Multifunctional Integrated Underwater Sound Absorption Materials: A Review
Abstract
:1. Introduction
- The mechanism of acoustic absorption in underwater environments and the various factors that impact the performance of USAMs;
- The corrosion mechanism of USAMs, as well as crucial factors and methods for achieving corrosion resistance;
- The hydrostatic pressure resistance mechanism of USAMs, and key factors and methods to enhance the hydrostatic pressure resistance.
2. Underwater Acoustic Absorption Mechanisms and Research Advancements in This Area
2.1. Underwater Acoustic Absorption Mechanism and Impact Factors
2.2. Research Advancements in Underwater Sound Absorption Materials
2.2.1. Polymer-Based
2.2.2. Metal-Based Porous Materials
2.2.3. Ceramic-Based Foams
2.2.4. Metamaterials
3. Corrosion Resistance and Hydrostatic Pressure Resistance Mechanisms of USAMs
3.1. Corrosion Resistance Mechanism of USAMs and Research Advancements
3.2. Hydrostatic Pressure Resistance Mechanism of USAMs and Research Advancements
4. Summary of Research on USAMs with Hydrostatic Pressure Resistance and Corrosion Resistance
4.1. Preparing Multifunctional USAMs with Hydrostatic Pressure Resistance and Corrosion Resistance
4.2. Research Challenges and Methods of Improvement
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Fu, Y.; Kabir, I.I.; Yeoh, G.H.; Peng, Z. A review on polymer-based materials for underwater sound absorption. Polym. Test. 2021, 96, 107115. [Google Scholar] [CrossRef]
- Tang, J.; Wang, T. Piezocomposite SmartFoam for Active Control of Underwater Noise. In Proceedings of the 2009 WRI Global Congress on Intelligent Systems, Xiamen, China, 19–21 May 2009; pp. 279–282. [Google Scholar]
- Furstoss, M.; Thenail, D.; Galland, M.A. Surface impedance control for sound absorption direct and hybrid passive active strategies. J. Sound Vib. 1997, 203, 219–236. [Google Scholar] [CrossRef]
- Howarth, T.R.; Varadan, V.K.; Bao, X.; Varadan, V.V. Piezocomposite coating for active underwater sound reduction. J. Acoust. Soc. Am. 1992, 91, 823–831. [Google Scholar] [CrossRef]
- Dong, J.; Tian, P. Review of underwater sound absorption materials. IOP Conf. Ser. Earth Environ. Sci. 2020, 508, 012182. [Google Scholar] [CrossRef]
- Wang, Y.; Miao, X.; Jiang, H.; Chen, M.; Liu, Y.; Xu, W.; Meng, D. Review on underwater sound absorption materials and mechanisms. Adv. Mech. 2017, 47, 92–121. [Google Scholar]
- Wang, Z.; Huang, Y.; Zhang, X.; Li, L.; Chen, M.; Fang, D. Broadband underwater sound absorbing structure with gradient cavity shaped polyurethane composite array supported by carbon fiber honeycomb. J. Sound Vib. 2020, 479, 115375. [Google Scholar] [CrossRef]
- Cheng, G.; He, D.; Shu, G. Underwater sound absorption property of porous aluminum. Colloids Surf. A Physicochem. Eng. Asp. 2001, 179, 191–194. [Google Scholar]
- Xu, W.; Jiang, C.; Zhang, J. Improvement in underwater acoustic absorption performance of open-celled SiC foam. Colloids Surf. A Physicochem. Eng. Asp. 2015, 482, 568–574. [Google Scholar] [CrossRef]
