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Abstract: This paper analyses the dynamic behavior of a rail vehicle using experimental and simula-
tion analysis on a multi-rigid–flex body model. The mathematical models are developed considering
the car body, bogie frame, and wheel axle for rail vehicles of rigid–flexible and multi-rigid formula-
tions, taking the car body as rigid for the rigid body analysis and the flexible car body for flex–rigid
analysis. A finite element model of the car body was developed in ANSYS, and substructure and
modal analyses were performed. The mathematical model is validated through an experiment
conducted by the Research Design and Standards Organization. Then, the validated model is further
analyzed to evaluate the running comfort, using the Sperling ride index and the running safety, by
investigating the derailment coefficient and wheel load reduction rate. The impact of flexibility on
the vehicle’s running stability is investigated using the rigid body dynamics model and experimental
data. Compared to experimental data, the simulation results reveal that elastic vibration cannot be
neglected in vehicle dynamics, since the rigid–flexible coupling model is slightly more significant
than the rigid-body model for ride comfort and safety.

Keywords: rigid; car body; flexible; comfort; safety

1. Introduction

A rigid–flexible analysis is a numerical simulation used to model the dynamic behav-
iors of complex systems with rigid and flexible components. In the case of rail vehicles, this
type of analysis can be used to simulate the vehicle’s behavior as it travels along the track.
The rigid components of the rail vehicle include the wheels, axles, and main frame. These
components are modelled as rigid bodies that move together as a single unit. The flexible
members have a suspension system, body, and other elements designed to deform or flex
under load [1].

The system is modelled using a combination of mathematical equations and computer
simulations to perform a rigid–flexible analysis of a rail vehicle. The simulation considers
the forces acting on the vehicle as it travels along the track, including the vehicle’s weight,
the forces generated by the propulsion system, and the forces generated by the suspension
system. The simulation also takes into account the deformation of the flexible components
of the vehicle, which can have a significant impact on the vehicle’s behaviors. By analyzing
the vehicle’s behaviors under different conditions, engineers can optimize the vehicle’s
design to improve performance, safety, and efficiency. A rigid–flexible analysis is a powerful
tool for designing and optimizing rail vehicles. By simulating the vehicle’s behaviors under
various conditions, engineers can identify potential issues and make design changes before
the vehicle is built, saving time and money in the long run.

In railway vehicles, the vibrations mainly generated due to wheel-rail interaction are
isolated by the vehicle suspension system before being transferred to the car body. The

Appl. Sci. 2023, 13, 5252. https://doi.org/10.3390/app13095252 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app13095252
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0002-6809-2410
https://orcid.org/0000-0002-2223-0873
https://orcid.org/0000-0002-1295-3357
https://doi.org/10.3390/app13095252
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app13095252?type=check_update&version=2


Appl. Sci. 2023, 13, 5252 2 of 18

car body’s vertical vibrations arise mainly due to the vertical–lateral irregularities of the
track, and also due to the wheel’s profile. After hundreds of hours of running on tracks,
some wheels lose their correct profile; they start to present wear and generate vibrations.
These are incorporated by simple eigenmodes of rigid vehicle masses, i.e., vertical and pitch
modes [2]. A continuous effort has been applied by rail dynamics researchers to improve
rail vehicle performance indices, i.e., stability, ride, and curving ability [3]. Considering
different models, researchers have optimized ride comfort and other performance indices
of rail and road vehicles, i.e., vehicle power performance, energy consumption, regenerated
power, road holding, etc. [4]. It has been found in the past that the design of railway
passenger vehicles has conflicting requirements to obtain maximum ride comfort and
minimum track deterioration, as the wheels are affected first, and their profile needs
to be corrected on big lathes and maximum payload. Compound structural modes are
included due to car body flexibility, i.e., bending and twisting modes. Past research has
suggested that a 5 to 10 Hz resonating frequency significantly affects car body vibrations
in a symmetrical bending mode [5]. This frequency range is critical to human comfort
sensitivity. In this car body, structural vibrations in the bending mode arise in a lightweight
structure and are responsible for poor vehicle ride comfort [6].

Control of car body vibrations may be accomplished in several different ways. An
essential contrast may be drawn between the approaches concentrating on the flexible car
body modes’ control and those considering the rigid body modes. This distinction applies
to all of these systems. It is possible to lessen the effects of the first flexible car body modes
using piezoelectric actuators and technology that provides suspended mass control. Piezo-
stack actuators were used to demonstrate the solution’s efficacy via experimental testing
on a 1:10 scale model and co-simulations for a complete vehicle [7]. Using a 1:6 scaled
Shinkansen vehicle, Kamada et al. [8] demonstrated that the efficacy of a combination of
piezo-stack and linear actuators may be improved upon. As shown by Huang et al. [9], the
suspended equipment divides the first bending frequency into two frequencies with lesser
amplitudes. This equipment includes traction transformers, power converter units, fan
systems, etc. The active control of the suspended mass is an improvement that may be made
using this method. Foo et al. [10] researched the impact of regulating a suspended group
placed on a beam-like car body model using an electromagnetic actuator. Wang et al. [11]
stated this method’s benefits when used for semi-active suspensions.

