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Abstract: Speech anti-spoofing is a crucial aspect of speaker recognition systems and has received a
great deal of attention in recent years. Deep neural networks have achieved satisfactory results in
datasets with similar training and testing data distributions, but their generalization ability is limited
in datasets with different distributions. In this paper, we proposed a novel dual-input hierarchical
fusion network (HFN) to improve the generalization ability of our model. The network had two
inputs (the original speech signal and the time-reversed signal), which increased the volume and
diversity of the training data. The hierarchical fusion model (HFM) enabled more thorough fusion
of information from different input levels and improved model performance by fusing the two
inputs after speech feature extraction. We finally evaluated the results using the ASVspoof 2021 PA
(Physical Access) dataset, and the proposed system achieved an Equal Error Rate (EER) of 24.46%
and a minimum tandem Detection Cost Function (min t-DCF) of 0.6708 in the test set. Compared
with the four baseline systems in the ASVspoof 2021 competition, the proposed system min t-DCF
values were decreased by 28.9%, 31.0%, 32.6%, and 32.9%, and the EERs were decreased by 35.7%,
38.1%, 45.4%, and 49.7%, respectively.
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1. Introduction

Automatic Speaker Verification (ASV) systems are crucial for biometric authentica-
tion, using acoustic features to verify that the input speech is from the target speaker [1].
However, the security of ASV systems is threatened by spoofing attacks, where attack-
ers can create fake speech to pass as real users using methods such as replay [2], speech
synthesis [3,4], and speech conversion [5,6]. As a result, both industry and academia are
paying more attention to the problem of voice anti-spoofing, which aims to distinguish
between spoofing attacks and real users.

ASVspoof 2021 was the fourth biannual ASVspoof challenge, and aimed to promote
the development of speech anti-spoofing systems [7]. This competition differed from the
previous one in that the ASVspoof 2019 PA task focused on a simulated environment
where fake audio was generated. ASVspoof 2021, on the other hand, was designed to
develop more powerful spoofing detection systems in more realistic environments. There
are two types of fake speech generation: one is real speech recorded and played by various
electronic devices in an acoustic environment, and the other is generated in a simulated
environment. According to the evaluation plan in [8], model training could only use the
training and development sets of ASVspoof 2019, while the test set comprised data recorded
in a real environment under ASVspoof 2021. This resulted in a mismatch between the
training and test data, which presented new challenges for designing speech anti-spoofing
systems, requiring researchers to develop replay speech recognition systems adapted to
real environments from simulated speech corpora.
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An analysis of the related models of ASVspoof 2017 and 2019 revealed that the most
advanced spoofing detection systems are primarily founded upon the use of convolutional
neural networks (CNNs). The differences among these systems mainly focus on front-end
speech feature extraction [9,10], back-end classification network architecture [11–13], and
training strategies such as the loss function, learning rate scheduler, optimizer, etc. [14].