- Meng, H.; Wen, J.; Zhao, H.; Wen, X. Optimization of locally resonant acoustic metamaterials on underwater sound absorption characteristics. J. Sound Vib. 2012, 331, 4406–4416. [Google Scholar] [CrossRef]
- Cao, L.; Fu, Q.; Si, Y.; Ding, B.; Yu, J. Porous materials for sound absorption. Compos. Commun. 2018, 10, 25–35. [Google Scholar] [CrossRef]
- Guillermic, R.-M.; Lanoy, M.; Strybulevych, A.; Page, J.H. A PDMS-based broadband acoustic impedance matched material for underwater applications. Ultrasonics 2019, 94, 152–157. [Google Scholar] [CrossRef]
- Chen, Y.; Zheng, M.; Liu, X.; Bi, Y.; Sun, Z.; Xiang, P.; Yang, J.; Hu, G. Broadband solid cloak for underwater acoustics. Phys. Rev. B 2017, 95, 180104. [Google Scholar] [CrossRef]
- Kalauni, K.; Pawar, S.J. A review on the taxonomy, factors associated with sound absorption and theoretical modeling of porous sound absorbing materials. J. Porous Mater. 2019, 26, 1795–1819. [Google Scholar] [CrossRef]
- Wang, C.-N.; Torng, J.-H. Experimental study of the absorption characteristics of some porous fibrous materials. Appl. Acoust. 2001, 62, 447–459. [Google Scholar] [CrossRef]
- Sgard, F.C.; Olny, X.; Atalla, N.; Castel, F. On the use of perforations to improve the sound absorption of porous materials. Appl. Acoust. 2005, 66, 625–651. [Google Scholar] [CrossRef]
- Gao, N.; Wu, J.; Lu, K.; Zhong, H. Hybrid composite meta-porous structure for improving and broadening sound absorption. Mech. Syst. Signal Process. 2021, 154, 107504. [Google Scholar] [CrossRef]
- Doutres, O.; Dauchez, N.; Génevaux, J.-M.; Dazel, O. Validity of the limp model for porous materials: A criterion based on the Biot theory. J. Acoust. Soc. Am. 2007, 122, 2038–2048. [Google Scholar] [CrossRef]
- Liu, S.; Chen, W.; Zhang, Y. Design optimization of porous fibrous material for maximizing absorption of sounds under set frequency bands. Appl. Acoust. 2014, 76, 319–328. [Google Scholar] [CrossRef]
- Cao, L.; Si, Y.; Yin, X.; Yu, J.; Ding, B. Ultralight and Resilient Electrospun Fiber Sponge with a Lamellar Corrugated Microstructure for Effective Low-Frequency Sound Absorption. ACS Appl. Mater. Interfaces 2019, 11, 35333–35342. [Google Scholar] [CrossRef]
- Baferani, A.H.; Katbab, A.A.; Ohadi, A.R. The role of sonication time upon acoustic wave absorption efficiency, microstructure, and viscoelastic behavior of flexible polyurethane/CNT nanocomposite foam. Eur. Polym. J. 2017, 90, 383–391. [Google Scholar] [CrossRef]
- Zhao, J.; Wang, X.-M.; Chang, J.M.; Yao, Y.; Cui, Q. Sound insulation property of wood–waste tire rubber composite. Compos. Sci. Technol. 2010, 70, 2033–2038. [Google Scholar]
- Gao, K.; Van Dommelen, J.A.W.; Geers, M.G.D. Investigation of the effects of the microstructure on the sound absorption performance of polymer foams using a computational homogenization approach. Eur. J. Mech. A Solids 2017, 61, 330–344. [Google Scholar]
- Saha, A.; Kumar, S.; Zindani, D. Investigation of the effect of water absorption on thermomechanical and viscoelastic properties of flax-hemp-reinforced hybrid composite. Polym. Compos. 2021, 42, 4497–4516. [Google Scholar]
