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Featured Application: Stream-DBSCAN algorithm is suitable for processing complex high-dimensional
water quality data and can guide water quality detection more scientifically and intelligently.

Abstract: With the increasing use of wireless sensor networks in water quality monitoring, an
enormous amount of streaming data is generated by widely deployed sensors. However, the current
batch mode used for data analysis can no longer meet the diverse combination of monitoring
indicators and the requirement for timely analysis results on an all-weather basis. To overcome these
challenges and analyze a large amount of water quality data quickly and accurately, we propose a
stream-DBSCAN distributed stream processing clustering model. First, real-time data streams are
processed using the distributed stream computing framework Flink. Then, the DBSCAN clustering
algorithm is applied to cluster each dataset as a different dimension of the cluster. Finally, the
time distribution characteristics of the data in the same cluster are analyzed to identify the water
quality variation rules. The system can extract data noise points and identify sudden deterioration
of water quality. We tested the model using datasets on three water quality indices, pH, ammonia
nitrogen (NH4N), and turbidity, in the Yantai Menlou Reservoir from May to August 2019. The results
demonstrate that the system can efficiently and quickly perform cluster analysis on streaming data.
By analyzing the clustering results, we found that the daily variation of water quality and sudden
pollution events in the Menlou Reservoir are consistent with the actual situation.

Keywords: stream processing; water quality analysis; distributed clustering

1. Introduction

In recent years, the growing population and rising living standards have led to a
significant increase in human demand for water resources. As a result, the amount of
freshwater available has fallen below the critical threshold required for human survival [1].

Due to the extremely imbalanced distribution of water resources, the northern and
northwestern regions of China are facing a freshwater emergency threat [2]. In recent years,
ecological construction has been considered one of the most important factors in China’s
economic development, and water resource protection has become a top priority [3]. This
is why there are currently so many water quality monitoring systems for lakes, rivers, and
reservoirs. Water quality detection involves establishing a reasonable model through a
series of analytical methods to identify patterns in water quality changes, allowing for
the prediction of future trends [4,5]. The water quality detection model can achieve risk
warnings for water sources and improve the emergency response capability for sudden
pollution [6].

The Menlou Reservoir in Yantai, China started constructing in 1958, and it was com-
pleted in 1960. The reservoir watershed area is over 1077 square kilometers. It is the
main drinking water source supplying 70% water for the urban area of Yantai City. In
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this connection, the Menlou Reservoir performs an essential role in Yantai City [7]. The
water quality of Menlou Reservoir is directly related to the development of the city and
the life of residents. Therefore, the government attaches great importance to water quality
monitoring in the reservoir and deployed a large number of sensors to obtain real-time
water quality information. Many scholars and experts have also carried out research on
the water quality monitoring in the Menlou Reservoir. Jiang Zhenbo et al. [8] proposed
to design the Menlou Reservoir management information system platform based on the
problems in the existing management system of Menlou Reservoir. Scholars have also
completed a lot of research on the water quality of Menlou Reservoir. Wang Yan et al. [9]
established a water quality prediction model for Menlou Reservoir when the water reached
a moderate nutrient level in 2013 and proposed nutritive prevention and control measures
suitable for Menlou Reservoir.

The sensor group used to detect water quality information in Menlou Reservoir
continuously transmits water quality indicators to the computer. This information has
strong timeliness [10] characteristics, and its actual value is inversely proportional to
time. Therefore, the water quality monitoring work must not only meet the objective
requirements and standards for the quality of the results but also ensure real-time data
processing [11]. If the traditional batch mode is used to process water quality indicators, it
is impossible to grasp changes in the water body in time, resulting in lagging management
measures. Stream processing, on the other hand, is a framework for receiving, processing,
and outputting information in real-time, unlike the batch processing mechanism.

Currently, with the abundance of water quality data, it is essential to establish appro-
priate models to analyze water quality in real-time to detect changes and predict future
changes. To address various water quality issues, scholars have developed diverse water
quality analysis models for practical solutions. Zhou et al. [12] employed the canonical
correlation model and neural network model to study the primary factors affecting wa-
ter quality changes in the Three Gorges Reservoir and developed a prediction model for
water quality changes. Zhao et al. [13] tackled the limitations of traditional water quality
detection models in processing high real-time high-frequency data and proposed a water
quality big data processing platform that combined wavelet decomposition with the LSTM
model. The above research provides guidance for reservoir water quality monitoring from
various perspectives. Di et al. [14] presented a method combining expected maximum
value (EM) and partitioning around medoids (PAM), and several detection methods, such
as Welch t-test, Wilcoxon test, and Spearman correlation, to analyze the water quality of
the Yangtze River. Mandel et al. [15] used a density algorithm to sort probes and achieve
intelligent management of large-scale water distribution networks (WDN). Vries et al. [16]
tested three machine learning methods, namely, day dependent support vector regression
(SVR) models, adaptive orthogonal projection, and unsupervised clustering technology, for
anomaly detection of flow, pressure, conductivity, and temperature in water quality. The
experimental results showed that these methods had limited effectiveness when dealing
with significant data volumes and complex data attributes. While machine learning and
other methods have been employed for intelligent water quality management, the chal-
lenge of real-time data representation for massive data streams remains an urgent issue to
be addressed.

