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Abstract: System-of-systems (SoS) architecture is crucial in managing complex and interconnected
systems. However, the description and modeling of SoS architecture pose significant challenges and
require a structured and organized approach. In this study, a metamodel for SoS architecture that
considers both structural and behavioral perspectives is defined. The metamodel is then mapped to
ontologies that are enhanced with a flow-based extension to characterize architecture views. On this
basis, an SoS capability ontology (SoSCO) and an SoS operational ontology (SoSOO) are built with
factors, relationships, and flows. A four-step architecture process for developing capabilities and a
five-step architecture process for operational modeling are provided based on the ontologies. The
proposed approach is applied in a search and rescue case study, demonstrating its ability to improve
operability in the early design stage. The process is implemented using the Unified Architecture
Framework (UAF) so that various stakeholders and engineers can better understand and develop
an SoS.

Keywords: system of systems engineering; ontologies; model-based system engineering; architecture
modeling; UAF

1. Introduction

The advancement of high technology, particularly in information technology, has
led to a significant increase in the frequency and closeness of connections and interac-
tions between systems. As a result, system of systems (SoS) [1,2] and SoS engineering
(SoSE) [1,2] have emerged as new areas of research in various fields such as military [3],
aerospace [4], and health care [5], among others. The concept of architectural design in civil
engineering has inspired the integration of architecture into SoSE to manage complexity
and aid in system development and integration [6]. Architecture is the conceptual model
that describes the fundamental properties of a system in its environment, including its
components, relationships, and principles for design and evolution [7,8]. More particu-
larly, an SoS architecture encompasses not solely its constituent systems (CSs) but also the
interconnections and communication processes among them via their interfaces [9]. An
Architecture Framework (AF) is a set of conventions and common practices established
to guide the description of architecture within a specific domain [7]. In essence, the AF
comprises many viewpoints (metamodel) covering various stages of the system life cycle
and generating architecture views (models) to address the concerns of stakeholders [10].

AFs have been developed to model the complex relationships in SoSs and describe
their architecture [11]. However, AFs are complex and time-consuming to create and imple-
ment, requiring significant resources such as time, money, and expertise [12]. The values
of architecture descriptions are still under debate due to the construction of architecture
views (or simply, views) and the development process of architecture viewpoints (or simply,
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viewpoints). The construction of views is often based on predefined scenarios and lacks
analytical support, with vague or incomplete elements such as capability taxonomy, capa-
bility dependency, operational performer taxonomy, and operational activity flow present
in early design stages [13]. The “Fit-for-Purpose” principle, introduced by the Department
of Defense Architecture Framework (DoDAF) [8], simplifies architecture design and re-
duces development costs. However, successfully implementing this principle depends on
clarifying relationships among views. While experienced experts may have more flexibility
in applying this principle, less experienced engineers may encounter difficulties due to the
lack of straightforward architectural processes.

Proposing an architecture development process for SoSs is challenging due to signif-
icant gaps in current modeling practices. Firstly, modeling languages lack well-defined
semantics for SoS metamodels, such as Systems Modeling Language (SysML) [14], which
limits their rigor [15]. Secondly, the complexity of SoSs requires representing architecture
through multiple perspectives from different domains [16] (e.g., strategic, operational, and
resource), posing the risks of misunderstandings and difficulties in bridging these domains.
Finally, even within a single domain, selecting the appropriate views and determining
their order is challenging due to the variation in model kinds (e.g., taxonomy, structure,
connectivity, and process) [16].

Although SysML has limitations in describing SoS architecture, it can be enhanced
by incorporating ontologies and reasoning as a complement [17,18]. Ontology is a formal
and rigorous approach to knowledge representation, which can provide precise and un-
ambiguous semantics for terms [19]. Several scholars and institutions have developed
ontologies to depict different domains and applications by integrating the elements of a
system’s architecture [20,21]. Building ontologies is a promising way to create a knowledge
repository for SoS architectures. At the same time, a metamodel provides the founda-
tion for defining basic concepts and relationships necessary for ontology creation and
reasoning [22]. Despite differences in architectural elements across domains, they can be
correlated with the formal semantics of ontologies. Views developed using different model
kinds can be represented through various flows and relationships, including generalization,
composition, dependency, connector, message, and transition. Accordingly, the selection
and the sequence of views can be specified based on the organization of these relationships
and flows.