Despite their efficacy in regulating flexible body modes, the approaches described
above have marginal influence on controlling stiff body modes, which still affect ride
comfort. The method of control used most often falls into the second group. With this con-
figuration, traditional dampers are replaced by actuators [12] situated between the bogies
(also known as wheelsets) and the car body in vertical and lateral directions. Inter-vehicle
actuators (and lateral–vertically linked actuators) are not included in these designs [13].

A lower-weight design of railway vehicles aims to achieve higher speeds with lesser
power requirements. It also results in a decrease in ground vibration and a reduction
in construction costs. It is also recommended that the car body’s lightweight design
fulfils other objectives such as crashworthiness, strength and wear. Researchers have
conducted extensive analyses on car body structural vibrations that seriously affect the
vehicle ride comfort, and the influences of active and semi-active secondary suspensions
on vehicle vibration isolation, considering the flexibility of the car body [14]. Researchers
have also determined the influences of active secondary suspensions and an active DVA
attached to the car body to attenuate flexible and rigid mode vibration [15–17]. Increasing
the vehicle speed significantly increases the energy and frequency range of the track
inputs, which induces the flexural vibrations in the car body. It has also been found that
typical track excitation frequencies and vehicle speeds extensively boost the car body
vibration modes [13].

In recent years, much theoretical research has been conducted to identify effective
strategies for reducing the flexible vibrations that cause discomfort in railway vehicle
passengers. Numerical simulation programs have been utilized to analyze and assess
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the comfort performance of railway vehicles based on specific theoretical models of the
vehicles. The accuracy of these models largely depends on the quality of the car body
modelling. One such theoretical model is the “stiff car body”, which provides insights
into the fundamental features of vibration behaviors in railway vehicles. The findings
from these models suggest that the ends of the car body are the most critical areas in ride
comfort. However, in reality, there are instances in which the level of vibrations measured
at the center of the car body is equivalent to the level recorded at either end, despite the
importance of the ends [7]. It is important to note that passenger comfort is a significant
factor in this research. Passengers experience heightened discomfort at specific vibration
frequencies and for particular durations. Therefore, reducing these flexible vibrations is
crucial for enhancing passenger comfort and satisfaction during train journeys.

This paper investigates a dynamics analysis of rail vehicle behaviors using experimen-
tal and numerical techniques. The focus is on investigating the impact of elastic vibrations
on rail vehicle dynamics. Mathematical models are developed for the car body, bogie
frame, and wheel axle using rigid–flexible and multi-rigid formulations. For the rigid body
analysis, the car body is considered rigid, while a flexible car body is considered for the
flex–rigid analysis. ANSYS is used to build a finite element model for the car body, and
substructure and modal analyses are carried out. The dynamic simulation and numerical
analysis are then validated using experimental results. The study also evaluates the running
comfort and safety of the rail vehicle. The Sperling Ride Index measures running comfort
at the rigid and flexible car body center. In contrast, the calculation error of running safety
is assessed using the mean derailment coefficient and mean wheel load-reduction rate.

2. Rail Vehicle Mathematical Modelling

For modelling and simulation, a full-size Indian railway ICF coach is studied [6].
For mathematical modelling, the two bogies, car body and four wheelsets are considered
connected by the suspension system, as shown in Figure 1. The car body may be described
using a Euler–Bernoulli type free–free equivalent beam. This beam has a constant section,
and its mass is spread uniformly.
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2.1. Flexural Motion Equations

Euler–Bernoulli beam theory of the free–free type is utilized for the bending and
torsional vibration of the car body. Equation (1) is used to evaluate the vibration due
to bending [18].

EI
∂4v(x, t)

∂x4 + ρb Ab
∂2v(x, t)

∂t2 + Ci
∂v(x, t)

∂t
= − fs f rδ

(
x− x f

)
− fs f lδ

(
x− x f

)
− fsrrδ(x− xr)− fsrlδ(x− xr) (1)
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where fs f r, fs f l , fsrr and fsrl are the forces induced by the secondary suspensions (repre-
sented by the first subindex s) on the car body. The second and the third subindices repre-
sent the front ( f ) or the rear (r) wheelset and the left (l) or the right (r) wheel, respectively.

Modes due to bending for unsupported beams can be calculated as

Xn(x) = cos βnx + cos h βnx− cos h βnL− cos βnL
sin h βnL− sin βnL

(sin h βnx + sin βnx) (2)

where βn are values of β that solve Equation (3) [18]:

cos βLcos h βL = 1 (3)

The equation of the torsional vibrations of the beam with a polar moment J and a
modulus of rigidity G can be calculated as follows:

ρJ
∂2φ(x, t)

∂t2 − GK
∂2φ(x, t)

∂x2 = mt(x, t) (4)

mt(x, t) is the torque which is applied by the secondary suspensions on the car body.
K is a torsional constant. The shape of the torsional modes of the free–free beam may be
determined from Equation (5):

Xnφ(x) = cos
nπ

L
x (5)

2.2. Equation of Motion for Combined Rigid and Flexural Motion

The equations for the combined flexural–rigid motion of a vehicle body are formulated
using three degrees of freedom (DOF). A schematic representation of the vehicle is shown in
Figure 1. Presumably, the vehicle body and each bogie frame have three DOF of rigid body
motion. These DOF are called pitch, vertical, and roll motions, respectively. In addition,
flexible body motion is considered for the vehicle’s body, as described in the preceding
section. The wheelsets are considered rigid bodies, since they only have two DOF: the
ability to move in a vertical and roll motion. The normal contact between the wheels and
the rail is represented in this model as a linear spring.