Lavrentyeva et al. [15] reported the best results in the ASVspoof 2017 competition
by utilizing features such as spectrograms and identification vectors (I-Vectors) [16] as
inputs, along with Light CNN (LCNN) and Recurrent Neural Network (RNN) classifiers.
Huang et al. [17] proposed an attention-enhanced DenseNet-BiLSTM network model,
which employs segmented linear filter group features. Their findings show that the model
based on segmented linear filter group features, along with attention-enhanced DenseNet-
BiLSTM, can more effectively distinguish between replayed speech. The model achieved a
relative EER reduction of 74.04% on the ASVspoof 2017 dataset compared to the baseline
system, which was based on constant Q cepstral coefficients and Gaussian mixture models.
Todisco et al. [18] found that using multiple classifiers can enable the detection of
text-to-speech synthesis attacks, voice conversion attacks, and replayed speech threats.
Zeinali et al. [19] addressed the physical access problem of ASVspoof 2019 and proposed
fusing Power Spectrum and Constant Q Transform (CQT) features, and trained two VGG
networks. Monteiro et al. [20] proposed a deep residual network (ResNet) with self-
attention for speech anti-spoofing systems, which demonstrated powerful performance
in identifying spoofing cues. Lavrentyeva et al. [21] used a variant of the convolutional
neural network, Light CNN (LCNN), based on Max-Feature-Map activation (MFM), which
performed excellently in speech anti-spoofing detection. Zhang et al. [22] investigated deep
learning models for speech anti-spoofing detection and demonstrated that a combination of
CNNs and Recurrent Neural Networks (RNNs) can improve the robustness of the system.
Li et al. [23] presented a technique that incorporates the Res2Net network for detecting
replay and synthetic speech. The method utilized the Res2Net network to partition the
feature maps into multiple channel groups, and developed a residual-like connection be-
tween these groups, thereby expanding the receptive field and generating multiple feature
scales. This approach effectively enhances the detection capacity of the anti-spoofing
system against unobserved spoofing attacks. Tak et al. [24] were the first to employ the
RawNet2 network model in their anti-spoofing system. The method utilized RawNet2 to
input raw audio, allowing it to detect some fake speech that traditional models may not.
The system exhibited outstanding performance, and became the official baseline system for
the ASVspoof 2021 challenge. Yoon et al. [25] introduced a multi-point input method based
on convolutional neural networks for detecting replay speech attacks, which enhances the
amount of information gained from a single model input. Additionally, the method was
applied as a baseline for the ASVspoof 2019 PA track. Lai et al. [26] demonstrated that
using different front-end feature extractions, training the same back-end residual neural
network, and model fusion can lead to better recognition results. These models showed
strong capabilities in time domain and frequency domain modeling, and exhibited excellent
performance on the ASVspoof 2019 dataset.

Due to the increased focus in the ASVspoof 2021 PA test set on false audio in real-
world scenarios, traditional DNN models cannot achieve outstanding performance on the
new track test set. The reason for this is that the generalization ability of traditional DNN
models is limited in cross-domain scenarios, resulting in poor adaptation to situations with
different training and testing distributions. The HFN model in the field of image anti-
spoofing extracts information from different feature levels by fusing the original RGB image
information and the corresponding meta-pattern information, thus effectively improving
the generalization capability of face anti-fraud systems [27]. Similarly, in the field of speech
recognition, using both the original speech signal and its time-reversed version as inputs
can improve the robustness of the model [28]. This is because the time-reversed signal and
the original signal have different features in the frequency domain, which can help the
classification network adapt to different speech environments [29].
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To improve the generalization ability of replayed speech anti-spoofing models, this
paper introduces the HFN model architecture [27] into the replayed speech anti-spoofing
system, and proposes using both original speech signals and time-reversed speech signals
as inputs to the network. Advanced performance was achieved in the ASVspoof 2021 PA
task. The main contributions of our work are as follows:

1. We first introduce the HFN model into the replay attack detection system. The HFM
in the model can more thoroughly fuse information from inputs at different levels,
thereby improving the robustness of the system.

2. We propose using both the original speech signal and the time-reversed speech signal
as inputs to the network, which increases the amount of information provided to the
model and facilitates the learning and classification of the model.

3. Our proposed method achieves an EER of 24.46% and a min t-DCF of 0.6708 on the
ASVspoof 2021 PA test set. Compared to the four baseline systems of the ASVspoof
2021 PA task, the min t-DCF values are reduced by 28.9%, 31.0%, 32.6%, and 32.9%,
and the EER values are reduced by 35.7%, 38.1%, 45.4%, and 49.7%, respectively.

The remainder of the paper is as follows. Section 2 illustrates our method of HFN and
the input methods. Section 3 describes the dataset and evaluation indicators used in this
study. Section 4 presents the experimental results and a comparison with other methods.
In Section 5, we conclude the paper.

2. Methods
2.1. Hierarchical Fusion Network

The proposed network had two inputs, as shown in Figure 1a, namely, the original
speech signal and the time-reversal speech signal. These two signals came from the same
speech segment, with the time-reversed speech signal inverted on the time axis relative
to the original speech signal. To integrate the original speech signals and the associated
time-reversal signals, we used a dual-input hierarchical fusion network (HFN), as shown in
Figure 1b. The top network architecture of HFN was for processing the original signals, and
the bottom network architecture was for processing the time-reversed signals. The model
architectures of the original and reversed layers were the same. For the backbone part of
the model, we used ResNet-50 [30] in each layer. Features from the ends of the two layers
were merged with the fully connected layer to produce a binary vector for classification. In
addition, our model improved fusion performance by more thoroughly fusing information
from different feature levels, as shown in Figure 1c, where features from different feature
levels were progressively fused by the hierarchical fusion model (HFM) [27].