Motivated by the observation above, SoS metamodels and ontologies are proposed to
provide semantics for a shared understanding. The novelty of our work lies in introducing
an ontology-based approach with a flow-based extension to characterize the SoS strategic
and operational views of AFs. This approach facilitates the understanding and adoption of
architecture frameworks by SoS engineers. The significance of our work lies in providing
an explicit comprehension of the relationships between different views through flow-based
ontologies. By outlining the architectural process required to connect these views, our
approach provides engineers with easy-to-use steps, consequently improving the efficacy
of architecture frameworks in practical scenarios.

This paper is organized as follows. Section 2 provides a review of related work.
Section 3 introduces SoS metamodels, the SoS capability ontology (SoSCO) based on factors
and relationships, and the SoS operational ontology (SoSOO) based on relationships and
flows. Section 4 describes the design steps of the strategic architecture. Section 5 illustrates
the design steps of the operational architecture. Section 6 discusses the advantages and
disadvantages of the proposed approach. Section 7 concludes this study and summarizes
future works.

2. Related Work
2.1. Architecture Framework

AFs serve different purposes and are defined using metamodels. Widely used AFs
include Zachman [23], the Open Group Architecture Framework (TOGAF) [24], and the
Department of Defense Architecture Framework (DoDAF) [8]. Although the Zachman
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framework does not explicitly propose the concept of “enterprise architecture”, it is a pio-
neering multi-perspective framework emphasizing the hierarchical and multi-perspective
nature of complex systems’ cognition. TOGAF defines an enterprise as “a collection of
organizations with a common goal”. Therefore, an SoS can also be considered a type of
enterprise, and AFs are an efficient way to handle SoSs. While the Zachman framework
and TOGAF define concepts with ambiguity, DoDAF takes data as the core and defines
DoDAF Metamodel (DM2) for different situations. However, DoDAF is tailored by the
Department of Defense to its military doctrine and may not apply directly to other coun-
tries or civilian domains. Governments and organizations such as the UK and NATO
have proposed architecture frameworks, including the Ministry of Defense Architecture
Framework (MODAF) [25] and NATO Architecture Framework (NAF) [26], respectively,
for their military domains. Matching metamodels and defining concepts that effectively
communicate between AFs is challenging due to their differing contents [27]. The Unified
Architecture Framework (UAF) inherits and develops DM2, is compatible with existing
AFs, and provides a more standardized approach to architecture description. UAF extends
the application from the military domain to the general enterprise domain [28]. However,
the UAF’s metamodel comprises over 80 views with complex concepts and relationships,
which challenges selecting appropriate views and organizing them in proper order. Thus,
metamodel should be tailored for modeling SoS views in practice.

2.2. SoS Architecture Development

DoDAF’s “six steps”, MODAF‘s “six steps”, and NAF and TOGAF’s Architecture
Development Method (ADM) guide how to build the system architecture. However,
the specific modeling process lacks clarity, leading to low operability and difficulty for
engineers to understand and practice architecture development. UAF version 1.2 [29]
presents a UAF-oriented enterprise architecture guideline that provides comprehensive
guidance for refining architecture by defining steps to create views. However, hundreds
of specific steps are introduced in the nine significant steps defined by the UAF-oriented
Enterprise Architecture Guidelines [30], which leads to complexity and ambiguity in
applying AFs to model SoS architecture due to many-to-many logical relationships between
steps and unclear execution sequences.