Consider a railway vehicle consisting of a car body with mass mc and moment of
inertia Jcx and Jcy along the x and y axes, respectively. The car body is supported by two
bogies, each with a frame of mass mb, moment of inertia Jbx and Jby along the x and y axes,
respectively, and a wheelset with mass mw and moment of inertia Jwx along the x axis. Lb is
the half distance between two bogies, Lw is the half distance among two wheelsets of the
bogie, the car body has a length L, and Lc is centered at a longitudinal position. The front
and rear secondary suspensions are located at longitudinal positions L f and Lr, respectively.
The lateral displacement of the secondary suspension is b, and bw is the track gauge (half).
The primary suspension axle has a vertical stiffness of kp and a vertical damping of cp. The
secondary suspension for each side of the bogie has a vertical stiffness of ks and a vertical
damping of cs. The equivalent linear spring of the Hertzian contact is khz. The railway
vehicle has two flexible bending modes with damping constants ζ1z and ζ2z for the first
and second modes, respectively, and a torsional mode with damping constant ζ1φ.

Taking into account the model presented in Figure 1, the EOM that describes the
behaviors of the vehicle body may be stated as follows:

mc
..
zc = − fs f r − fs f l − fsrr − fsrl (6)

Icy
..
θc = Lb fs f r + Lb fs f l − Lb fsrr − Lb fsrl (7)

Icx
..
φc = −b fs f r + b fs f l − b fsrr + b fsrl (8)

where fsij is secondary suspension forces on the bogie frames and the vehicle body, respec-
tively [18]. These forces may be defined using Equations (9)–(17).
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fs f r = ks

[(
zc + ∑ Xnz

(
L f

)
qnz − Lbθc + b

(
φc + ∑ Xnφ

(
L f

)
qnφ

))
−
(

zb f + bφb f

)]
+cs

[(
z̀c + ∑ Xnz

(
L f

)
q̀nz − Lb θ̀c + b

(
φ̀c + ∑ Xnφ

(
L f

)
q̀nφ

))
−
(

z̀b f + bφ̀b f

)] (9)

fs f r = ks

[(
zc + ∑ Xnz

(
L f

)
qnz − Lbθc + b

(
φc + ∑ Xnφ

(
L f

)
qnφ

))
−
(

zb f + bφb f

)]
+cs

[(
z̀c + ∑ Xnz

(
L f

)
q̀nz − Lb θ̀c + b

(
φ̀c + ∑ Xnφ

(
L f

)
q̀nφ

))
−
(

z̀b f + bφ̀b f

)] (10)

fs f r = ks

[(
zc + ∑ Xnz

(
L f

)
qnz − Lbθc + b

(
φc + ∑ Xnφ

(
L f

)
qnφ

))
−
(

zb f + bφb f

)]
+cs

[(
z̀c + ∑ Xnz

(
L f

)
q̀nz − Lb θ̀c + b

(
φ̀c + ∑ Xnφ

(
L f

)
q̀nφ

))
−
(

z̀b f + bφ̀b f

)] (11)

fs f r = ks

[(
zc + ∑ Xnz

(
L f

)
qnz − Lbθc + b

(
φc + ∑ Xnφ

(
L f

)
qnφ

))
−
(

zb f + bφb f

)]
+cs

[(
z̀c + ∑ Xnz

(
L f

)
q̀nz − Lb θ̀c + b

(
φ̀c + ∑ Xnφ

(
L f

)
q̀nφ

))
−
(

z̀b f + bφ̀b f

)] (12)

where
..
qnz + 2ζnzωnz

.
qnz + ω2

nzqnz =
2

ρAL

[
− fs f rXnz

(
L f

)
− fs f lXnz

(
L f

)
− fsrrXnz(Lr)− fsrlXnz(Lr)

]
(13)

..
qnφ + 2ζnφωnφ

.
qnφ + ω2

nφqnφ =
2

ρJL

[
−b fs f rXnφ

(
L f

)
+ b fs f lXnφ

(
L f

)
− b fsrrXnφ(Lr) + b fsrlXnφ(Lr)

]
(14)

The bogie frame EOM is given in Equations (15)–(17).

mb
..
zbi = fsir + fsil − fpi f r − fpi f l − fpirr − fpirl (15)

Iby
..
θbi = Lw fpi f r + Lw fpi f l − Lw fpirr − Lw fpirl (16)

Ibx
..
φbi = b fsir − b fsil − b fpi f r + b fpi f l − b fpirr + b fpirl (17)

The primary suspension forces between the bogie frames and axle boxes are denoted by
fpjkl , where j is an index that is to be replaced by either f or r to obtain the front or rear bogie
primary suspension forces, respectively. These forces are defined in Equations (18)–(21).