Based on the previously mentioned research idea, this paper proposes a distributed
clustering modelling framework called “stream-DBSCAN”. The framework leverages the
Flink distributed parallel computing model as the data processing platform to optimize
the classical density clustering DBSCAN algorithm. The improved DBSCAN algorithm
is deployed to the Flink distribution as the core algorithm of the computing node, thus
enabling the density clustering DBSCAN algorithm to have the ability of distributed parallel
computing when combined with the streaming data processing mode.

Using the indices of ammonia nitrogen (NH4N), pH value, and turbidity of Menlou
Reservoir from May to August in 2019, water quality indices were clustered into several
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categories. The relationship between water quality and time was then analyzed based on
the clustering results.

2. Method Principle

Currently, we are facing massive amounts of high-dimensional streaming data, which
can be difficult to process efficiently due to limited computing power and memory. How-
ever, distributed streaming computing methods can enable high-speed data processing.
In terms of water quality detection, using clustering algorithms to classify water quality
indices into different categories can improve rapid analysis of water variation situations.
The density-based DBSCAN algorithm can achieve water quality clustering and detect ab-
normal points of numerical mutation, enabling water management departments to rapidly
understand the situation of water quality variation.

2.1. Distributed Streaming Data Processing

The key challenge in processing big data is to discover new knowledge and laws
from data that have low value density, irregular distribution, and deeply hidden informa-
tion. This represents a significant shift from big data to big knowledge to big decision-
making [17]. In the era of big data, new technologies and methods have been developed
to improve the ability to use vast amounts of data for decision-making and knowledge
discovery [18]. The most common method for data analysis is called data mining [19]. Data
mining uses efficient data analysis and mining rules to process vast volumes of data and
uncover potential connections and patterns between data attributes. In the 4V attributes
of big data, data timeliness is given top priority in the processing of big data. With the
sheer volume of data available, finding hidden knowledge in a short period is crucial for
big data processing. Scholars have developed mining algorithms for massive data that
have approached optimal tempo-spatial complexity after several iterations. However, the
computing power of computers is still inadequate to meet the requirements of processing
massive data within a short period. The main reasons for this are summarized as follows:

The first issue is that batch mode processing renders data generated earlier mean-
ingless because it requires reading, calculating, and outputting data in batches, bundling
data at different time scales for input and output. To address these problems, stream data
processing was proposed to overcome the shortcomings of batch processing. In stream
data processing, data is continuously transmitted into memory in the form of streams and
processing results are returned immediately after being processed. As a result, stream data
processing provides more timely processing results [20].

The second issue is that due to the large amount of data and high data dimensionality,
the computing power of a single computer is insufficient to process massive data. Not
only does the calculation take a longer time, but the memory also cannot store such a huge
amount of data. However, stream processing reads data only once, and the memory does
not have to load the entire batch of data, enabling the computer to process a large amount
of data without overflowing the memory. The problem of insufficient computing power
can be solved using distributed computing, where the amount of computation is allocated
to each computer node, and the data results can be obtained at a very low cost through
merging rules.

In recent years, numerous clustering algorithms have been introduced in data mining
to enhance the speed and scalability of processing big data. These clustering algorithms
can be broadly divided into two categories [21]: single-machine-based clustering and dis-
tributed multi-machine clustering. As distributed clustering can fundamentally overcome
the limitation of computing capability, the research of some clustering algorithms has
gradually shifted from a single-machine approach to a distributed approach.

2.2. Density Based Clustering Algorithm

The most significant difference between density-based clustering algorithms and other
methods is that the former use density as the basis for algorithm judgment. Before starting
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clustering, density-based algorithms require setting relevant density thresholds. Such
algorithms only consider the density values of neighboring points within a certain range
and do not rely on setting centroids, thus avoiding the impact of distance and direction
factors on the clustering process. This allows for clustering of irregularly shaped datasets
based on their shape and extension trends and overcomes the impact of noise points that
do not have clustering on the clustering results.

