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Abstract: Depending on the load level, structures can experience a material nonlinearity known as
elastoplasticity, which has an important role in the behaviour of structures. In order to avoid the
elastoplastic behaviour, it is necessary to find the optimal thickness distribution, which corresponds
to the minimum mass that provides an elastic behaviour for a certain load level. The elastoplasticity
analysis of functionally graded axisymmetric shells under axisymmetric mechanical loading, and the
subsequent optimization, was performed by using a simple conical frustum finite element model with
two nodal circles; three degrees of freedom per node, which was based on Kirchhoff’s theory allowing
for shear deformation; and using a reduced numerical integration procedure that is essential for its
success when applied to thin shells. The formulation accounts for the calculation of the displacements
and through-thickness stress distribution, including the effective stress. In this work, the thickness
was the design variable in the optimization procedure and the mass was the objective function that
needed to be minimized subject to a constraint imposed on the effective stress. The optimization
solutions were obtained by using a feasible arc interior point gradient-based algorithm. Some
illustrative examples were performed, and the corresponding results are presented and discussed.

Keywords: functionally graded material; finite element method; optimization

1. Introduction

The FGM structures presented in this work were obtained by mixing two different
component materials, in this case, a metal and a ceramic, in such a way that a continuous
variation over the thickness direction of the material properties was verified, in contrast
with the laminated composite material structures. Metal–ceramic FGM plates and shells are
widely used in engineering in aircraft, space vehicles, and other engineering applications.

Depending on the load level, structures can experience material nonlinearity known
as elastoplasticity, which should be avoided because of large deformations resulting from
elastoplastic behaviour in isotropic and FGM structures.

In recent years, many research studies on FGM structures were done. Here, we fo-
cused our attention on axisymmetric-shell-related studies: Reddy et al. [1], Li et al. [2],
Tran et al. [3] and Thai et al. [4] studied circular plates in linear and geometrically nonlin-
ear behaviour using different theories and to provide different analyses: static bending,
dynamic and buckling.

Regarding the structural optimization involving FGM plates and shells of revolution,
there is a lack of publications specifically devoted to elastoplastic behaviour.

Elastoplasticity analysis has been less investigated in FGM structures. Zhang and
Zhou [5] presented a model for FGM circular plates based on a physical neutral surface
and higher-order shear deformation theory. Moita et al. [6] presented a formulation for
linear and nonlinear static bending and elastoplasticity analysis of functionally graded
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axisymmetric plate/shell-type structures under mechanical loading. Moita et al. [7] pre-
sented structural and sensitivity analyses, allowing for the material distribution and sizing
optimization of functionally graded material structures. The finite element model used
in this work was the same as the one previously used by the authors in references [6,7].
Other studies that dealt with the optimization of FGM of different types of structures and
objective functions are as follows: Cho et al. [8], Chen and Tong. [9], Xia and Wang [10],
Ashjari and Khoshravan [11], Wang et al. [12], Shabana et al. [13] and Franco et al. [14]. In
what concerns the elastoplastic behaviour of axisymmetric shells, the work of Popov and
Sharifi [15] can be mentioned and was used here for comparison and validation purposes.

In this paper, we present the elastoplastic analysis and subsequent thickness opti-
mization results of functionally graded axisymmetric structures subjected to axisymmetric
loading. To avoid the elastoplastic behaviour of the structures, it was necessary to find
the minimum thicknesses (which correspond to the minimum mass of the structure) that
provide an elastic behaviour for a certain load level. This kind of optimization problem is
not encountered in the literature, and therefore, it was the main objective of this work.

The solutions were obtained using a finite element model based on Zienckiewics et al. [16].
The analyses of some illustrative optimization applications were performed, and the results
are presented and discussed.