fpi f r = kp

[
(zbi − Lwθbi + bφbi)−

(
zwi f + bφwi f

)]
+ cp[(

.
zbi − Lw

.
θbi + b

.
φbi)− (

.
zwi f + b

.
φwi f )] (18)

fpi f l = kp

[
(zbi − Lwθbi − bφbi)−

(
zwi f − bφwi f

)]
+ cp[(

.
zbi − Lw

.
θbi − b

.
φbi)− (

.
zwi f − b

.
φwi f )] (19)

fpirr = kp[(zbi + Lwθbi + bφbi)− (zwir + bφwir)] + cp[(
.
zbi + Lw

.
θbi + b

.
φbi)− (

.
zwir + b

.
φwir)] (20)

fpirl = kp[(zbi + Lwθbi − bφbi)− (zwir − bφwir)] + cp[(
.
zbi + Lw

.
θbi − b

.
φbi)− (

.
zwir − b

.
φwir)] (21)

The wheelset’s EOM is given in Equation (22):

mw
..
zwij = fpijr + fpijl − (Nr + Nl)wij

Iwx
..
φwij = b fpijr − b fpijl − bw(Nr − Nl)wij

(22)

The indexes i and j should be replaced by f and r to obtain equations for each front
or rear wheelset or bogie, respectively. For instance,

..
zw f r corresponds to the vertical

acceleration of the rear wheelset of the front bogie. Additionally, Nr, and Nl represent the
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normal contact forces between the right and left wheels and the rail, respectively. These
normal contact forces are different in Equation (23).

Nr = khzδr, δr = zw + bwφw − z0r

Nl = khzδl , δl = zw − bwφw − z0l
(23)

2.3. Frequency Domain Analysis

The linear system of equations that was discussed in the prior section may be rewritten
in the form of a matrix as X̀ + CX̀ + KX = DZ0. In addition, D represents the stiffness
matrix that is connected to the track excitation. Thus, the frequency response function
matrix may be obtained using Equations (24)–(25).

H(ω) =
(
−Mω2 + jωC + K

)−1

Hd(ω) = H(ω)D
(24)

Hence, the power spectral density (PSD) of the system’s displacements may be calcu-
lated using Equation (25).

SOi(ω) =
8

∑
r=1

8

∑
s=1

H∗dir(ω)SIrs(ω)HT
dis(ω) (25)

where SI(ω) is the PSD matrix of the input excitation [19]. Equations (26)–(27) define the
torsional irregularity (cross-level) and vertical irregularity of the track’s center, respectively.

Zr+Zl
2 = Zv (26)

Zr − Zl
2

= Zc (27)

The cross-correlation and autocorrelation of the aforementioned inputs may be derived
under the following assumptions [3,14,18,20,21]:

• Every kind of irregularity may be understood as a stationary random process that has
no average.

• Gaussian distribution best describes the irregularity probability density.
• A range of wavelengths from 3 to 30 µm is used to determine spectral density.
• There is no link at all among the many anomalies that have been found.

By using autocorrelation, the system is able to calculate the autocorrelation and
power spectral density (PSD) of the abnormalities perceived by each wheel, as shown in
Equation (28):

Ri(τ) = E[Zi(t)Zi(t + τ)] = E[Zv(t) + Zc(t)Zv(t + τ) + Zc(t + τ)] =

E[Zv(t)Zv(t + τ)] + E[Zv(t)Zc(t + τ)] + E[Zc(t)Zv(t + τ)] + E[Zc(t)Zc(t + τ)]
(28)

As a result, Equation (29) will be used to define the autocorrelation of the abnormalities
associated with each wheel.

Ri(τ) = Rv(τ) + Rc(τ) (29)

where Rv(τ) and Rc(τ) are the vertical and roll autocorrelations of track abnormalities,
respectively. In a similar manner, the PSD of the irregularities associated with each wheel
may be computed, as described by Equation (30):

Si(ω) = Sv(ω) + Sc(ω) (30)
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where Sv(ω) and Sc(ω) represent the spectral density function (SDF) of the track’s roll
and the vertical components of abnormalities, respectively. Moreover, cross-SDF and
cross-correlation between the right and left wheels of the wheelset can be calculated as

RRLi(τ) = Rv(τ)− Rc(τ)

SRLi(ω) = Sv(ω)− Sc(ω)
(31)

The input cross-SDF of the irregularity can be calculated by Equation (32):

Sij(ω) = Si(ω)e−jω(xj−xi)/v (32)

The input cross-SDF is illustrated in Equation (33), when wheels are on different rails:

SRiLj(ω) = SRLi(ω)e−jω(xj−xi)/v (33)

Equation (34) is used to calculate the track irregularity for the roll and vertical compo-
nents, as per RDDO guidelines:

Sv(Ω) =
AvΩ2

2(Ω2 + Ω2
1)

Ω4(Ω2 + Ω2
2)

Sc(Ω) =
AcΩ2

2
(Ω2 + Ω2

1)(Ω2 + Ω2
2)

(34)

3. Rail Vehicle Performance Evaluation Index

The technique of selecting the fundamental DOF in the vehicle model, decreasing
the DOF of the remaining nodes, and then extending the reduction result to the whole
DOF is the foundation of the finite element substructure analysis. This approach may
decrease the number of DOF as well as the size of the corresponding matrix, which all
contribute to an increase in computing efficiency and an assurance of the associated cal-
culation correctness [18]. There are several apparent benefits to using it for complicated
dynamic computation.