Dandashi and Hause [31] discussed using UAF for architecture modeling with only
two architecture views. Eichmann et al. [32] proposed an SoS development approach using
UAF with the V-model development process. Zhang et al. [33] introduced a UAF-based
development method for air traffic management. However, the transition between the
domains of AFs is ambiguous or missing, and the selection and order of architecture
views in a single domain depend mainly on engineers’ experience. Thus, the architectural
approach’s operability and practicality still require improvement.

2.3. Ontology

SysML furnishes a user-friendly graphical syntax, exemplified by the Block Defini-
tion Diagram (BDD) that models system concepts and relationships [34], as well as the
Internal Block Diagram (IBD) that illustrates intricate system architecture and component
interconnections [35]. Nevertheless, it is notable that the language is deficient in formal
semantics [36]. Ontology is a formal and rigorous approach to knowledge representation,
which can provide precise and unambiguous semantics for terms [19]. Based on description
logic, web ontology language (OWL) is commonly used in building an ontology. Ward-
hana et al. [17] proposed a transformation process to concert a SysML requirement diagram
into an OWL ontology file, primarily focusing on requirements in the context of System en-
gineering (SE). However, as SoSE involves multiple independent systems working together
as a more extensive system, the transformation process must account for the additional
complexity arising from various elements beyond requirements. Zhu et al., introduced an
approach to SoS mission modeling and analysis using ontology technology [37]. However,
this ontology-based approach that focuses only on mission analysis is difficult to bridge
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the strategic and operational domains of the SoS architecture. Baek et al. [22] developed
a conceptual metamodel to represent SoS ontologies, which could be a meaningful way
to analyze SoS characteristics instead of architectures and hence, cannot be applied to the
design stage of SoS architecture.

3. Development of SoS Metamodels and Ontologies

Stakeholders use artifacts, such as diagrams and models, to facilitate communica-
tion and understanding in system development [38]. This development process involves
activities performed by different organizations, including conceptualization and goal defi-
nition. Architecture Frameworks (Afs) are utilized to identify and define necessary artifacts
through interrelated metamodels [10]. Developing a metamodel for SoS ontologies can en-
able engineers to obtain overall domain knowledge and facilitate communication between
CS-level managers and engineers, providing a domain-general representation of an SoS [22].
This section presents an SoS metamodel for comprehending the mission structurally and
behaviorally. The metamodel is then represented in OWL language, enriched through
flow-based extensions.

3.1. Mission-Centric SoS Metamodel Based on DMM

The traditional SysML requirement diagram decomposes requirements in SE, but
its use in analyzing the SoS mission should consider the SoS context [39]. SoS mission
management guides the entire process of UAF development [28]. Architecture development
stages should interact with mission management to ensure domains align with the mission
and to update missions iteratively. The decomposition of SoS missions can be achieved by
mission-related attributes [39] or the ontology-based mission decomposition method [37].
While detailed sub-missions can be derived from top-level missions, over-complicating the
mission phase by adding too many attributes for formalization and decomposition should
be avoided. Furthermore, analyzing relevant attributes in the mission phase alone may be
insufficient, requiring the support of multiple perspectives.

We propose that one of the intentions of SoS Afs is to translate the SoS mission
into SE requirements. To enhance consistency among various SoS stakeholders, UAF
defines multiple domains, including strategic (St) and operational (Op), which can be
utilized to refine mission analysis. The St domain’s capability element is critical in an
SoS architecture [40] because it assists in developing solutions-based capabilities [41], and
architecture-based capability engineering aids in conceptualizing the capabilities expected
to be achieved by the SoS architecture [42]. Therefore, the proposed metamodel in this
study supports SoS architecture modeling by describing the Op domain from structural and
behavioral perspectives, and capabilities in the St domain bridge these two perspectives.