2. Formulation of the P-FGM Model

The FGM structures considered in the present work were made by mixing two distinct
isotropic material phases, in this case, a ceramic and a metal. Using the volume fraction of
the constituent materials, as proposed by the power law function in Bao and Wang [17], the
through-thickness material properties of an FGM plate–shell structure can be obtained, as
in Moita et al. [6,7]. The volume fraction of the ceramic and metal phases for each virtual
layer k is defined according to the power law

Vk
c =

(
0.5 +

z
h

) p
; Vk

m = 1.0−Vk
c (1)

where z is the thickness coordinate of the mid-surface of each virtual layer k.
Knowing the volume fractions Vk

c and Vk
m and using the rule of mixtures, the material

properties, such as Young’s modulus E or mass density $, of each virtual layer of an FGM
can be determined:

Ek = Vk
c Ec + Vk

m Em (2)

These equations show that when p = 0, the plate is fully ceramic and when p = ∞, the
plate is fully metal.

3. Displacement and Stress Fields

Figure 1 shows an axisymmetric shell that is subjected to axisymmetric loading. Con-
sidering Kirchhoff’s theory, the displacement field is given by

u (s, z′) = u0 − z′ (dw/ds) ; w (s, z′) = w (3)

where u and w are displacements of a generic point in the middle plane with respect to the
local axes.
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Imposing a constraint C (w,β) = dw/ds− β = 0, hence γsz′ = dw/ds− β, where β
is the rotation of the normal to the middle plane, which can vary independently, one can
obtain the transverse shear strain.

For the conical frustum finite element with straight elements, as in Zienckiewics et al. [16],
applied to axisymmetric shells under axisymmetric loading, we have R = ∞, uθ = 0 and
d/dθ = 0. The linear strain components in the local curvilinear system are given as follows:

εs
εθ
κs
κθ
γsz′

 =


du/ds

(u cosφ−w sinφ)/r
−dβ/ds
−(β cosφ)/r
dw/ds− β

 (4)

The relations between the local (s, z’) and global (r, z) coordinates, as well as the
local–global displacements, can be found in Moita et al. [7], and, after this transformation,
the strain–displacement relations written in terms of global displacements are

εs
εθ
κs
κθ
γsz′

 =


(∂ur/∂s) cosφ+ (∂uz/ds) sinφ

ur/r
−dβ/ds
−(β cosφ)/r

−(dur/ds) sinφ+ (duz/ds) cosφ− β

 (5)

Equation (3) is then written as

{
u(s, z′)
w(s, z′)

}
=

[
1 0 −z′

0 1 0

] 
u0
w
β

; u = Z d, (6)

and the stress–strain relations for each virtual layer k are given by

σk = Qk εk (7)

where σk =
{
σm

s σ
m
θ σ

b
s σ

b
θ τ

s
sz′
}T

and εk =
{
εm

s ε
m
θ ε

b
s ε

b
θ γsz′

}T
are the stress and strain

vectors, respectively, and Qk is the elasticity matrix for a virtual layer k:

σk =


σm

s
σm
θ

σb
s
σb
θ

τsz′


k

=

Q1
0
0

0
Q1
0

0
0

Q2


k


εs
εθ

zk κs
zk κθ
γsz′


k

; Q1k
=

[ Ek
1−ν2

νEk
1−ν2

νEk
1−ν2

Ek
1−ν2

]
; Q2k

=
5
6

Ek
2(1 + νk)

(8)

where [Q1] and [0] are (2 × 2) sub-matrices and zk is the middle surface z coordinate of a
generic virtual layer k.

The constitutive equation for a virtual layer k is then given by

^
σk =

^
Dk εk (9)

where
^
σk are the resultant forces and moments and

^
Dk is the constitutive matrix.