The following is the dynamic equation that should be used for the vehicle structure:

[M]
{ ..

q
}
+ [C]

{ .
q
}
+ [K]{q} = Q (35)

where {q},
{ .

q
}

,
{ ..

q
}

are the generalized coordinate column vectors representing the sys-
tem’s displacement, velocity and acceleration, respectively. The mass matrix of the flexible
body is denoted by [M]. The matrices of stiffness are denoted by [K]. [C] is the damping
matrix. Q is the load vector, which includes the force of the force element, gravity, and any
other external or internal loads.

After the selection of the master DOF, {q} will be broken down into its component
parts: the master DOF, denoted by {qm}, and the dependent DOF, denoted by {qs}. The
dependent DOF may be modelled after the master DOF [22].

{qs} = T{qm} (36)

where T is the transformation matrix that characterizes the connection between the master
and dependent DOF.

Assuming that {qm} and {qs} are the order vectors m and s, and the transformation
matrix is composed of m× s order vectors, q may be written as

q =

[
qm
qs

]
=

[
0
T

]
qm = T ∗ qm (37)
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Hence, the equation for dynamic equilibrium may be written as follows:[
Mmm Mms
Msm Mss

]{
q̀m
q̀s

}
+

[
CmmCms
CsmCss

]{
q̀m
q̀s

}
+

[
KmmKms
KsmKss

]{
qm
qs

}
=

{
Qm
0

}
(38)

3.1. Running Stability

Running stability is a crucial factor for rail vehicles that determines their ability to
maintain a stable and predictable motion. It is crucial for high-speed trains, wherein slight
deviations from the intended path can have significant consequences. Running stability is
affected by several factors, including the track parameters, the track surface condition, the
train’s speed, and the train’s characteristics, such as its weight distribution and suspension
system. To ensure running stability, rail vehicles are designed to have low centres of gravity
and effective suspension systems, which help to reduce the impact of external forces and
maintain the stability of the train. Additionally, track geometry and surface conditions are
carefully monitored and maintained to minimize the risk of sudden changes in direction or
unwanted oscillations. Advanced monitoring systems and automated control technologies
are also employed to detect and correct deviations from the intended path, helping to
ensure that rail vehicles remain stable and safe at all times. Running stability is critical to
the safe and efficient operation of rail vehicles, and rail operators make significant efforts to
maintain it at all times. This evaluation is carried out by the running stability. The stability
index is shorthand for the Sperling index, broken down into vertical and horizontal stability.
The Sperling Ride Index is a widely used measure of ride comfort in railway engineering.
The index is based on the vertical acceleration experienced by a passenger on a train, and
considers the frequency range of the vibrations [23].

The Sperling Ride Index [24] is calculated by first measuring the vertical acceleration
experienced by a passenger on a train using an accelerometer. The acceleration is then
filtered to remove high-frequency noise and vibrations. The filtered acceleration data are
then integrated twice to obtain the displacement of the passenger in the vertical direction.
This displacement is then compared to a standardized curve representing passengers’
minimum discomfort threshold. The level of ride comfort may be determined with the help
of Equation (39) [3].

Wz = 0.896 10

√
a3

f
F( f ) (39)

where a is the acceleration of the vibration, and frequency is denoted by the letter f. The
weighting coefficient associated with vibration frequency is denoted by the symbol F( f ).
Since the vibration caused by the real vehicle moving down the track is unpredictable, the
data must be categorized on the acceleration caused by the vibration in accordance with
the frequency, and the total overall stability index Wtot must be determined. The comfort
index is given in Figure 2.

Wtot =
(
W10

1 + W10
2 + W10

3 + · · ·+ W10
n
)0.1

(40)

3.2. Running Safety

Running safety is a critical aspect of rail vehicle operations. It involves ensuring the
vehicle operates safely and reliably on the track while minimizing the risk of accidents
or incidents. When referring to a vehicle’s performance, “running safety” refers to the
performance that ensures the vehicle will not cause overturning, derailment or damage
to the track when operating within the range of speeds that correspond to its maximum
running speed [3]. The wheel load reduction rate, derailment coefficient, and other metrics
are among the most critical components of the running safety index RDSO mandates on
the Indian Railway.
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3.2.1. Derailment Analysis

The act of a railway car running off its tracks is meant to be understood as a derailment;
it can be caused by collision with another item, the mechanical failure of tracks (such as
broken rails and track geometry misalignment), the mechanical failure of wheels, and
environmental pressures [25]. A derailment occurs when a train’s wheels leave the track,
resulting in a loss of control and potential damage to the train, its cargo, and the surround-
ing area. There are various factors affecting it, including track defects, mechanical failures,
excessive speed, operator errors, and external forces such as weather events or collisions.
The consequences of a derailment can range from minor disruptions to significant injuries,
fatalities, and environmental damage, depending on the severity of the incident. As a result,
rail operators and regulators prioritize preventing derailments through rigorous mainte-
nance and inspection protocols and improved technology. While analyzing the operational
safety of the vehicle model, the derailment quotient is one of the metrics considered [3].

As a railway car navigates a curve, the contact forces exerted by the leading wheelset
in the system are much greater than those exercised by the remaining wheelsets. Hence, to
study running safety, the “derailment quotient” of the left wheel of the leading wheelset is
applied, as stated in Equation (41):

Q
P

=
tan ∂− µ

1 + µ tan ∂
(41)

where P = vertical force, and Q = transverse force of rail-wheel.