Figure 1. Diagram of dual-input hierarchical fusion network. (a) Original speech and time-flipped
speech signal input; (b) hierarchical fusion network (HFN); (c) hierarchical fusion model (HFM).
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In the HFN network, the Fj of the jth HFM module combines feature maps from the
top-level raw stream zt

j, the reversed stream zb
j , and the fused result from the previous

hierarchy zj−1. zj can be expressed as:

zj = Fj

(
zt

j, zb
j , zj−1

)
= ϕ

(
zt

j

)
+ ϕ

(
zb

j

)
+ θ

[
ϕ
(
zj−1

)]
, j = 1, 2, 3, z0 = 0 (1)

where ϕ is a convolutional layer used to align the number of channels of feature maps from
different hierarchies, and θ is the closest interpolation function used to upsample zj−1 so

that it has the same size as both ϕ
(

zb
j

)
and ϕ

(
zt

j

)
. The information fusion from multiple

feature levels was utilized to address the face anti-spoofing issue [27].
In order to anticipate a pixel map for pixel-level supervision, a fused feature map

corresponding to a binary label was constructed at the final fusion level [31,32]. The fused
feature map was refined during the decoding process using pixel-level supervision, which
optimizes the HFN by combining binary classification with pixel-wise supervision. In our
experiments, the binary cross entropy loss (LBCE) was applied to the binary vector output
from the fully connected layer, where the fake speech was marked as “0” and genuine
speech was marked as “1”. The output pixel map of the HFN was then subjected to mean
squared error (MSE) loss (LMSE). Each fake or genuine speech sample was given a target
pixel map with all components set to “0” or “1”, respectively, corresponding to the binary
labels. Thus, the final loss function of the model was:

Lloss = LBCE + LMSE (2)

2.2. Different Input Methods of Models

In this paper we involve three different model input approaches: the single-input
method, the signal overlay-input method, and the dual-input method. To validate the effec-
tiveness of our proposed methods, we designed comparative experiments with ResNet50
as the selected classification network. This is because the model structure of the original
and inverted layers of the hierarchical fusion network is based on ResNet50.

For the ResNet50-based model, we used both single-input and signal overlay-input
approaches, which involved: (1) using the original speech signal and the time-reversed
speech signal as inputs to the classification network after feature extraction, and (2) overlay-
ing the original speech signal and time-reversed speech signal as inputs to the classification
network [33].

For the dual-input Hierarchical Fusion Model proposed in this study, the model
input was dual-input, and three strategies were employed in the experiment: (1) both the
original speech signal and time-reversed speech were used as inputs; (2) the original speech
signal was used as an input for both the upper and lower layers of the HFN; and (3) the
time-reversed speech signal was used as an input for both the upper and lower layers of
the HFN.

3. Research Process
3.1. Datasets and Evaluation Metrics

The data distribution of the training set, development set, and evaluation set for the
PA task of the ASVspoof 2021 challenge is shown in Table 1. The training set provided in
the ASVspoof 2019 PA dataset consisted of 5400 genuine and 48,600 spoofed utterances,
while the development set consisted of 5400 genuine and 24,300 spoofed utterances. The
final evaluation set was based on the ASVspoof 2021 PA dataset. In this paper, the training
set was used to train the replay speech spoofing detection model, and the evaluation set
was utilized to submit the final results.
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Table 1. The distribution of ASVspoof dataset.