The functionally graded materials have nonsymmetric properties through the thick-
ness, and for this reason, the bending–stretching coupling exists, and thus, Equation (9)
takes the form given in Moita et al. [6]:

N
M
Q

 =

A B 0
B D 0
0 0 As

 
εm

εb

εs

 (10)
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(A, B, D)k = Qk

∫ zk

zk−1

(1,z, z2) dz; Ask = Qk

∫ zk

zk−1

dz (11)

4. Elastoplastic Formulation for FGM Structures

As described in Moita et al. [6], the present study used an extended Tamura–Tomota–
Ozawa (TTO) model to describe the elastic–plastic behaviour of ceramic/metal FGM. This
extended TTO model uses the stress–strain transfer parameter q∗, which depends on the
constituent material properties and the microstructural interaction in the FG material, and
is given by Jin et al. [18]:

q∗ =
σc − σm

εc − εm
(12)

Using this parameter, the through-thickness variation in Young’s modulus and the
yield stress σY may be obtained as follows:

Ek =

(
Vk

mEm
q∗+Ec
q∗+Em

+ Vk
c Ec

)
(

Vk
m

q∗+Ec
q∗+Em

+ Vk
c

) (13)

σk
Y = σYm

(
Vk

m +

(
q∗ + Em

q∗ + Ec

)
Ec

Em
Vk

c

)
(14)

With these equations, the variations in Young´s modulus and the yield stress for the
case of constituents Si3N4 and SUS304 are shown in Figure 2a,b, respectively.
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4.1. Elastoplastic Constitutive Relation

To conduct the elastoplastic analysis, the material was assumed to obey the von Mises
yielding criterion, and the corresponding yield surface was assumed. The yield condition
can be expressed as given in Nayak and Zienkiewicz [19]:

F(σ, κ) = f (σ)− σY(κ) = 0 (15)

where the yield level σY can be a function of the hardening parameter κ.
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For the case of the virtual layer approach, for each layer of an FGM structure, and
considering the present type of shell and type of loading, the effective stress f (σ,κ) is
given by

f (σk) = σk =
[
σ2

sk
+ σ2

θk
− σskσθk + 3 τ2

snk

] 1/2
(16)

Furthermore, the effect of the shear stress can be neglected. In this case, we have

f (σ) = σ2 = (σs)
2 + (σθ)

2 − (σs σθ). (17)

Thus, the yield surface for each virtual layer k is given by

Fk= f (σk) = σk =
[
σ2

sk
+ σ2

θk
− σskσθk

] 1/2
= σ0k (18)

where f (σk) = σk and σ0k are the effective stress and the constant uniaxial yield stress
of a virtual layer, respectively. It should be emphasized that for the FGM, the mechani-
cal properties vary through the thickness because of the changes in Vk

c (or Vk
m) through

the thickness.
The previous equations were then modified by separating the membrane and bending

stresses to consider the simplest yield condition proposed by Ilyushin [20]:

Fk = σk = [
(
σm

sk

)2
+
(
σm
θk

)2
−
(
σm

sk

)(
σm
θk

)
+
(
σb

sk

)2
+
(
σb
θk

)2
−
(
σb

sk

)(
σb
θk

)
]

1/2
= σ0k (19)

4.2. Flow Rule

Following the development of Nayak and Zienckiewics [19], the plastic strain incre-
ment is defined as being proportional to the stress gradient of a plastic potential Q, which is
taken to be equal to the yield surface condition for an associated flow rule. At the beginning
of plasticity, the total increment of strains in elastoplasticity can be calculated by summing
up the elastic and the plastic strain components:

d ε = d εe + d εp (20)

Introducing the flow vector a = dQ/dσ ≡ dF/dσ, the following can be written:

a1 = ∂Fk
∂σm

sk
=

2 σm
sk
−σm

θk
2σk

; a2 = ∂Fk
∂σm

θk
=

2 σm
θk
−σm

sk
2σk

a3 = ∂Fk
∂σb

sk
=

2 σb
sk
−σb

θk
2σk

; a4 = ∂Fk
∂σb

θk

=
2 σb

θk
−σb

sk
2σk

.
(21)

For elastic behaviour given in Equation (8), the incremental constitutive elastoplastic
relation is then given by

dσk = Qep
k dεk (22)

and the elastoplastic constitutive matrix is given by

Qep
k = Qk −

Qk ak aT
k Qk

A + aT
k Qk ak

(23)

where the hardening parameter A = dσk/dεp can be obtained from uniaxial testing.