3.2.2. Wheel Load Reduction Rate

The wheel load reduction rate is an essential factor for rail vehicles that directly
impacts their performance and safety. The reduction rate refers to the amount of force that
is removed from the wheels of a train as it passes over an uneven track or encounters other
types of irregularities [26–28]. This is particularly important because the train’s weight
can cause excessive wear and tear on the track, leading to damage that can increase the
likelihood of derailment or other accidents. To reduce the wheel load, rail vehicles are
often equipped with various technologies such as air suspension systems, which allow
the train to adjust its height and distribute its weight more evenly [29,30]. Additionally,
track maintenance programs are implemented to ensure that tracks are regularly inspected
and repaired to prevent further damage. By reducing the wheel load and implementing
effective maintenance strategies, rail operators can improve the performance and safety
of their trains, increase their longevity, and minimize the risk of accidents on the tracks.
The wheel load-reduction rate is another derailment safety factor and can be calculated
using Equation (42):

∆p
↼
p

=
|PR − PL|/2

pst
(42)
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4. Experimental Analysis

An on-track vibration test was created to obtain better knowledge of the vibration
transition between primary and secondary suspension systems, as well as the coupled
shaking between the suspended equipment and its vehicle body. Accelerometers and
displacement sensors were used to monitor accelerations on the bogie frame, wheelset
axle-box, and connections between the vehicle body and the suspended equipment and
its vehicle body [6]. These sensors were linked by cables to the data collection system in
the equipment cabin. The on-track vibration test was developed to capture the vehicle
dynamics over a protracted period continuously [31–33]. The vibration characteristics of
the equipment are examined and illustrated in Figure 3.
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After measuring the accelerations of the equipment and the vehicle body in response
to various bogie running performances, the vibration source and spectrum composition
were analyzed. On a designated stretch of the IR track between Palwal and Mathura, the
rolling stock is put through its paces at maximum speeds ten per cent faster than regular
operating rates. Oscillation tests were carried out on a track in good condition at different
speeds [34,35].

The frame acceleration passband frequency range is 0.5 to 12 Hz, while the frame
acceleration sampling frequency is 2 kHz. The acceleration measurement device has a
passband frequency range of 0.1–200 Hz and a sampling frequency of 1 kHz. An oscillation
test performed on the real-world environment by RDSO validates the numerical model. The
proposed numerical passive model’s ride comfort for passengers is particularly compared to
the experimental data acquired by RDSO [6]. RDSO was the organization that conducted the
experiments. Oscillation trials are a form of on-track testing performed using a prototype
coach that is equipped to record displacement, acceleration, events, and speed. Throughout
the oscillation tests, the maximum vertical and lateral ride indices in both unladen and
laden states were determined. The RDSO Sperling Ride Index method was used to compute
the riding index. The value of the riding index, according to the RDSO Sperling Ride Index,
was lower than 2.75 but still between 3.25 and 3.50 at most, with 3.25 being the preferred
range. It was determined that the riding behavior of the same was adequate [36]. Yet, there
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is room for improvement in the ride index values. The experimental ride index and the
numerical ride index are compared in Figure 4, which illustrates the comparison results
under unladen and laden settings, respectively. Additionally, the findings generated from
the numerical analysis of the suggested model have attained an excellent general agreement
with the experimentally measured results. This can be seen by comparing the two sets of
data. The difference in the riding index may be attributed, in large part, to factors that were
omitted from consideration to simplify the mathematical model.
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5. Results and Discussion

The rigid body dynamics model treats the numerous components of the vehicle
system as if they were a single rigid body. This model disregards the local vibration in each
element, instead focusing on how the components are connected. The rigid and flexible
coupling dynamic model produces a one-of-a-kind dynamic effect. This effect can take into
account the coupling between the object’s rigid body motion and the component’s elastic
deformation, in addition to the one-of-a-kind dynamic effect brought about by the coupling.
The traditional rigid and flexible coupling model will only consider one member of the
vehicle system to be an elastic body, while the other component will remain rigid. This will
allow for a more precise study of the wheel abrasion caused by the dynamic performance
of the vehicle body, frame, and wheel parts, all considered elastic bodies. This will allow
for the combination of a vehicle model with flexible construction. The research establishes
a stiff flexible coupled dynamic model of an ICF railway coach vehicle by combining finite
element analysis with multi-body dynamics simulation. This model is depicted in Figure 5.

1 
 

 
Figure 5. 3D FEA model of rail vehicle.

The comprehensive rigid–flexible coupling model of the ICF railway coach is created
using a geometric model formulated in UNIGRAPHICS NX7.5, which is exported in
Parasolid format to HYPERMESH 10 to develop the finite element model of the coach. The
Parasolid format is preferred for its effective translation of solid models into ANSYS-17 FEA
software. HYPERMESH is chosen due to its faster computing ability and interoperability
with ANSYS in terms of element types and file extensions. The meshed coach model
in HYPERMESH 10 is further exported to ANSYS Mechanical APDL in cdb (card scan
database) format to conduct the finite element analysis.