Classic density-based clustering algorithms include OPTICS, DPC, DENCLUE, DB-
SCAN, among others. Although density-based clustering algorithms have high clustering
accuracy, they still have some issues that require improvement. For instance, Cheng [22]
proposed the LDP-MST clustering algorithm based on the classic MST clustering algorithm,
to address the impact of noise points on the algorithm’s time consumption. In Du [23],
it was suggested that the use of a pair of thresholds in traditional three-way clustering
methods cannot accurately represent the clustering structure, and the threshold is difficult
to determine. To address this issue, they proposed a multistep three-way clustering (M3W),
which improves the probability of correct data allocation by constructing multi-step data
structures and corresponding allocation strategies.

This article focuses on the time-consuming nature of the traditional clustering al-
gorithm DBSCAN when processing massive stream data. It proposes parallelizing the
DBSCAN algorithm using the distributed Flink framework and a result merging rule that
acts on the main node. This enables each parallelized result to be reasonably merged into
the final result. Although the above methods have improved density-based algorithms
under certain specific conditions, improving their applicability and accuracy, traditional
density clustering algorithms are still simple and efficient, and consume less time when
facing massive data. Therefore, this article chooses the traditional DBSCAN algorithm as
the model clustering algorithm.

2.3. DBSCAN Algorithm

The DBSCAN algorithm is a density-based clustering method that was first proposed
by Martin Ester to address the challenge of irregularly shaped data sets and widely scattered
clusters. This algorithm divides clusters based on the density of the data, which enables it
to accurately restore the original data’s shape characteristics. DBSCAN uses data density
as the testing criterion to achieve continuity in clustering, resulting in a highly precise
clustering effect with low time and space complexity. As a result, it has become the most
famous density clustering algorithm [24].

The DBSCAN algorithm relies on two important parameters, Eps and MinPts, which
will be adjusted to obtain the experimental results:

Eps represents the radius around the data coordinate point and specify the coordinate
point as the center of the circle, Within the radius of Eps, the points around the center
point are counted to calculate the density attribute of the point. Eps, as a radius, often
uses the L2 norm distance, also known as the Euclidean distance. Count the points around
the center point within the radius of Eps to calculate the density attribute of the points.
For example, point y belongs to the X dataset, where Cδ(x) represents a subsample set
containing samples X with a distance of no more than Eps from x:

Cδ(x) = {y ∈ X : dist(x, y) ≤ Eps} (1)

The parameter MinPts represents the minimum number of surrounding points, spec-
ifying the minimum number of neighbor points within the circle’s radius of Eps. Using
these two parameters, Eps and MinPts, the DBSCAN algorithm classifies data points into
three categories:

(1) Core point: Taking the point k as the center and Eps as the radius, there exists {x1, x2,
. . . , xn}. If Cδ(x) > Minpts, it means that the density attribute of point k meets the
requirements, and the point k will be recorded as the core point of a certain cluster. In
this sense, all points in the range of Eps from point k will be ‘density reachable’.
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(2) Boundary point: Taking the point k as the center and Eps as the radius, there exists
{x1, x2, . . . , xn}. If Cδ(x) < MinPts and point k is point reachable by the direct density
of a point within the radius of Eps, point k will be a boundary point.

(3) Noise point: Taking the point k as the center and Eps as the radius, there exists {x1, x2,
. . . , xn}. If Cδ(x) < MinPts and there is no core point in the Eps range, point k will be
recorded as the noise point.

In the DBSCAN algorithm, reference density is transitive. If the density of K1 can
reach K2 and the density of K2 can reach K3, then the densities of K1 and K3 are reachable.
Similarly, if K2 and K3 make K1 density reachable, then K2 and K3 density are reachable.
The DBSCAN algorithm connects the density-reachable points together to form clusters
of clustering results. Compared with other clustering algorithms, the above-mentioned
clustering mechanism of DBSCAN makes it unnecessary to preset the number of clusters
and it can also exclude noise interference data through the density clustering process, which
is part of reason why this paper chooses it as the core algorithm of the model.

Density-based clustering algorithms are commonly utilized to address irregular data
sets and relatively dispersed clusters. In contrast to the K-means algorithm, the DBSCAN
algorithm does not require the initial number of clusters K to be set, nor does it rely on
the distance between the centroid point and the decision point for clustering. Instead, it
depends on the parameters Eps and MinPts to constrain the density around each point.
The key advantage of the DBSCAN algorithm lies in its superior control. When processing
water quality data, the granularity of water quality clustering can be controlled by adjusting
the parameters of Eps and MinPts. Additionally, the DBSCAN algorithm does not need
to backtrack and reread previous data, and it allows for easier merging after partition
calculation in the clustering process. These characteristics are crucial reasons for selecting
the DBSCAN algorithm as the core processing algorithm in this paper.