- Zhao, H.; Wen, J.; Yang, H.; Lv, L.; Wen, X. Backing effects on the underwater acoustic absorption of a viscoelastic slab with locally resonant scatterers. Appl. Acoust. 2014, 76, 48–51. [Google Scholar]
- Merheb, B.; Deymier, P.A.; Muralidharan, K.; Bucay, J.; Jain, M.; Aloshyna-Lesuffleur, M.; Greger, R.W.; Mohanty, S.; Berker, A. Viscoelastic effect on acoustic band gaps in polymer-fluid composites. Model. Simul. Mater. Sci. Eng. 2009, 17, 075013. [Google Scholar]
- Jayakumari, V.G.; Shamsudeen, R.K.; Rajeswari, R.; Mukundan, T. Viscoelastic and acoustic characterization of polyurethane-based acoustic absorber panels for underwater applications. J. Appl. Polym. Sci. 2019, 136, 47165. [Google Scholar]
- Liu, Z.; Sheng, M. Study on Characteristics of Sound Absorption of Underwater Visco-elastic Coated Compound Structures. Mod. Appl. Sci. 2009, 3, 32–41. [Google Scholar]
- Meng, T.; Hong-Xing, H. Improved low-frequency performance of a composite sound absorption coating. J. Vib. Control. 2011, 18, 48–57. [Google Scholar]
- de Groot-Hedlin, C. Finite-difference time-domain synthesis of infrasound propagation through an absorbing atmosphere. J. Acoust. Soc. Am. 2008, 124, 1430–1441. [Google Scholar]
- Merheb, B.; Deymier, P.A.; Jain, M.; Aloshyna-Lesuffleur, M.; Mohanty, S.; Berker, A.; Greger, R.W. Elastic and viscoelastic effects in rubber/air acoustic band gap structures: A theoretical and experimental study. J. Appl. Phys. 2008, 104, 064913. [Google Scholar]
- Abid, M.; Abbes, M.S.; Chazot, J.D.; Hammemi, L.; Hamdi, M.A.; Haddar, M. Acoustic Response of a Multilayer Panel with Viscoelastic Material. Int. J. Acoust. Vib. 2012, 17, 82–89. [Google Scholar]
- Shi, K.; Jin, G.; Ye, T.; Zhang, Y.; Chen, M.; Xue, Y. Underwater sound absorption characteristics of metamaterials with steel plate backing. Appl. Acoust. 2019, 153, 147–156. [Google Scholar]
- Broadman, C.W.; Naify, C.J.; Lee, M.J.; Haberman, M.R. Design of a one-dimensional underwater acoustic leaky wave antenna using an elastic metamaterial waveguide. J. Appl. Phys. 2021, 129, 194902. [Google Scholar] [CrossRef]
- Domingo, M.C. Magnetic Induction for Underwater Wireless Communication Networks. IEEE Trans. Antennas Propag. 2012, 60, 2929–2939. [Google Scholar]
- Zhong, J.; Zhao, H.; Yang, H.; Yin, J.; Wen, J. Effect of Poisson’s loss factor of rubbery material on underwater sound absorption of anechoic coatings. J. Sound Vib. 2018, 424, 293–301. [Google Scholar]
- Sharifi, M.J.; Ghalehkhondabi, V.; Fazlali, A. Investigation of the underwater sound absorption and damping properties of polyurethane elastomer. J. Therm. Anal. Calorim. 2021, 147, 4113–4118. [Google Scholar]
- Kawai, Y.; Park, J.; Ishii, Y.; Urakawa, O.; Murayama, S.; Ikura, R.; Osaki, M.; Ikemoto, Y.; Yamaguchi, H.; Harada, A.; et al. Preparation of dual-cross network polymers by the knitting method and evaluation of their mechanical properties. NPG Asia Mater. 2022, 14, 1–11. [Google Scholar]
- Panteli, P.A.; Patrickios, C.S. Multiply Interpenetrating Polymer Networks: Preparation, Mechanical Properties, and Applications. Gels 2019, 5, 1–21. [Google Scholar]