The idealized railway coach model is obtained by considering the car body shell with
various channel sections, two bogie assemblies on either end, a trough floor with cross
beams, and body bolsters on front and rear ends, while neglecting remaining parts. The
solid components of the coach, bogie frame, body bolsters, wheel axle sets and bogie bolster
are discretized using the SOLID 45 element type in HYPERMESH 10. The coach shell with
the channels, such as stanchions and sole-bars, is meshed using SHELL 63 in HYPERMESH
10. The suspensions between the car body of the coach and the bolsters are defined using
the line element type COMBIN14, accounting for both the helical spring and the damping.
For compatibility, the shell and solid elements are integrated using the option ‘Coupling’ in
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ANSYS Preprocessor. After achieving mesh convergence, the finite element model of the
railway coach comprises 171,677 elements and 204,027 nodes.

5.1. Substructure Analysis

The flexible modes or eigenmodes of the car body were investigated in this study.
The results showed that the first vertical bending mode had a frequency of 12.14 Hz. This
mode corresponds to the vertical deflection of the car body along the longitudinal axis. The
first lateral bending mode had a frequency of 14.25 Hz, corresponding to the car body’s
lateral deflection along the transverse axis. Finally, the first torsion mode had a frequency
of 19.87 Hz, corresponding to the car body’s twisting deformation along the vertical axis.
These flexible modes are important to consider when analyzing the dynamic behavior
of the car body, as they can affect the ride quality and safety of the passengers. This
analysis provides valuable information for the design and optimization of railway vehicles,
especially in terms of reducing vibrations and improving passenger comfort. Table 1 shows
the different first-mode shapes with frequency.

Table 1. Mode shape of railway vehicle car body.

S. R. No Modes Frequencies (Hz)

1 First vertical bending 12.14

2 First lateral bending 14.25

3 First torsion 19.87

5.2. Acceleration Response

The acceleration response at the vehicle body’s mass center for both the rigid and
flexible car body centers was compared at speeds ranging from 60 km/h to 180 km/h. The
results show that for all speeds, the acceleration response was higher for the flexible car
body than for the rigid car body. At 60 km/h, the acceleration response for the flexible car
body was 0.54 m/s2, while for the rigid car body, it was 0.48 m/s2. Similarly, at 120 km/h,
the acceleration response for the flexible car body was 0.68 m/s2, while for the rigid car
body, it was 0.59 m/s2. At higher speeds of 150 km/h and 180 km/h, the difference in
acceleration response between the two car bodies was even more significant, as shown in
Figure 6. The dissimilarities between the real high-speed train vehicle and the rigid model
arise from the fact that the train’s car body experiences flexible resonances stimulated by
track irregularities or bogie system vibration, which cannot be accurately accounted for in
a rigid model.
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5.3. Running Comfort

To examine vehicle response considering car body flexibility and to compare it with a
rigid car body model, vehicle simulation speeds are considered from 30 km/h to 180 km/h.
For the simulation of the running comfort, the Sperling Ride Index method is used for the
vehicle system, and the track spectrum of the dedicated Mathura to Palwal line is used.
The variations in ride quality at the car body center and end for bending frequency for
different car body damping ratio values are shown in Figures 7 and 8, respectively. Figure 7
indicates that for car body bending frequencies below 7.5 Hz, the car body vibrations are
very high, and the resonance is observed at a frequency of nearly 6.4 Hz. With car body
damping factors ζ = 0, 0.02, 0.03 and 0.05, the ride index at resonating frequency at the
center is observed to be 2.84, 2.52, 2.42, 2.2, respectively, which indicates that the damping
factor has isolation effects on the resonance peak. With car body damping factors ζ = 0,
0.02, 0.03 and 0.05, the ride index at resonating frequency at the end is observed to be 3.27,
3.03, 2.87, and 2.65, respectively (Figure 8). Figures 7 and 8 also suggest that when the
damping factor is increased from 2% to 5%, the ride index is reduced to nearly 12.7%. Field
test reports have indicated that the car body damping factor of a loaded car body in India
is nearly 2.5%, and a further increase in this value requires an advanced car body design.
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The car body damping factor is limited to 2.5%. Therefore, the other substitute for the
isolating car body flexural vibrations raises its first bending frequency. Figures 6 and 7 also
indicate that when the frequency in the first bending mode is more than 10 Hz, the ride
index for the end of the flexible and the rigid car body is identical. At the center, the ride
index value of the flexible car body approaches that of the rigid car body, irrespective of the
value of the damping factor. At 7 Hz and a damping factor of 2%, the ride index is nearly
2.4, which is acceptable.

The simulation results using the Sperling Ride Index are compared with the experi-
mental results and shown in Table 2. It can be seen from the table that the ride comfort for
the considered speed varies from 2.54 to 3.38 for the RF simulation and 2.2 to 3.3 for the
MR simulation. Field test reports have indicated that the ride comfort varies from 2.2 to 3.
Hence, when comparing the experimental results, the % error for RF varies from 4 to 14 %,
and for MR, it varies from 0.4 to 6%.

Table 2. Calculation error of Sperling Ride Index.