Currently, parallelization of the DBSCAN algorithm is a significant area of improve-
ment. Shi et al. [25] proposed the SDKB-DBSCAN algorithm, which combines kernel
density estimation with irregular dynamic partitioning and boundary merging. This
algorithm achieves parallelization of the DBSCAN algorithm and demonstrates some im-
provements in accuracy and calculation speed. In this paper, we also parallelized the
DBSCAN algorithm by incorporating it with the Flink framework.

2.4. Flink

Flink is a distributed stream processing platform that has emerged in recent years,
originating from the Stratosphere project. Its main function is to distribute streaming data,
which is characterized by stateful computations of both boundless and bounded streaming
data. Flink can adapt to all common cluster environments and compute data of any size in
memory storage. Next, Flink will be introduced from several aspects.

(1) Batch and stream processing:

In Spark, all data is processed in batches. Offline data is processed in a large batch,
while real-time data is processed in an infinite number of smaller batches. In contrast, Flink
processes all data in the form of streams. Offline data is bounded, while real-time data is
unbound. Flink treats batch processing as bounded flow processing, relying on precise
time control and stateful running of applications.

(2) Overview of system architecture:

Similar to other streaming data processing frameworks, Flink uses a master-slave archi-
tecture composed of four parts: JobManager, ResourceManager, TaskManager, and Dispatcher.
Figure 1 illustrates the interaction of these components after application submission.
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(1) Layered architecture

Flink is a distributed platform for stream processing that follows a layered architecture,
where each upper layer depends on services provided by the lower layer. Flink can be
divided into four main layers:

Deployment layer: This layer covers the installation methods of Flink, such as local,
cluster, and cloud server.

Core layer: This layer provides all the core implementations that support Flink computing.
API layer: This layer implements the DataStream API for unbounded streams and the

DataSet API for bounded streams, which are used for stream and batch processing, respectively.
Library layer: This layer is the application architecture layer of Flink, which builds

computing frameworks that meet specific application scenarios on top of different types of
API layers. The hierarchical architecture of Flink is depicted in Figure 2.
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(2) Features of Flink

Flink boasts the following seven key features:
High throughput and low latency: Flink can process millions of data events per second

with a computing speed of milliseconds.
Event Time: Flink supports window calculations based on event time for unordered

stream data, ensuring processing results’ accuracy.
State Management: Flink 1.4 provides state management, which stores intermediate

results generated by previous calculations in memory, eliminating the need to count all
data each time during stream processing. This approach reduces computational resource
consumption and greatly improves computational efficiency.

Highly Flexible Windows: Flink’s windows can flexibly change to cope with complex
streaming modes, including time-, count-, session-, and data-driven types.

High Error Tolerance: Flink supports distributed snapshot technology and can recover
tasks from Checkpoints when a parallel node encounters a problem.
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Independent Memory Management: Flink implements a memory self-management
mechanism, which reduces the impact of JVM and GC on resource usage. It also seri-
alizes and deserializes data into binary and stores it in memory, effectively improving
memory utilization.

Save Point Mechanism: Flink sets the Save Points mechanism to save the execution of
the task in a snapshot manner when processing infinite stream data. When the task restarts,
it can restore its working state by reading the Save Points.

Table 1 shows a comparison between Flink, Storm, and Spark Streaming, demonstrat-
ing the various advantages of Flink over the other two platforms. These features make
Flink the ideal choice for the later work discussed in this article.

Table 1. Comparison between Flink and other mainstream frameworks.

Storm Spark Streaming Flink

Streaming Model Native Mini-batch Native
Consistency assurance At Least/Most Once Exactly Once Exactly Once

delay Low latency (in milliseconds) High latency (seconds) Low latency (in milliseconds)
swallow and spit LOW High High

fault-tolerant ACK RDD Based Checkpoint Checkpoint (Chandy Lamport)
StateFul No Yes (Dstream) Yes (Operator)

SQL support No Yes Yes

3. Stream-DBSCAN Water Quality Detection Clustering Model

The Stream-DBSCAN model, proposed in this paper, integrates the benefits of easy
merging in DBSCAN clustering algorithms with the high efficiency of Flink’s distributed
stream processing framework. This not only significantly reduces the time required to
process massive data, but also reduces memory requirements. Furthermore, the DBSCAN
algorithm is capable of noise reduction, filtering out anomalous data points, which results
in improved clustering accuracy when dealing with large datasets.