- Cao, R.; Deng, L.; Feng, Z.; Zhao, X.; Li, X.; Zhang, L. Preparation of natural bio-based Eucommia ulmoides gum/styrene-butadiene rubber composites and the evaluation of their damping and sound absorption properties. Polymer 2021, 213, 123292. [Google Scholar]
- Fu, Y. Synergism of Carbon Nanotubes and Graphene Nanoplates in Improving Underwater Sound Absorption Stability under High Pressure. ChemistrySelect 2022, 7, 1–7. [Google Scholar]
- Fu, Y.; Fischer, J.; Pan, K.; Yeoh, G.H.; Peng, Z. Underwater sound absorption properties of polydimethylsiloxane/carbon nanotube composites with steel plate backing. Appl. Acoust. 2021, 171, 107668. [Google Scholar] [CrossRef]
- Ayub, M.; Zander, A.C.; Howard, C.Q.; Cazzolato, B.S.; Huang, D.M.; Shanov, V.N.; Alvarez, N.T. Normal incidence acoustic absorption characteristics of a carbon nanotube forest. Appl. Acoust. 2017, 127, 223–239. [Google Scholar] [CrossRef]
- Li, Y.; Xu, F.; Lin, Z.; Sun, X.; Peng, Q.; Yuan, Y.; Wang, S.; Yang, Z.; He, X.; Li, Y. Electrically and thermally conductive underwater acoustically absorptive graphene/rubber nanocomposites for multifunctional applications. Nanoscale 2017, 9, 14476–14485. [Google Scholar] [PubMed]
- Lu, T.J.; Chen, F.; He, D. Sound absorption of cellular metals with semiopen cells. J. Acoust. Soc. Am. 2000, 108, 1697–1709. [Google Scholar]
- Liu, R.X.; Pei, D.L.; Wang, Y.R. Experimental research on sound absorption properties of impedance gradient composite with multiphase. IOP Conf. Ser. Mater. Sci. Eng. 2020, 733, 012009. [Google Scholar] [CrossRef]
- Du, Z.; Yao, D.; Xia, Y.; Zuo, K.; Yin, J.; Liang, H.; Zeng, Y.-P. The sound absorption properties of highly porous silicon nitride ceramic foams. J. Alloys Compd. 2020, 820, 153067. [Google Scholar] [CrossRef]
- Du, Z.; Yao, D.; Xia, Y.; Zuo, K.; Yin, J.; Liang, H.; Zeng, Y.-P. Highly porous silica foams prepared via direct foaming with mixed surfactants and their sound absorption characteristics. Ceram. Int. 2020, 46, 12942–12947. [Google Scholar] [CrossRef]
- Du, Z.; Yao, D.; Xia, Y.; Zuo, K.; Yin, J.; Liang, H.; Zeng, Y.-P. Effects of surfactant and particle size on the microstructure and strength of Si3N4 foams with high porosity. Int. J. Appl. Ceram. Technol. 2021, 18, 830–837. [Google Scholar] [CrossRef]
- Xu, W.; Jiang, C.; Zhang, J. Underwater acoustic absorption of air-saturated open-celled silicon carbide foam. Colloids Surf. A Physicochem. Eng. Asp. 2015, 471, 153–158. [Google Scholar] [CrossRef]
- Zhang, J.; Liu, G.; Cui, W.; Ge, Y.; Du, S.; Gao, Y.; Zhang, Y.; Li, F.; Chen, Z.; Du, S.; et al. Plastic deformation in silicon nitride ceramics via bond switching at coherent interfaces. Science 2022, 378, 371–376. [Google Scholar] [CrossRef]
- Gao, N.; Zhang, Z.; Deng, J.; Guo, X.; Cheng, B.; Hou, H. Acoustic Metamaterials for Noise Reduction: A Review. Adv. Mater. Technol 2022, 7, 2100698. [Google Scholar] [CrossRef]
- Veselago, V.G. The electrodynamics of substances with simultaneously negative values of ε and µ. Sov. Phys. Usp. 1968, 10, 509–514. [Google Scholar] [CrossRef]
- Liu, J.; Guo, H.; Wang, T. A Review of Acoustic Metamaterials and Phononic Crystals. Crystals 2020, 10, 305. [Google Scholar]