σk =


σm

s
σm
θ

σb
s
σb
θ

τsz′


k

=

Qep
1
0
0

0
Qep

1
0

0
0

Q2


k


εs
εθ

zk κs
zk κθ
γsz′


k

(24)
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In this study, ideal plasticity (i.e., with no hardening) was considered, leading to A = 0.
To satisfy the yield criterion, the state of stress cannot move outside the yield surface.
Following the procedure of Owen and Hinton [21], this discrepancy can be practically
eliminated by ensuring that after the beginning of elastoplasticity, the load increments
considered in the solution are sufficiently small. Moreover, the state of stress can be reduced
to the yield surface by scaling the strain vector.

5. Finite Element Approach

As mentioned before, for a conical frustum, which is a straight finite element, as shown
in Figure 3, with two nodes and three degrees of freedom per node, the displacements and
rotation uri , uri and βi were used in this work.
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The simplest interpolations were given by Zienkiewics et al. [8]: Ni = (1 + ξiξ)/2,
with ξi = ∓1 and ξ = 2 s/L. Thus, N1 = (1− ξ)/2 and N2 = (1 + ξ)/2. For numerical
integration, reduced integration with one Gauss point was used at the coordinate ξ = 0,
leading to accurate results for thin and thick structures, as validated elsewhere. From previous
expressions, N1 = N2 = 1/2, dN1/dξ = −1/2, dN2/dξ = 1/2 and dξ/ds = 2/L.

The displacement field can be represented in matrix form as

u = Z
(
∑2

i=1 Ni di

)
= Z N ae; d = ∑2

i=1 Ni di = N ae (25)

where ae is the element displacement vector, di =
{

uri uzi βi
}

is the displacement vector
of node i and Ni are the shape functions. Thus, we have

ur
uz
β

 =

Ni 0 0
0 Ni 0
0 0 Ni

 
uri
uzi

βi

 (26)

From this displacement field, the linear strains are as given as follows:

ε = ∑2
i=1 Bi di (27)

Bi =


dNi
ds cosφ dNi

ds sinφ 0
Ni
r 0 0
0 0 −dNi

ds
0 0 −Ni

cosφ
r

−dNi
ds sinφ dNi

ds cosφ −Ni

;
dNi

ds
=

dNi

dξ
dξ
ds

= ∓ 1
L

(28)

where φ is the angle represented in Figure 3.
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Elastoplastic Analysis

The virtual work principle applied to elastoplasticity analysis is given by

∑N
k=1

{∫
Ae

∫ kk

k−1
δ εL

k Qep
k εL

k dz dAe
}

= δ aT Fe
ext −∑N

k=1

∫
Ae

∫ kk

k−1
δ εL

k σ̂L
k dz dAe (29)

Integrating through the thickness, Equation (26) can be written in the following form:∫
Ae

δ aT BT D̂ep B a dAe = δ aT Fe
ext − δ aT Fe

int (30)

where

Ke
T =

∫
Ae

BT D̂ep B dAe; Fe
ext =

∫
Ae

NT f dAe + Fc; Fe
int =

∫
Ae

BT σ̂e dAe (31)

Ae = 2 π rm ds = π rm L dξ = 2 π rm L.

Considering all elements in the domain, a system of equilibrium equations is obtained,
and by using the Newton–Raphson incremental/iterative (I;i) method, the incremental
equilibrium path can be obtained as follows:

KT ∆q = Fext − Fint = ψ (32)

At any increment iteration i, we have

δqi = (KT)
−1ψi−1. (33)

At the end of each increment I, ∆qI = ∆qI−1 + ∑ δqi and the residual force vector is
very small, i.e.,

‖ψ‖< ‖Fext‖ . ∆ (34)

where ∆ is a predefined tolerance.

