.2, β = 0.4,
and γ = 0.4; the maximum linear and angular velocities were also set to v = 0.5 m/s and
ω = 0.3 rad/s. a and b represent the reward and punishment function K: a = 0.5 and b = 1.5.
The time for forward simulation was 3 s and dt = 0.1.

Figure 7 shows the FDWA algorithm planning diagram and demonstrates the effec-
tiveness of the algorithm in the presence of unknown obstacles. The solid purple line
indicates the path simulated by the FDWA algorithm in the constant forward direction,
and the dashed line indicates the final completed trajectory. The blue solid circles indicate
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stationary obstacles; the blue solid hollow circles indicate the current position of the moving
obstacle; and the blue dashed circles indicate the position of the moving obstacle at the
previous moment. When the mobile robot simulates the path forward, an optimal local
path is found according to the evaluation function and the local minimum problem can be
successfully avoided.
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To further verify the effectiveness of the FDWA, this paper is validated by a real robot.
Figure 8a shows the experimental robot tianbot_mini, a two-wheel differential drive robot
with a drive wheel at the rear and a gimbal at the front, and with classic PD control for
the drive wheel. It has a ydlidar x2 LIDAR for obstacle detection. The linear velocity is
constrained, v ∈ (0, 0.5 m/s), and the FDWA algorithm is encapsulated as a local path
planner for the ROS navigation package. The experimental environment is the same as the
simulation environment, and the white mobile robot in Figure 8b is regarded as a moving
obstacle with a handle control and a speed of 0.10 m/s. Figure 8b–f shows the FDWA
path planning process, and the experimental results better validate the effectiveness of
the algorithm.
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5.3. Experimental Comparison

In this paper, we used a two-wheel differential speed robot for the simulation. The
maneuverability degree, δm, of this mobile robot can, therefore, be obtained as two, and
according to Equation (18), rank[Cα(βα)] is the number of maneuverable wheels.

δm = 3− rank[Ca(βa)] (18)

In dynamic obstacle avoidance, robot behavior includes deceleration or acceleration to
avoid obstacles when it encounters them, but such behaviors may cause damage to safety. In
this paper, the behavior of avoiding obstacles is proposed as the standard deviation formula
for speed, the smaller value of which represents higher safety, as shown in Equation (19),
where vi indicates the line speed at the current moment. The integrated speed difference
formula presents the maneuvering magnitude, which indicates the robot’s evasion ability
when encountering obstacles, and the higher its value, the better the evasion ability, as
shown by Equation (20).

σ2
w =

√
∑n

i=1 (vi − v)2

n
(19)

δr = σ2
wδm/θd × 100% (20)

Figure 9 shows the RRT*-FDWA path planning process; the solid red circles indicate
the current position and solid blue circles indicate pnew. Hollow circles indicate the previous
moment position and the planned route and dashed hollow circles indicate the moving
obstacle at the previous moment.
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Figure 10 shows the RRT*-FDWA experimental path planning diagram, and the ex-
perimental results show that the algorithm is effective in practical applications. The RRT*-
FDWA algorithm was packaged into the path planner in the ROS navigation package be-
fore experimental validation. In the figure, the basketball and the white mobile robots are 
treated as moving obstacles and the experimental environment was the same as the sim-
ulation experiment. In the real experimental process, there was an error in the path plan-
ning process due to the robot control drive factor. 
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Figure 9. RRT*-FDWA path planning diagram. (a) Position planning diagram at the moment t = 1.
(b) Position planning diagram at the moment t = 2. (c) Position planning diagram at the moment
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Figure 10 shows the RRT*-FDWA experimental path planning diagram, and the ex-
perimental results show that the algorithm is effective in practical applications. The
RRT*-FDWA algorithm was packaged into the path planner in the ROS navigation package
before experimental validation. In the figure, the basketball and the white mobile robots
are treated as moving obstacles and the experimental environment was the same as the
simulation experiment. In the real experimental process, there was an error in the path
planning process due to the robot control drive factor.
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Figure 10. RRT*-FDWA real environment path planning map. (a) The robot position map at the 
moment t = 0. (b) The robot position map at the moment t = 3. (c) The robot position map at the 
moment t = 5. (d) The robot position map at the moment t =7. (e) The robot position map at the 
moment t = 9. (f) The robot position map at the moment t = 13. (g) The robot position map at the 
moment t = 16. (h) The robot position map at the moment t = 18.  

The RRT*-FDWA algorithm proposed in this paper was compared to the hybrid A*—
an improved DWA algorithm—the hybrid algorithm being SOTA. Figure 11 shows the 
final completed path planning graph for both algorithms, the red dot [1,1] is the starting 
point and the green dot [9,9] is the target point; it can be seen that the A*-DWA algorithm 
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Figure 10. RRT*-FDWA real environment path planning map. (a) The robot position map at the
moment t = 0. (b) The robot position map at the moment t = 3. (c) The robot position map at the
moment t = 5. (d) The robot position map at the moment t =7. (e) The robot position map at the
moment t = 9. (f) The robot position map at the moment t = 13. (g) The robot position map at the
moment t = 16. (h) The robot position map at the moment t = 18.

The RRT*-FDWA algorithm proposed in this paper was compared to the hybrid A*—an
improved DWA algorithm—the hybrid algorithm being SOTA. Figure 11 shows the final
completed path planning graph for both algorithms, the red dot [1,1] is the starting point
and the green dot [9,9] is the target point; it can be seen that the A*-DWA algorithm still
falls into local minima, while the RRT*-FDWA algorithm can complete the path planning
more smoothly.
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It can be seen from Table 3 that the σ2
w of the RRT*-FDWA algorithm is smaller and δr

is 12% higher than those of the A*-DWA algorithm, and it takes less time to complete. This
indicates that the RRT*-FDWA algorithm is safer, fits better, and plans faster.

Table 3. Algorithm efficiency test comparison.

σ2
w Time (s) δr

A*-DWA 0.548 11.93 79%
RRT*-FDWA 0.424 9.62 91%
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The general comparison of the four algorithms is given in Table 4. The RRT*-FDWA
algorithm proposed in this paper considers both global and local optimality and can
successfully plan a collision-free optimal path in both dynamic and static environments. In
Table 4, E means Exist, N means None, L means Low, and H means High.

Table 4. Algorithm comparison.

Dynamic
Obstacle

Avoidance

Local
Optimality

Global
Optimality Smooth Path

RRT* N N E L
DWA N E N L

Fuzzy-DWA E E N H
RRT*-FDWA E E E H

6. Conclusions and Future Work

In this paper, mobile robot path planning in a dynamic environment was studied
and an RRT*-FDWA algorithm was proposed. First, the RRT* algorithm was used for
global path planning to obtain a global optimal route. The uncertainty of moving obstacles
increases the difficulty of obstacle avoidance in the path planning process. When obstacles
are encountered, the FDWA algorithm is added to improve robot adaptability in the face
of a dynamic environment. The combination of the algorithms enables better avoidance
of local minima and global replanning according to the new environment after the local
planning has been completed. As a result, the robot has good maneuvering magnitude and
safety and can complete the task in a shorter time.

The future goal is to apply this algorithm in multi-robot formation path planning to
enable multi-robot formations with dynamic obstacle avoidance.
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