- Cummer, S.A.; Christensen, J.; Alù, A. Controlling sound with acoustic metamaterials. Nat. Rev. Mater. 2016, 1, 16001. [Google Scholar] [CrossRef]
- Gao, N.; Lu, K. An underwater metamaterial for broadband acoustic absorption at low frequency. Appl. Acoust. 2020, 169, 107500. [Google Scholar] [CrossRef]
- Ye, C.; Liu, X.; Xin, F.; Lu, T.J. Influence of hole shape on sound absorption of underwater anechoic layers. J. Sound Vib. 2018, 426, 54–74. [Google Scholar] [CrossRef]
- Jiang, H.; Wang, Y.; Zhang, M.; Hu, Y.; Lan, D.; Zhang, Y.; Wei, B. Locally resonant phononic woodpile: A wide band anomalous underwater acoustic absorbing material. Appl. Phys. Lett. 2009, 95, 104101. [Google Scholar] [CrossRef]
- Wu, H.; Zhang, H.; Hao, C. Reconfigurable spiral underwater sound-absorbing metasurfaces. Extreme Mech. Lett. 2021, 47, 101361. [Google Scholar] [CrossRef]
- Gu, Y.; Long, H.; Cheng, Y.; Deng, M.; Liu, X. Ultrathin Composite Metasurface for Absorbing Subkilohertz Low-Frequency Underwater Sound. Phys. Rev. Appl. 2021, 16, 014021-1. [Google Scholar] [CrossRef]
- Wen, J.; Zhao, H.; Lv, L.; Yuan, B.; Wang, G.; Wen, X. Effects of locally resonant modes on underwater sound absorption in viscoelastic materials. J. Acoust. Soc. Am. 2011, 130, 1201–1208. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Chan, C.T. Acoustic cloaking in three dimensions using acoustic metamaterials. Appl. Phys. Lett. 2007, 91, 183518. [Google Scholar] [CrossRef]
- Pendry, J.B.; Schurig, D.; Smith, D.R. Controlling electromagnetic fields. Science 2006, 312, 1780–1782. [Google Scholar] [CrossRef]
- Iannace, G.; Ciaburro, G.; Trematerra, A. Metamaterials acoustic barrier. Appl. Acoust. 2021, 181, 108172. [Google Scholar] [CrossRef]
- Zhong, H.; Tian, Y.; Gao, N.; Lu, K.; Wu, J. Ultra-thin composite underwater honeycomb-type acoustic metamaterial with broadband sound insulation and high hydrostatic pressure resistance. Compos. Struct. 2021, 277, 114603. [Google Scholar] [CrossRef]
- Wang, L.B.; Ma, C.Z.; Wu, J.H. A thin meta-structure with multi-order resonance for underwater broadband sound absorption in low frequency. Appl. Acoust. 2021, 179, 108025. [Google Scholar] [CrossRef]
- Jiang, H.; Wang, Y. Phononic glass A robust acoustic-absorption material. J. Acoust. Soc. Am. 2012, 132, 694–699. [Google Scholar] [CrossRef] [PubMed]
- Cole, I.S.; Azmat, N.S.; Kanta, A.; Venkatraman, M. What really controls the atmospheric corrosion of zinc? Effect of marine aerosols on atmospheric corrosion of zinc. Int. Mater. Rev. 2009, 54, 117–133. [Google Scholar] [CrossRef]
- Wharton, J.A.; Barik, R.C.; Kear, G.; Wood, R.J.K.; Stokes, K.R.; Walsh, F.C. The corrosion of nickel–aluminium bronze in seawater. Corros. Sci. 2005, 47, 3336–3367. [Google Scholar] [CrossRef]
- Liu, Y. Influence of Seawater on the Carbon Steel Initial Corrosion Behavior. Int. J. Electrochem. Sci. 2019, 14, 1147–1162. [Google Scholar] [CrossRef]
- Núñez, L.; Reguera, E.; Corvo, F.; González, E.; Vazquez, C. Corrosion of copper in seawater and its aerosols in a tropical island. Corros. Sci. 2005, 47, 461–484. [Google Scholar] [CrossRef]