6. Optimization

In the present work, the objective of the optimization problem was to find the design
variable h (shell thickness) that minimized an objective function Ω (mass of the structure),
subjected to a set of constraints (here, the material yield stresses) for a specific applied load
level and a specific gradient index p:

min Ω(h) (35)

subjected to σk/σYk ≤ 1, p = constant and the mass of the structure calculated using

Ω = ∑NE
1 (∑N

k=1 mk ) = ∑NE
1 (∑N

k=1 ρk hk 2πrmL) (36)

For each virtual layer k, we have hk = (h/VL) at any optimization iteration, where
VL = 20 is the number of virtual layers used in this work. More details justifying the use of
this value can be found in previous works from the first author.

The sensitivities of the objective function and constraint functions can be evaluated
analytically, as was done in the work of Moita et al. [7], or evaluated by using global finite
differences. The optimization problem was solved by using a gradient-based algorithm,
namely, the feasible arc interior point algorithm developed by Herskovits [22] and Her-
skovits et al. [23]. In this work, the sensitivities were obtained mainly using the global finite
difference method, except otherwise stated.
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7. Applications

From the work of Moita et al. [6], where the analysis of elastoplasticity of shells of
revolution was previously performed, it was observed that the results obtained using the
present model when compared with results from other sources were in excellent agreement
and, therefore, we assumed that the validation of the finite element model was previously
done. Nevertheless, the accuracy comparison is presented here first for linear analysis in
Section 7.1 and later for elastoplasticity in Section 7.4. The remaining subsections show
several optimization problems conducted for some illustrative cases, which can be used for
benchmarking purposes.

7.1. Linear Analysis of a Clamped Circular FGM Plate under a Uniform Pressure Load

The accuracy of the present finite element model (PM) is illustrated in this numer-
ical application. An FGM clamped circular plate, with thickness h and radius R and
made of titanium/zirconium was studied (Em = 110.25 GPa, νm = 0.288, Ec = 278.41 GPa,
νc = 0.288). Based on the rule of mixtures, the effective modulus was estimated following
Reddy et al. [1]: E(z) = (Em − Ec) Vm + Ec with Vk

m = (0.5− z/h) p; Vk
c = 1−Vk

m. Table 1
shows the normalized maximum deflections (at the centre of the plate) when the plate was
subjected to a uniform pressure q, calculated by wc = wc(64Dc/qR4, Dc = Ech3/12

(
1− ν2).

An excellent agreement was observed between the results obtained with the present
model and the results obtained using Mindlin theory (Reddy et al. [1]), elasticity the-
ory (Li et al. [2]) and HSDT theory (Tran et al. [3]). The through-thickness distribution of
the nondimensional radial stress is presented in Figure 4. A comparison with the solution
obtained by Li et al. [2] revealed very good agreement.
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Table 1. Dimensionless central deflection wc of an FGM clamped circular plate.

h/R Source
Power Index p

0 2 4 10 50 100 Metal

0.05

Li et al. [2] 2.561 1.405 1.284 1.157 1.049 1.032 1.015
Reddy et al. [1] 2.554 1.402 1.282 1.155 1.046 1.029 1.011
Tran et al. [3] 2.548 1.399 1.279 1.152 1.044 1.027 1.009

PM 2.560 1.404 1.283 1.155 1.043 1.024 1.015

0.1

Li et al. [2] 2.667 1.456 1.329 1.201 1.091 1.074 1.057
Reddy et al. [1] 2.639 1.444 1.320 1.190 1.080 1.063 1.045
Tran et al. [3] 2.630 1.439 1.314 1.186 1.076 1.059 1.042