3.1. Water Quality Data Sampling

The Menlou Reservoir’s water quality parameters are gathered through a wireless
sensor network. The sensors measure various parameters, such as NH4N, pH, tempera-
ture, and flow rate, and transmit this data to a computer system through an aggregation
gateway [26]. Unlike traditional manual sampling methods, the wireless sensor network
increases sampling frequency, accelerates information transmission speed, and enhances
the real-time value of data [27]. This paper utilizes a high-density dataset, generated by
numerous sensors in the Menlou Reservoir, with small time granularity and coherence.

3.2. Water Quality Data Preprocessing

This paper conducted an experiment using water quality indicators from Menlou
Reservoir in Yantai City between May and August 2019. NH4N, pH value, and turbidity
were selected as the indicators to study the change and time period of water quality in
the reservoir.

Higher data sampling frequency enables the detection of instantaneous changes in
water quality over time. However, this results in duplicate data for data analysis, which
wastes computing resources. Therefore, before stream clustering, the original data was
periodically sampled. Ultimately, 200,000 data points were obtained after resampling from
the original 1.2 million data at the same time interval.

Through data preprocessing, it was found that the dispersion effect of pH value data
was small, while the data dispersion degrees of NH4N and turbidity were relatively large.
The numerical change rate of these two indicators fluctuated from 0 to 1000. In the multi-
index clustering system, the data often presents different dimensions due to the different
actual meanings of each clustering index. When there is a large difference in the order
of magnitude of each index of the data, clustering the original data values directly will
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highlight the characteristics of indicators with higher orders of magnitude and larger rates
of change. This can weaken the changes of low-level data sets.

To ensure the validity of the clustering results, this paper used the minmax normaliza-
tion method to process the original data. The original three-dimensional data was linearly
transformed, and the values were mapped to a range of [0, 1]. The following is the min-max
normalization formula:

yi=

XI − min
1≤j≤n

{
Xj
}

max
1≤j≤n

{
Xj
}
− min

1≤j≤n

{
Xj
} (2)

where xi represents the original data value and yi represents the normalized value, respectively.

3.3. Build the Model

To establish the relationship between water quality and time from the water quality
data, the Stream-DBSCAN model employs a clustering method to group the pH, ammonia
nitrogen, and turbidity indicators into clusters. The model then combines data points with
similar indicators into a single cluster, allowing each cluster to represent a specific class of
water conditions. The process of Stream-DBSCAN model construction can be expressed
as follows:

(1) The Stream-DBSCAN model utilized experimental data from the Menlou Reservoir
between May to August 2019, focusing on three water quality indicators: NH4N,
pH, and turbidity. Since the magnitude of each dimension in the experimental data
varied significantly, the model first standardized and sampled the data to ensure that
the results considered the impact of each dimension while avoiding redundancy in
similar data operations.

(2) To ensure the streaming nature of the dataset, the Stream-DBSCAN model employs
Kafka to convert sensor-generated data into a continuous data stream prior to clus-
tering. The stream processor in Kafka can continually collect the data stream, apply
built-in processing to adjust it, and output the stream in real-time. Within this frame-
work, Kafka combines data generated by the NH4N, pH, and turbidity sensors based
on a common timestamp attribute before transmitting the data stream to the Flink
framework. By utilizing Kafka, the model benefits from high throughput and low
latency, allowing it to process hundreds of thousands of data points per second with
only a few microseconds of delay.

(3) During the data partitioning stage, it is crucial to consider whether the partitioning
results will result in larger clusters during the clustering process and decrease the
number of noise points. Once Kafka passes the data stream into Flink, the DataStream
must be converted into KeyedStream using keyBy for data partitioning. To ensure the
partitioning is reasonable in this model, we implement the K-means algorithm [28] to
perform rough clustering of the dataset [29], dividing data with similar values into
the same KeyedStream. If the data is directly inputted into each node without rough
clustering, numerous small-scale clusters will appear in the clustering results, and
some points that should be in the cluster will be misjudged as noise points, resulting
in rejection before cluster merging [30]. Considering that the dataset’s size is not too
significant, this model opts to divide it into three. The rough clustering process of the
dataset using the K-means algorithm is as follows: Using K cluster centroid points µ1,
µ2, . . . . . . , µK, the following clustering process occurs for each 3D data point ηi:

C(i) = arg min
j

∣∣∣∣∣∣x(i) − µj

∣∣∣∣∣∣2 (3)

Among them, C(i) is the class closest to point i among the K classes, and the value
range of C(i) is 1–K. x(i) is the data point to be determined, and µj represents each
centroid point.
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For the K generated clusters, their centroids µi have the following iterative formulas:

µi =
∑m

i=1

{
C(i) = j

}
x(i)

∑m
i=1
{

C(i) = j
} (4)

The Stream-DBSCAN model utilizes the K-means algorithm to coarsely cluster data,
yielding K data streams that exhibit internal similarities and external differences.