Dataset
Bona Fide Spoofed

Utterance Utterance

Train 5400 48,600
Dev 5400 24,300

Evaluation 94,068 627,264

The ASVspoof challenges use two evaluation metrics [8]. The primary evaluation
metric for the PA task is the Minimum Tandem Detection Cost Function (min t-DCF) [34],
which is defined as in Equation (3):

t− DCF(θ) = C1Pcm
miss(θ) + C2Pcm

f a (θ) (3)

In this equation, Pcm
miss(θ) and Pcm

f a (θ) represent the false rejection rate and false ac-
ceptance rate of the speech replay detection system, respectively; θ is the threshold of the
model. Additionally, the min t-DCF metric does not require a preset threshold.

The secondary metric for the PA task is the EER, which is defined as follows:

Pf a(θ) =
#{ f ake trials with score > θ}

#{total f ake trials} (4)

Pmiss(θ) =
#{genuine trials with score < θ}

#{total genuine trials} (5)

where Pf a(θ) and Pmiss(θ) represent the false acceptance rate and false rejection rate at
threshold θ, respectively. Additionally, the EER corresponds to the threshold θEER at which
the false acceptance rate and false rejection rate are equal. In addition, the ASVspoof
competition also sets up a parameter-fixed ASV system to help researchers to focus on the
design of the replay speech detection model.

3.2. Feature Extraction

To verify the effectiveness of the proposed model, three acoustic features were used
for experimental evaluation in this paper, including a log power magnitude spectrogram
(Spec), Linear Frequency Cepstral Coefficients (LFCC), and Constant Q Transform (CQT).

The log power magnitude spectrogram, calculated using short-time Fourier transform
(STFT) [35], is a 3D graph that represents time, frequency, and signal strength. The speech
signal is divided into several short-time windows of equal duration, and the frequency
components of each window are computed. Spec is obtained by taking the logarithm
and square of the STFT output, resulting in a more intuitive form of spectral analysis.
This feature better simulates the nonlinear characteristics of human auditory perception,
which is nonlinear in terms of sound intensity and frequency perception. Furthermore, the
logarithmic and squared output can amplify low-frequency signals and compress high-
frequency signals, leading to enhanced visualization of low-frequency signals. In various
fields, such as speech recognition, Spec is widely utilized as an input feature to extract
spectral information from speech signals, facilitating the recognition of speech content by
machine learning and deep learning algorithms.

Linear Frequency Cepstral Coefficients are a powerful method used to identify and
classify amplitude characteristics in different speech signals [36]. This method is an im-
provement over traditional Mel Frequency Cepstral Coefficients (MFCC), as the filters in
LFCC are uniformly distributed across the frequency range, allowing for the comprehen-
sive capture of speech signal information. On the other hand, the filter bank in MFCC is
only designed based on the human ear’s sensitivity to sounds with different frequencies,
resulting in a lower resolution in the high-frequency region. In the calculation process
of LFCC, the output of each filter is logarithmically transformed into a power spectrum
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and further converted into cepstral coefficients using discrete cosine transform. Due to
the high correlation between these coefficients, only the first few are required to represent
speech signal features. The cepstral coefficients obtained by employing this method are
called static LFCC coefficients. Moreover, dynamic LFCC coefficients can be obtained
by computing first- and second-order differences in the cepstral coefficients, providing
more information about instantaneous changes in the speech signal. Therefore, LFCC is an
effective method for feature extraction in speech signals and has a significant advantage in
processing high-frequency information in synthetic speech; moreover, the combined use of
static and dynamic LFCC coefficients is common in representing speech signal features.

Constant Q Transform is a classic time–frequency transform used to analyze the
spectral characteristics of a signal [37]. It differs from traditional time–frequency analysis
methods, such as Fourier transform, in that it filters the time-domain speech signal with
a set of constant Q filters. This is because the filter satisfies the constant Q constraint,
i.e., the center frequency-to-bandwidth ratio is the same and the bandwidth magnitude is
different at low and high frequencies, resulting in a non-linear frequency domain signal.
CQT avoids the disadvantage of uniform time–frequency resolution; low-frequency waves
have a narrower bandwidth, and therefore, higher frequency resolution to decompose
similar notes, and high-frequency waves have a broader bandwidth, and therefore, higher
temporal resolution to track rapidly changing overtones. Compared to traditional Fourier
transform, it is more flexible in balancing temporal and frequency resolution, allowing for
more accurate spectral analysis of complex speech signals while reducing computational
complexity, and is therefore widely used in music and speech signal processing.