PM 2.643 1.446 1.321 1.189 1.076 1.058 1.046

7.2. Elastoplastic Optimization of a Circular FGM Plate under a Uniform Pressure Load

A clamped P-FGM circular plate with a radius-to-thickness ratio R/h = 40 was con-
sidered, and its geometry was modelled using 10 finite elements. The constituents of the
FGM were Si3N4 as the ceramic and SUS304 as the metal, with the following material
properties: Ec = 322.27 GPa, Em = 207.79 GPa, νc = 0.24, νm = 0.318, $c = 2370 kg/m3 and
$m = 8160 kg/m3. The yield stress for SUS304 was considered to be σYm = 400 MPa. The
radius of the circular plate was R = 0.5 m, and the initial thickness was h = 12.5 mm. In
this numerical example, the gradient index was specified as p = 2.0, and the stress–strain
transfer parameter was q* = 60 × 109 Pa. The non-dimensional loads and displacements
were given by Q = p0 R4/Emh4 and wc/h, respectively.

Solving the optimization problem consisted of the minimization of the mass of the
plate, subjected to a constraint of the effective stress: min φ = Ω (h) subjected to σk ≤ σYk .
The solution obtained for each different index p is shown in Table 2, and Figure 5 gives the
load–displacement paths obtained for the case of p = 2. Since the final design corresponds
to higher thicknesses, this means that the elastic behaviour condition was not met in the
initial design.
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Table 2. Optimization of a clamped plate.

Initial Design Final Design

p Thickness (mm) Mass (kg) Thickness (mm) Mass (kg)

5.0 h = 12.5 70.175 h = 17.19 96.504
2.0 h = 12.5 60.782 h = 17.09 83.101
2.0 h = 12.5 60.782 h = 17.08 * 83.052
1.0 h = 12.5 51.394 h = 16.83 69.198
0.5 h = 12.5 41.983 h = 16.45 55.250
0.2 h = 12.5 32.574 h = 15.93 41.513

*—calculated by using analytical sensitivities.

7.3. Elastoplastic Optimization of a Toroidal Shell under Internal Radial Pressure

A numerical example with an FGM toroidal shell, as represented in Figure 6, was
considered. The toroidal shell was modelled using 24 finite elements in a sequence, starting
at the inner point and moving in a clockwise direction (where node 1 was located at
the inner point of the circular section of the right side of Figure 6 such that they were
numbered in sequence from 1 to 24 in the clockwise direction). The geometry was defined
by r = 254 mm, R = 381 mm and initial thickness h = 12.7 mm corresponding to a mass of
m = 335.263 kg. The constituents were zirconia and stainless steel, i.e., ZrO2/SUS304, with
the following properties at 300 K: Em = 207.79 GPa, νm = 0.3176, Ec = 168.0 GPa, νc = 0.2978,
ρm = 8160 kg/m3, ρc = 5700 kg/m3 and q* = 90 × 109 Pa. The inner surface was ceramic
and the outer surface was metal. The gradient index p = 1 was considered, and the shell was
subjected to an inner radial pressure load. Figure 7 shows the original and deformed shapes
in which the displacements were enlarged 100 times. In this analysis, a finite element mesh
with 48 elements was used.
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The optimization of the shell was performed with the objective of minimizing the
mass of the vessel, with a constraint on the effective stress. It was required for the load
level of 11.16 MPa that the structure should not display elastoplastic behaviour. The struc-
ture could be modelled using one or more groups of finite elements to allow for different
thicknesses. For the optimization problem, a finite element mesh with 24 elements was
used. Considering a uniform thickness, the results obtained were as follows: minimum
thickness h = 13.8 mm, which corresponded to a mass of m = 364.301 kg, and a maximum
effective stress equal to 395 MPa, which equalized the yield stress (395 MPa). The de-
formed shapes (enlarged 100 times), considering the initial thickness h = 12.7 mm and the
optimized h = 13.8 mm, are shown in Figure 8, with the plastic zone in yellow, and the
load–displacement paths are presented in Figure 9.
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Considering two groups of elements, with one group formed by four elements, namely,
the ones that plasticize (elements 1, 2, 23 and 24), and another group with 20 elements
for the remaining structure, the results obtained were as follows: h1 = 13.92 mm and
h2 =11.21 mm, resulting in a mass of m = 300.396 kg. Considering four groups of elements,
each one with six elements, as described in Table 3 (where, as described before, node 1
was located at the inner point of the circular section of the right side of Figure 6), different
results in the final mass were obtained, as shown in Table 4.