- Li, S.; Hihara, L.H. Aerosol Salt Particle Deposition on Metals Exposed to Marine Environments: A Study Related to Marine Atmospheric Corrosion. J. Electrochem. Soc. 2014, 161, C268–C275. [Google Scholar] [CrossRef]
- Liu, R.; Cui, Y.; Liu, L.; Zhang, B.; Wang, F. A primary study of the effect of hydrostatic pressure on stress corrosion cracking of Ti-6Al-4V alloy in 3.5% NaCl solution. Corros. Sci. 2020, 165, 108402. [Google Scholar] [CrossRef]
- Shen, G.X.; Chen, Y.C.; Lin, C.J. Corrosion protection of 316 L stainless steel by a TiO2 nanoparticle coating prepared by sol–gel method. Thin Solid Films 2005, 489, 130–136. [Google Scholar] [CrossRef]
- Stojanović, I.; Farkas, A.; Alar, V.; Degiuli, N. Evaluation of the Corrosion Protection of Two Underwater Coating Systems in a Simulated Marine Environment. JOM 2019, 71, 4330–4338. [Google Scholar] [CrossRef]
- Pourhashem, S.; Saba, F.; Duan, J.; Rashidi, A.; Guan, F.; Nezhad, E.G.; Hou, B. Polymer/Inorganic nanocomposite coatings with superior corrosion protection performance: A review. J. Ind. Eng. Chem. 2020, 88, 29–57. [Google Scholar] [CrossRef]
- Fotovvati, B.; Namdari, N.; Dehghanghadikolaei, A. On Coating Techniques for Surface Protection: A Review. J. Manuf. Mater. Process. 2019, 3, 28. [Google Scholar] [CrossRef]
- Ding, R.; Li, W.; Wang, X.; Gui, T.; Li, B.; Han, P.; Tian, H.; Liu, A.; Wang, X.; Liu, X.; et al. A brief review of corrosion protective films and coatings based on graphene and graphene oxide. J. Alloy. Compd. 2018, 764, 1039–1055. [Google Scholar] [CrossRef]
- Seymour, A.J. Cathodic protection for corrosion control of ships and other steel structures in seawater. Anti-Corros. Methods Mater. 1990, 37, 4–7. [Google Scholar] [CrossRef]
- Gurrappa, I.; Yashwanth, I.V.S.; Mounika, I. Cathodic Protection Technology for Protection of Naval Structures Against Corrosion. Proc. Natl. Acad. Sci. India Sect. A Phys. Sci. 2014, 85, 1–18. [Google Scholar] [CrossRef]
- Codaro, E.N.; Nakazato, R.Z.; Horovistiz, A.L.; Riberio, L.M.F.; Ribeiro, R.B.; Hein, L.R.O. An image processing method for morphology characterization and pitting corrosion evaluation. Mater. Sci. Eng. A 2002, 334, 298–306. [Google Scholar] [CrossRef]
- Liu, L.; Xu, R. Investigation of corrosion behavior of Mg-steel laser-TIG hybrid lap joints. Corros. Sci. 2012, 54, 212–218. [Google Scholar] [CrossRef]
- André, N.M.; Bouali, A.; Maawas, E.; Staron, P.; Santos, J.F.D.; Zheludkevich, M.L.; Amanico-Filho, S.T. Corrosion behavior of metal–composite hybrid joints: Influence of precipitation state and bonding zones. Corros. Sci. 2019, 158, 108075. [Google Scholar] [CrossRef]
- Gu, B.-E.; Huang, C.-Y.; Shen, T.-H.; Lee, Y.-L. Effects of multiwall carbon nanotube addition on the corrosion resistance and underwater acoustic absorption properties of polyurethane coatings. Prog. Org. Coat. 2018, 121, 226–235. [Google Scholar] [CrossRef]
- He, C.; Shui, A.; Ma, J.; Qian, J.; Cai, M.; Tian, W.; Du, B. In situ growth magnesium borate whiskers and synthesis of porous ceramics for sound-absorbing. Ceram. Int. 2020, 46, 29339–29343. [Google Scholar] [CrossRef]