The details of the feature extraction parameters are as follows: (1) For Spec: a Hanning
window with a size of 25 ms, a step of 10 ms, and 512 Fast Fourier Transform (FFT) points;
(2) For LFCC: a 60-dimensional feature vector, a window length of 20 ms, 512 FFT points,
20 filters, plus delta and double delta coefficients; (3) For CQT: a Hanning window, nine
octaves, 48 bins per octave, and a step of 16 ms. All features were trimmed along the
temporal axis to maintain an accurate 400 frames [23].

3.3. Training Details

The proposed model used binary cross-entropy and the mean squared error as loss
functions. In addition, Adam [38] was used as the optimizer, where β1 = 0.9, β2 = 0.85,
and weight decay is set to 10−9. After training for 30 epochs, the model with the lowest
EER in the development set was selected for evaluation.

3.4. Test Details

During the test phase, the score obtained by combining the output binary vector
and the pixel map was used for classification, where S = [S0, S1] is the output binary
vector, with S0, S1 ∈ [0, 1] and S0+S1 = 1, and m ∈

{
R+32×32

∣∣m(i, j) ∈ [0, 1]
}

corresponds
to the output of the pixel map. The score S ∈ [0, 1] for classification was calculated using
Equation (6):

S =
S1 + mean(m)

2
(6)

where the score S ∈ [0, 1] represents the probability that the input speech is “genuine”.

4. Results
4.1. The System Performance of Different Input Methods

In this section, we evaluate the effectiveness of the proposed replay speech detection
system based on a dual-input hierarchical fusion approach. In order to verify the effec-
tiveness of the proposed method, ResNet50 and HFN were used as classification networks
in this paper. At the same time, different input methods were employed, including the
single-input, overlay-input, and dual-input methods. Furthermore, CQT was chosen as
the acoustic feature for the model input. As shown in Table 2, when applying the orig-
inal speech signal and time-reversed speech signal as inputs to the ResNet50 and HFN
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models, the min t-DCF is better than for other input methods. Furthermore, our proposed
dual-input hierarchical fusion network exhibits significantly better performance than the
ResNet50 model. The experimental results show that the best system has an EER of 28.51%
in the test set of the PA track. Compared to the best system that employs the ResNet50
network, the proposed system achieves a relative reduction in EER of 25.3%.

Table 2. The EER (%) and min t-DCF of the proposed system corresponding to different
input methods.

Input Methods Acoustic Features Models Min t-DCF EER (%)

Single-input CQT
ResNet-50

0.9913 38.17
CQT (invert) 0.9848 41.12

Overlay-input CQT + CQT (invert) ResNet-50 0.9826 38.84

Dual-input
CQT + CQT (invert)

HFN
0.7572 28.51

Double CQT 0.7741 29.33
Double CQT (invert) 0.7709 29.63

4.2. The System Performance of Different Acoustic Features

This section evaluates the system performance of the dual-input hierarchical fusion
network using different acoustic features of the ASVspoof 2021 PA test set, and compares
it with that of the baseline system. Table 3 shows the min t-DCF and EER of the baseline
system and our proposed system in the evaluation test. The experimental results show
that using CQT as the model input feature achieved the best system performance. CQT
is a classic time–frequency transform method with advantages such as higher frequency
resolution, balanced time–frequency resolution, and lower computational complexity,
and is widely used in fields such as music signal classification and speech anti-spoofing.
Similarly, using LFCC as the model input feature also achieved desirable results. LFCC is
the official baseline feature of ASVspoof and is an amplitude feature extraction method.
Compared with traditional acoustic features, such as Mel-frequency cepstral coefficients,
its filter bank is uniformly distributed over the entire frequency range; thus, itcan more
comprehensively capture information in speech signals. In addition, using Spec as the
model input feature achieved dissatisfactory results. This is because the Spec feature is
the logarithmic amplitude spectrum and does not contain phase information. However,
the synthetic speech in real-world environments may exist in the phase information of
speech, so the system performance of the Spec feature is relatively inferior to the other two
acoustic features.