(4) During the process of distributed clustering, the selection of data parallelism K is
crucial in determining whether the processing time is acceptable. Therefore, the K
value is adjusted according to the size of the data, and the selection of K should strike a
balance between the computing power of the computer and the time-consuming curve
of the clustering algorithm. An optimal value of K will control the data processing
time of each computer node within a manageable time cost. In the case of the three
data streams generated in process (3), the Stream-DBSCAN model employs three
independent nodes to perform parallel operations on the data streams. Three tasks
are set up in Flink to receive the KeyedStream generated after the partition. Each node
is assigned a task, and the DBSCAN algorithm is utilized to cluster the dataset in each
node. When the DBSCAN algorithm runs on each node, it chooses appropriate values
of Eps and Minpts based on the number of data and the rate of change of the value.
After the node completes the calculation task, the result is returned to the master node.
At this point, the distributed clustering phase is complete.

(5) The distributed clustering process generates three sets of clustered sub-results that
need to be merged in this stage. To accomplish this, it is necessary to examine
whether the boundaries of each cluster in the three clustering results produced by
the DBSCAN algorithm can be merged. After receiving the three clustering results
from the DBSCAN algorithm, the master node merges them as the final step in the
entire Stream-DBSCAN model. The merge calculation for the entire dataset should
be simple and efficient to maintain the processing speed of the entire model and
prevent distributed computation from becoming meaningless. To effectively merge
the clustering results from the three nodes and minimize the processing time, the
Stream-DBSCAN model utilizes the overlapping and merging rule for clustering
results, as shown in the figure below:

Figures 3a and 3b are the DBSCAN clustering results returned by computer nodes A
and B, respectively.
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(i) Calculate the centroid points of each cluster in Figure 3a,b, and obtain two centroids
of A and B.

(ii) Find the edge points closest to the centroid point of the other cluster in cluster A and
cluster B, respectively, as shown in Figure 3c, for two points a and b.

(iii) Calculate the distances, LAb and LBa from the edge points in cluster A and cluster B to
the centroid of another cluster (Figure 3c).

(iv) Compare the size relationship between LAb, LBa, and Eps, respectively, if LAb, LBa < Eps,
then merge the two clusters A and B.

The master node merges the clustering results of the three computer nodes according
to the above-mentioned merging rules to obtain the final clustering result.
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The entire model process is illustrated by Figure 4.
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The Stream-DBSCAN clustering model facilitates parallel operation on three com-
puting nodes during the clustering process for streaming data, resulting in a significant
reduction in the clustering algorithm’s running time. Additionally, the model implements
overlapping merging as a rule to ensure the availability of clustering results.

Using the Stream-DBSCAN clustering model, we obtained the clustering results of
200,000 water quality data, which consist of three factors: pH, NH4N, and turbidity. These
factors affect the clustering results, whereas the time of non-influencing factors. The cluster-
ing process utilized the values of the three water quality indicators at a specific time point
as a reference for clustering and merged similar water quality conditions corresponding to
different times into one category. Therefore, analyzing the clustering results only requires
referring to the time attribute in the clustering results.

After analyzing the relationship between the water quality situation represented by
each cluster and the time attribute distribution of each element in the cluster, we discovered
the pattern of water quality changes in Yantai Menlou Reservoir.

4. Experiment and Analysis

The experiment was conducted using the Flink stream distributed computing frame-
work, with Java as the programming language. The input variables for the experiment
were pH value, NH4N, and turbidity. As the dataset had a low dimension, single-machine
three-thread parallel computing was utilized to simulate distributed computing. Cluster
analysis was performed using the proposed stream-DBSCAN model in Figure 4, and the
reservoir water quality was analyzed and predicted based on the cluster results.

4.1. Data Analysis

Figure 5 displays the change trend of the 200,000 data volume of pH value, NH4N,
and turbidity over time. The horizontal axis represents the sequential number of the data
based on their timestamp.