Speed (Km/h) Rigid–Flexible
Simulation (RF)

Multi-Rigid
Simulation (MR) Experimental (E) % Error = ( E−RF

E ) ∗ 100 % Error = ( E−MR
E ) ∗ 100

30 2.54 2.24 2.2 13.90 0.45

60 2.61 2.47 2.4 8.30 2.49

90 2.79 2.67 2.5 8.14 3.49

120 3.02 2.94 2.8 5.96 3.16

150 3.12 3.04 2.9 5.41 2.70

180 3.38 3.28 3 8.68 5.47

5.4. Running Safety

To perform the running stability simulation, the tried-and-true rigid–flexible coupled
vehicle model and the multi-body model are used. As a result, derailments and a wheel
load reduction rate were examined so that the running safety could be assessed. It is known
that extreme vehicle hunting may result in the vehicle body colliding laterally with the
road. Moreover, it may result in the wheel flange colliding laterally with the rail.

In the second scenario, there is a risk that the vehicle may be derailed. For this
reason, it is essential to research the impact of derailing utilizing models of rigid–flexible
coupled vehicles and multi-body models. The Nadal restriction is applied for these specific
objectives. The comparison of the data from the simulation with the outcomes of the
experiment is shown in Table 3.
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Table 3. Calculation error of running safety as a mean derailment coefficient.

Speed (Km/h) Rigid–Flexible
Simulation (RF)

Multi-Rigid
Simulation (MR) Experimental (E) % Error = ( E−RF

E ) ∗ 100 % Error = ( E−MR
E ) ∗ 100

30 0.104 0.101 0.112 7.143 9.821

60 0.117 0.112 0.129 9.302 13.178

90 0.128 0.119 0.136 5.882 12.500

120 0.134 0.124 0.142 5.634 12.676

150 0.141 0.139 0.155 9.278 10.112

180 0.170 0.167 0.183 6.944 8.616

Table 3 shows that the derailment coefficient for the considered speed varies from 0.104
to 0.170 for the RF simulation and 0.104 to 0.167 for the MR simulation. Field test reports
have indicated that the mean derailment coefficient varies from 0.112 to 0.183. Hence, when
comparing the experimental results, the % error for RF varies from 5 to 9%, and for MR,
it varies from 8 to 14%. Therefore, the mean derailment coefficient of the vehicle body in
terms of error for the rigid body dynamics model is more than the modulus value obtained
by the rigid–flexible coupling dynamic model. Similarly, for the mean wheel load reduction
rate, Table 4 shows the comparison of simulation data with the experimental results.

Table 4. Calculation error of running safety as a mean wheel load reduction rate.

Speed (Km/h) Rigid–Flexible
Simulation (RF)

Multi-Rigid
Simulation (MR) Experimental (E) % Error = ( E−RF

E ) ∗ 100 % Error = ( E−MR
E ) ∗ 100

30 0.124 0.121 0.129 3.876 6.202

60 0.139 0.130 0.146 4.795 10.959

90 0.145 0.139 0.154 5.844 9.740

120 0.157 0.147 0.169 7.101 13.018

150 0.179 0.180 0.209 14.552 13.895

180 0.221 0.219 0.247 10.366 11.541

Table 4 suggests that the mean wheel load reduction rate for the considered speed
varies from 0.124 to 0.221 for the RF simulation and 0.121 to 0.219 for the MR simulation.
Field test reports have indicated that the mean derailment coefficient varies from 0.129 to
0.247. Hence, when comparing the experimental results, the % error for RF varies from 3 to
15%, and for MR, it varies from 6 to 14%. Therefore, the mean derailment coefficient and
mean wheel load reduction rate of the vehicle body in terms of error for the rigid body
dynamics model is more than the modulus value obtained by the rigid–flexible coupling
dynamic model.

6. Conclusions

Flexible–rigid rail vehicles are characterized by a combination of rigid and flexible
components which interact with each other to determine the vehicle’s behaviors. An
important aspect of experimental and numerical analysis is accurately modelling these in-
teractions and identifying ways to improve them. This can involve analyzing the behaviors
of flexible components, such as the car body and bogie, and their interaction with rigid
components, such as the wheels and track. The dynamic response of a rail vehicle using
experimental and simulation analysis on a multi-rigid–flex body model was investigated. A
mathematical model is developed by keeping the bogie frame and wheelsets rigid, and the
car body is used as a flexible and rigid body, respectively. ANSYS is used to build a finite
element model for the car body, and substructure and modal analyses are performed. The
mathematical model is validated through the experiment conducted by RDSO. Based on
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the substructure analysis, it has been determined that the first vertical bending frequency
of the system is 12.14 Hz, the first lateral bending frequency is 14.25 Hz, and the first
torsion frequency is 19.87 Hz. Comparing the experimental and simulation results for the
considered speed range of 30–180 km/h using the Sperling Ride Index has shown that the
ride comfort, mean derailment coefficient, and mean wheel load reduction rate varies for
both RF and MR simulations. The % error for the RF simulation in ride comfort varies from
4 to 14%, in mean derailment coefficient from 5 to 9%, and in mean wheel load reduction
rate from 3 to 15%. The % error for the MR simulation in ride comfort varies from 0.4 to 6%,
in mean derailment coefficient from 8 to 14%, and in mean wheel load reduction rate from
6 to 14%. Therefore, using a rigid–flexible coupling dynamic model provides more accurate
results than the rigid body dynamics model in terms of mean derailment coefficient and
mean wheel load reduction rate. The simulation result shows that the elastic vibration
may not be ignored in the vehicle dynamics, because the rigid–flexible coupling model is
marginally larger than the rigid-body model of ride comfort and safety compared with
experimental results.
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