Table 3. The EER (%) and min t-DCF of the proposed system corresponding to different acoustic
features.

System Min t-DCF EER (%)

Baseline

CQCC + GMM 0.9434 38.07
LFCC + GMM 0.9724 39.54
LFCC + LCNN 0.9958 44.77

RawNet2 0.9997 48.60

Proposed

HFN + Spec 0.9453 45.15
HFN + LFCC 0.8945 36.25
HFN + CQT 0.7572 28.51

Fusion 0.6708 24.46

According to the results in Table 3, the HFN + CQT and HFN + LFCC models we pro-
posed perform significantly better than all the baseline systems provided by the ASVspoof
2021 PA task. Among them, the HFN + LFCC model reduces the min t-DCF and EER
relative to the baseline system by a maximum of 10.5% and 25.4%, respectively; the
HFN + CQT model reduces the min t-DCF and EER relative to the baseline system
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by a maximum of 24.3% and 41.3%, respectively. The proposed fusion system is the
weighted average of the scores of the three single systems: HFN + Spec, HFN + LFCC, and
HFN + CQT. The fusion system achieves the best results in the final evaluation set, with an
EER of 24.46% and a min t-DCF of 0.6708. Compared with the four baseline systems in the
ASVspoof 2021 competition, in our fusion model, the min t-DCF values are decreased by
28.9%, 31.0%, 32.6%, and 32.9%, and the EER values are reduced by 35.7%, 38.1%, 45.4%,
and 49.7%, respectively.

4.3. The System Performance Compared with State-of-the-Art Systems

Table 4 presents the experimental results of the top five teams in the ASVspoof 2021
Challenge [7]. As can be seen from the results of the participating teams, only the top result
had a min t-DCF below 0.7 and an EER below 25% in the PA evaluation set, demonstrating
that developing a replay speech detection system from a simulated speech corpus that
perfectly matches the real environment is a significant challenge.

Among them, T07, a team from Kunshan Duke University [39], achieved the best
performance in the PA track. They proposed using the difference between the codec-filtered
audio and the original audio as input to the model, using codecs such as WORLD [40] and
MelGAN [41]; they also used speech enhancement methods such as velocity perturbation
and reverberation to augment the model training data; in addition, several outlier detection
systems were used as classifiers, with the final submission being an average of various
systems. T23, a team from Russia, proposed using a variety of front ends, including Mel-
scaled short-time Fourier transform of an audio signal’s linear or rectangular frequency
filter banks, and trainable transforms such as LEAF or SinConv [24]; moreover, several
deep neural networks such as ResNet18, LCNN9, RawNet2, and their modifications, were
used as classifiers, and microphone and room impulse responses were used for data
enhancement. The final system is a fusion of several classification models [42].

Table 4. Comparison with the experimental results of the top five participating teams in the ASVspoof
2021 challenge.

Teams Min t-DCF EER (%)

T07 [39] 0.6824 24.25
T16 0.7122 27.59

T23 [42] 0.7296 26.42
T01 0.7446 28.36
T04 0.7462 29.00

Proposed method 0.6708 24.46

Instead of using speech enhancement, our proposed method takes both the original
audio signal and the time-reversed audio signal as inputs to the model and uses HFN as
the classifier, with the fusion system being a weighted average of the three single system
scores of HFN + Spec, HFN + LFCC, and HFN + CQT. Compared with the best results, the
proposed system improved the min t-DCF by 1.7% and achieved a similar level of EER.

5. Conclusions

This work proposes a replay speech detection method based on a dual-input hierarchi-
cal fusion network. First, the model was designed with two inputs, namely, the original
speech signal and the time-reversed speech signal, to increase the information content
of the model input. Then, a classification network model was constructed, and the HFN
architecture was introduced into the ASV anti-spoofing system for the first time. The HFN
contained an HFM fusion module that can fuse the output of different residual blocks of the
upper and lower network layers, effectively addressing the domain discrepancy problem
between the training and test sets and improving the model’s generality. The results show
that our proposed network outperforms the baseline system provided in the ASVspoof
2021 PA task, as well as the systems of other participating teams, in min t-DCF.
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