The analysis results reflect the change rate of the three-dimensional index, where the
pH value changes relatively gently (Figure 5a). The changes in NH4N can be divided into
three stages. During the first stage, the data values varied greatly and frequently between
the x-axis [20,000, 40,000]. The value then gradually tends to 0 on the x-axis [60,000, 150,000].
After reaching a peak value around 150,000, the value enters a slowly decreasing phase
(Figure 5b). The turbidity data has been repeatedly and violently changing between 0 and
1000 (Figure 5c).

Table 2 displays the data characteristics of pH, ammonia nitrogen, and turbidity in the
dataset, where the minimum value of pH, NH4N, and turbidity is 0, and the maximum
value of NH4N and turbidity is 1000. The primary reason for this data is that the sensor
was disturbed, or the water environment was temporarily severely polluted.
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Table 2. Dataset characteristics.

Index Totle S.D. Avg Min Max

PH 200,000 0.365684062 8.4248135 0 10.68473
NH4N 200,000 44.60782894 3.2476836 0 1000.000

Turbidity 200,000 92.26919696 39.706503 0 1000.000

4.2. Clustering Results

After conducting a staged test with DBSCAN parameters Eps set to 0.05 (L2 norm)
and Minpts set to 20, the clustering results are convenient for subsequent analysis. Table 3
displays the clustering results when the distributed node numbers are set to 3. A total of
5 clusters are classified, where clusters I–IV are small data clusters, and cluster V is a large
data cluster. Meanwhile, 32,159 water quality indicators have not generated clusters as
they are considered noise points by the system.

Table 3. Clustering results when the distributed nodes are set to 3.

Cluster Number

I 147
II 1899
III 970
IV 1198
V 163,624

Noise 32,159

In general, the results indicate that cluster v is relatively stable, as the three indicators
are close to the data mode. Cluster v accounts for 81.8% of the total monitoring time,
representing the normal water quality situation of the reservoir during May to August.
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On the other hand, clusters I–IV have a smaller amount of data but larger 3D data values,
with secondary peak values indicating a significant change in water quality during a
certain period of time. The noise point values cannot form clusters as they fail to meet the
density requirement due to their large change rate. These points correspond to several
main peak values and nearby points in the line graph. Further analysis reveals that NH4N
and turbidity noise points were far higher than the average value, indicating severe water
quality pollution in the reservoir during those time periods.

The changes in pH, NH4N, and turbidity, with noise points excluded, are depicted in
Figure 6. Clustering was performed using DBSCAN, resulting in a reduction in the variation
range of the three-dimensional water quality numerical curves, particularly for turbidity
(Figure 5c). A significant number of extreme points in Figure 4c were classified as noise
points, providing evidence that the Stream-DBSCAN model has achieved a satisfactory
noise reduction effect.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 12 of 16 
 

Table 3. Clustering results when the distributed nodes are set to 3. 

Cluster Number 
I 147 
II 1899 
III 970 
IV 1198 
V 163,624 

Noise 32,159 

In general, the results indicate that cluster v is relatively stable, as the three indicators 
are close to the data mode. Cluster v accounts for 81.8% of the total monitoring time, rep-
resenting the normal water quality situation of the reservoir during May to August. On 
the other hand, clusters I–IV have a smaller amount of data but larger 3D data values, with 
secondary peak values indicating a significant change in water quality during a certain 
period of time. The noise point values cannot form clusters as they fail to meet the density 
requirement due to their large change rate. These points correspond to several main peak 
values and nearby points in the line graph. Further analysis reveals that NH4N and tur-
bidity noise points were far higher than the average value, indicating severe water quality 
pollution in the reservoir during those time periods. 

The changes in pH, NH4N, and turbidity, with noise points excluded, are depicted in 
Figure 6. Clustering was performed using DBSCAN, resulting in a reduction in the varia-
tion range of the three-dimensional water quality numerical curves, particularly for tur-
bidity (Figure 5c). A significant number of extreme points in Figure 4c were classified as 
noise points, providing evidence that the Stream-DBSCAN model has achieved a satisfac-
tory noise reduction effect. 

    
(a) (b) 

  
(c) 

Figure 6. Changes of each index after noise reduction. (a) pH; (b) NH4N; (c) turbidity. Figure 6. Changes of each index after noise reduction. (a) pH; (b) NH4N; (c) turbidity.