- Yan, Z.; Feng, K.; Tian, J.; Liu, Y. Effect of high titanium blast furnace slag on preparing foam glass–ceramics for sound absorption. J. Porous Mater. 2019, 26, 1209–1215. [Google Scholar] [CrossRef]
- Li, Q.; Yang, D.; Mao, X. Pressure-resistant cylindrical shell structures comprising graded hybrid zero Poisson’s ratio metamaterials with designated band gap characteristics. Mar. Struct. 2022, 84, 103221. [Google Scholar] [CrossRef]
- Avena, A.; Bunsell, A.R. Effect of hydrostatic pressure on the water absorption of glass fibre-reinforced epoxy resin. Composites 1988, 19, 355–357. [Google Scholar] [CrossRef]
- Moon, C.-J.; Kim, I.-H.; Choi, B.-H.; Kweon, J.-H.; Choi, J.-H. Buckling of filament-wound composite cylinders subjected to hydrostatic pressure for underwater vehicle applications. Compos. Struct. 2010, 92, 2241–2251. [Google Scholar] [CrossRef]
- Wang, S.; Liu, K.X. Experimental research on dynamic mechanical properties of PZT ceramic under hydrostatic pressure. Mater. Sci. Eng. A 2011, 528, 6463–6468. [Google Scholar] [CrossRef]
- Sharma, A.K.; Bhandari, R.; Aherwar, A.; Rimašauskienė, R. Matrix materials used in composites: A comprehensive study. Mater. Today Proc. 2020, 21, 1559–1562. [Google Scholar] [CrossRef]
- Biscay, N.; Henry, L.; Adschiri, T.; Yoshimura, M.; Aymonier, C. Behavior of Silicon Carbide Materials under Dry to Hydrothermal Conditions. Nanomaterials 2021, 11, 1351. [Google Scholar] [CrossRef]
- Zheng, Q.; Fan, Z.; Jiang, G.; Pan, A.; Yan, Z.; Lin, Q.; Cui, J.; Wang, W.; Mei, X. Mechanism and morphology control of underwater femtosecond laser microgrooving of silicon carbide ceramics. Opt. Express 2019, 27, 26264–26280. [Google Scholar] [CrossRef]
- Wang, J.W.; Abadikhah, H.; Wang, F.H.; Yin, L.J.; Xu, X. β-silicon nitride membrane with robust inorganic-organic hybrid hydrophobic surface for water-in-oil emulsion separation. Ceram. Int. 2022, 48, 17589–17595. [Google Scholar] [CrossRef]
- Misra, R.D.K.; Misra, K.P. Fundamentals of ceramics: Introduction, classification, and applications. In Ceramic Science and Engineering: Basics to Recent Advancements; Elsevier: Amsterdam, The Netherlands, 2022; pp. 5–20. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, X.; Meng, L.; Liu, Z.; Yang, F.; Jiang, X.; Yang, J. Multifunctional Integrated Underwater Sound Absorption Materials: A Review. Appl. Sci. 2023, 13, 5368. https://doi.org/10.3390/app13095368
Chen X, Meng L, Liu Z, Yang F, Jiang X, Yang J. Multifunctional Integrated Underwater Sound Absorption Materials: A Review. Applied Sciences. 2023; 13(9):5368. https://doi.org/10.3390/app13095368
Chicago/Turabian StyleChen, Xianmei, Lei Meng, Zibo Liu, Feiran Yang, Xin Jiang, and Jun Yang. 2023. "Multifunctional Integrated Underwater Sound Absorption Materials: A Review" Applied Sciences 13, no. 9: 5368. https://doi.org/10.3390/app13095368
APA StyleChen, X., Meng, L., Liu, Z., Yang, F., Jiang, X., & Yang, J. (2023). Multifunctional Integrated Underwater Sound Absorption Materials: A Review. Applied Sciences, 13(9), 5368. https://doi.org/10.3390/app13095368