Table 3. Four groups of elements.

Group Number Elements in the Group

1 1 2 3 22 23 24
2 4 5 6 19 20 21
3 7 8 9 16 17 18
4 10 11 12 13 14 15

Table 4. Optimization of a toroidal shell.

Initial Design Final Design

Number of
Groups

p Index and
Thickness (mm) Mass (kg) Thickness (mm) Mass (kg)

1 p = 1; h = 12.70 335.263 h = 13.80 364.301

1 p = 1; h = 12.70 335.263 h = 13.88 * 366.402

2 p = 1; h = 12.70 335.263 h1 = 13.92
h2 = 11.21 300.396

4 p = 1; h = 12.70 335.263

h1 = 13.86
h2 = 9.37
h3 = 7.51
h4 = 7.32

222.418

*—calculated by using analytical sensitivities.

7.4. Elastoplastic Analysis of a Pressure Vessel with a Torispherical End

To compare the capability of the present model, the elastoplastic analysis was car-
ried out by considering the proposed application of Popov and Sharifi [15]: a pressure
vessel with torispherical ends made of isotropic material, subjected to a radial pres-
sure load. The dimensions were as follows: radius of curvature of the spherical crown
R = 100 in, φ0 = 27.89◦, cylinder diameter D = 100 in, radius of the toroidal part r = 6 in
and thickness t = 0.8 in. The material properties were as follows: E = 30 × 106 lb/in2 and
σY = 30 × 103 lb/in2. In Figure 10, the results obtained with the present model and the
results obtained by the authors mentioned before are shown. A very good agreement
was observed.

The static elastoplastic analysis of an FGM cylindrical pressure vessel with a tori-
spherical end was performed. The constituents were zirconia and stainless steel, i.e.,
ZrO2/SUS304, at a temperature of 300 K. This structure is represented in Figure 11, where
R = Di = 135 mm, t = 1.27 mm, r1 = 10.1 mm, and is subjected to an inner pressure load.

The material properties of the constituents were as follows: Em = 207.7877 GPa, νm = 0. 3175,
ρm = 8160 kg/m3, Ec = 168.0629 GPa, νc = 0.2978 and ρc = 5700 kg/m3. The yield stress for
SUS304 was σYm = 400 MPa and the stress–strain transfer parameter was q* = 90 × 109 Pa.
The gradient index considered was p = 0.5. The initial mass was m = 0.379 kg. The deformed
shape (with uz enlarged 10 times) of the toroidal shell, considering an internal pressure of
2 MPa, is presented in Figure 12.
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The optimization was performed once more by considering the objective function, i.e.,
the mass of the vessel, and the constraint, i.e., the effective stress. It was required that for
the load level of 3.75 MPa, the structure should not display elastoplastic behaviour. The
results obtained, as presented in Table 5, were as follows: minimum thickness h = 2.0 mm,
which corresponded to a mass m = 0.597 kg, and a maximum effective stress equal to
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395.8 MPa and a yield stress equal to 395.8 MPa. For index p = 0.5, the deformed shapes
(enlarged 10 times), considering h = 1.27 mm and optimized h = 2.0 mm, are presented in
Figure 13, with the plastic zone in yellow. The respective load–displacement curves for the
apex are shown in Figure 14.

Table 5. Optimization of a pressure vessel with a torispherical end.