Figure 7 depicts a comparison of the 200,000 data sets before and after the noise
reduction process in the form of a three-dimensional chart. The coordinate interval of
NH4N and turbidity in Figure 7a ranges from 0 to 1000, and some sparsely distributed
points can be observed. In Figure 7b, the pH coordinate interval ranges from 6 to 9, the
NH4N coordinate interval ranges from 0 to 4, and the turbidity interval ranges from 0 to 6.
The clustering process effectively removed the sparse points in Figure 7a as noise points
through the clustering algorithm, while the points in Figure 7b maintain the characteristics
of high-density clustering and the relative distances between clusters are maintained.

We conducted a similar analysis on the results processed by the DBSCAN-Stream
model, and the findings are presented in Table 4. The eigenvalues of the water quality data
have undergone changes, with the model identifying most of the special peaks through
noise reduction. These peaks represent instances of sensor interference or sudden pollution
of water quality, which have significant practical implications.
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Table 4. Data set characteristics after noise reduction.

Index Totle S.D. Avg Min Max

pH 167,840 0.261720083 8.4619434 6.093347 9.175494
NH4N 167,840 29.57231904 0.72258126 0 4.078737

Turbidity 167,840 8.499657004 20.709381 0.52096874 61.88089

4.3. Data Relationship Analysis

The cluster analysis results indicate that cluster V has no regularity as it covers every
time period of the day, while other clusters have smaller scales, suggesting that the water
quality changes differently from the normal water quality during a certain time period on
some dates, either good or bad. The timestamps of each point in I–IV clustering exhibit
periodic changes. The clusters are arranged based on the time attribute, and it is observed
that I–IV clusters have distinct time segment characteristics. The water quality in the
reservoir is divided into four grades, where a higher grade indicates worse water quality
(Table 5). Cluster IV represents good water quality, and the corresponding time stamps are
mostly during the period from 6:00 a.m. to 8:00 a.m., after which the water quality starts to
deteriorate. Cluster III represents the time period from 12:00 p.m. to 3:00 p.m., and cluster
II represents the water quality from 6:00 p.m. to 8:00 p.m. Cluster I represents the water
quality from 8:00 p.m. to 12:00 a.m. The water quality situation represented by cluster V
is between 2 and 3, which can be considered as the average situation of the water quality
in the reservoir. The analysis results suggest that the water quality in Menlou Reservoir
follows a daily variation rule where the water quality is generally better in the morning
and worse in the evening.

Table 5. Daily variation rule of water quality in the Menlou Reservoir.

Cluster Time Quality

I p.m. 8:00–p.m. 10:00 4
II p.m. 6:00–p.m. 8:00 3
III a.m. 12:00–p.m. 3:00 2
IV a.m. 6:00–a.m. 8:00 1

Figure 8 illustrates the comparison between the number of elements in each cluster and
the total number of elements in the corresponding time period. Based on the calculation, it is
found that the points with a regular reaction time in clusters I–IV account for approximately
71% of the total.
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4.4. Distributed Time Consumption Analysis

After conducting multiple experiments, we recorded the time required for the Stream-
DBSCAN model to process 200,000 datasets while setting different numbers of nodes. The
time consumption curve is presented in Figure 9. It is evident from the graph that the
processing time gradually decreases with an increase in the number of nodes. However,
the rate of change of the curve gradually decreases as the number of nodes increases.
This is because the increased number of distributed nodes leads to increased computa-
tional complexity during the merger process. Consequently, when the number of nodes
approaches infinity, the time consumption curve reaches a minimum value while ensuring
the same dataset.
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5. Conclusions

The Stream-DBSCAN model not only meets the real-time data processing requirements
in water quality management, improving the response speed of management departments
to water quality changes, but also reflects changes in water quality and pollution time
nodes in clustering results. Currently, water quality detection methods mainly rely on
fixed-point detection by water stations. However, by utilizing the Stream-DBSCAN model,
water stations can achieve automatic detection and data analysis, enabling all-weather,
fine-grained, and all-indicator monitoring and thereby improving decision-making effi-
ciency. This model is not limited to the three dimensions tested in this experiment, and
different parameter groups can be set for clustering processing as needed. By inputting
various water quality indicators with reasonable weights, the Stream-DBSCAN model can
output corresponding clustering results with the desired focus, providing more scientific
and intelligent guidance for water quality management. It is worth mentioning that the
model adopts DBSCAN as the core processing algorithm, inheriting the drawbacks of the
DBSCAN algorithm. In the face of different combinations of water quality indicators, it is
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necessary to determine appropriate Eps and Minpts parameters through pre-experiments,
which presents some resistance to practical applications. In future work, we will focus on
parameter adaptation in the DBSCAN algorithm, updating parameters through feedback
from clustering results, and improving the model’s usability.
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