Initial Design Final Design

p Thickness (mm) Mass(kg) Thickness (mm) Mass (kg)

0.5 h = 1.27 0.379 h = 2.0 0.597
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7.5. Elastoplastic Analysis of an FGM Spherical Cap under Radial Pressure

A clamped spherical cap (Figure 15) with a radius of curvature R = 2.286 m, thickness
h = 0.0762 m, half-opening angle ϕ0 = 35◦, made of constituents zirconia and aluminium
(Em = 70.0 × 109 N/m2, νm = 0.3, $m = 3000 kg/m3, Ec = 151.0 × 109 N/m2, νc = 0.3,
$c = 2700 kg/m3) and subjected to an outer radial pressure load was considered. The
yield stress for aluminium was σYm = 250 MPa and q* = 80 × 109. First, p = 1.0 was
considered and the initial mass was m = 1288.34 kg. Next, the optimization was performed
for the load level of 20 MPa, and the respective load–displacement curves are shown in
Figure 16. Afterwards, different gradient indexes were considered. For the spherical caps
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with exponent indexes p = 2.0 and 5.0, this load level was not reached because they collapsed
before the uniform radial external pressure of 20 MPa could be achieved, as summarized
in Table 6. The spherical cap for p = 2.0 collapsed at 18.90 MPa and uz = 30.2 mm, and for
p = 5.0, it collapsed at 17.20 MPa and uz = 30.5 mm.
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Table 6. Optimization of the spherical cap.

Initial Design Final Design

p Index and
Thickness (mm) Mass(kg) Thickness (mm) Mass (kg)

p = 1.0; h = 76.2 1288.340 h = 110.0 1859.808

p = 1.0; h = 76.2 1288.340 h = 110.7 * 1871.643

p = 0.5; h = 76.2 1311.028 h = 97.6 1679.216

p = 2.0; h = 76.2 1265.709 h = 126 2092.905

p = 5.0; h = 76.2 1243.065 h = 140 2283.845
*—calculated by using analytical sensitivities.

In addition, we considered the case of the spherical cap divided into two groups of
elements to allow for different thicknesses in each group. Group 1 had the elements 1, 2 and
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3, starting at the apex, and group 2 had the elements 4, 5, 6 and 7. The gradient index was
taken as p = 1.0. Table 7 shows the results obtained, where it is observed that by allowing
for different thicknesses in the structure, a better optimal design was reached.

Table 7. Optimization of a spherical cap (index p = 1.0).

Initial Design Final Design

No. of
Groups

p Index and
Thickness (mm) Mass(kg) Thickness (mm) Mass (kg)

1 p = 1.0; h = 76.2 1288.340 h = 110 1859.808

2 p = 1.0; h = 76.2 1288.340 h1 = 110.6
h2 = 97.4 1688.825

8. Conclusions

The elastoplastic analysis and optimization of axisymmetric shells made of functionally
graded material under axisymmetric loading were performed in this work.

The simple finite element model for axisymmetric shells used in this work required
only a reduced number of finite elements to model even complex axisymmetric structures,
and the discrete approach of virtual layers used to model the continuous variation of
the mechanical properties through the thickness was shown to be sufficiently accurate
and efficient. These are important requisites of a finite element model to be integrated
into a gradient-based optimization procedure. Therefore, we concluded that the present
numerical optimization package can be successfully applied for the elastoplastic design of
FGM axisymmetric shell structures.

The simple numerical optimization problems for the elastoplastic design of axisym-
metric shell structures can be used by researchers for comparison purposes, considering
the scarcity of these studies in the literature.

The optimization examples shown in this paper showed that the gradient index had
a great influence on the optimal solutions, which was due to the dependency of all the
mechanical properties of this parameter (see Tables 2 and 6). The presented optimization
scheme demonstrated its ability to efficiently find a suitable design that avoided the
elastoplastic behaviour of the FGM structure and calculate the appropriate thickness for a
given p-index value and loading condition.
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