The UAF Domain Meta Model (DMM) provides the foundation for implementing UAF
and is widely used in many applications [10,33,43]. It comprises six elements: Individual,
Type, Abstract, Tuple, Enumeration, and External Type, and their meanings are based
on concepts proposed in the International Defense Enterprise Architecture Specification
(IDEAS) [44]. The proposed SoS metamodel, based on DMM, indicates that missions can
be achieved by capabilities from both structural and behavioral perspectives, as depicted
in Figure 1. In the SoS metamodel, the asterisks appearing at either end of an association
relationship serve to denote the multiplicity of the relationship, indicating the number of
instances of one element that can be related to one or more instances of another element.

The representation of a mission in the metamodel, denoted by Type, is linked to other
elements through three distinct sets of relationships defined by Tuple. These relationships
include trace, refine, and satisfy, which respectively outline the capabilities required to
achieve the mission, operational activities needed for behavioral analysis, and resource
allocation from a structural perspective. To represent the constituent systems (CS) of the
SoS, the Performer is used, which can be physical resources (ResourcePerformer) or logical
resources (OperationalPerformer). As SoS is a collective term for multiple CSs, there is
no single CS in the metamodel to represent the concept of SoS. Instead, the metamodel
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investigates how CSs implement their capabilities to comprehend and describe the SoS.
The Process can be captured as an OperationalActivity to represent a logical process or
function specified within the context of a ResourcePerformer capable of performing it.

Figure 1. A simplified version of the SoS metamodel.

3.2. OWL-Based Representation of SoS Metamodel

The proposed SoS metamodel comprises elements classified into Abstract, Type, and
Tuple. Therefore, the corresponding OWL terms for these element types must be speci-
fied in the ontology space, as shown in Table 1. The Protégé ontology editing software
(version 5.5.0) [45] models the example elements presented in the SoS metamodel, as shown
in Figure 2.

Table 1. SoS metamodel to OWL representation.

Metamodel Term OWL Term Example Elements in the SoS Metamodel

Type Class Capability, Mission, OperationalPerformer, OperationalActivity
Abstract Class Process, Performer

Tuple Object property Exhibits, isCapableToPerform, mapsToCapability, trace

Figure 2. OWL representation. (a) OWL-based representation of the Type and Abstract, (b) OWL-
based representation of the Tuple.

The Type is transformed into a class in ontology, as shown in Figure 2a, where an
inheritance relationship links the “Performer” class and the “OperationalPerformer” class.
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Similarly, the Abstract is transformed into a class in ontology, exemplified by the “Pro-
cess” and its sub-elements “Function” and “OperationalActivity”. While “Process” is an
abstract class and cannot be instantiated in practical cases, serving only for analysis and
reasoning purposes. However, the sub-classes “Function” and “OperationalActivity” can
be instantiated, representing these instances as individuals in the ontology.

A Tuple means a relationship or flow between two elements and can be directly repre-
sented in OWL, which focuses on tuple relationships, such as “A contains B”. Therefore,
the Tuple in the metamodel is transformed into an object property in ontology, as illustrated
in Figure 2b. For example, the relationship between “Capability” and “Mission” can be
represented as an object property named “trace”.

To address the fact that the concept of an SoS is not explicitly represented in the SoS
metamodel, an SoS class is added to the ontology using the “EnterprisePhase” stereotype
from the UAF DMM. The interconnection between the SoS and its constituent CSs is
established through the “hasCS” object property, while the “hasMission” object property is
employed to depict the connection between the SoS and its mission.

Based on the above analysis, Figure 3 shows the SoS ontologies modeled in Protégé.

Figure 3. OWL-based representation of SoS ontologies.

3.3. Extending SoS Ontologies Based on Flow

The proposed metamodel and ontology offer fundamental concepts for comprehend-
ing SoS but require supplementary semantics to aid the development of architecture views.
This section addresses this gap by incorporating relations, flows, and factors into the SoS
ontologies. The rationale and related concepts are presented, followed by establishing the
SoS capability ontology (SoSCO) and SoS operational ontology (SoSOO) for storing and
processing the proposed relationships and flows.

3.3.1. Rationale and Related Concepts

SoS is distinguished from a single system by the managerial and operational inde-
pendence of the CSs [46]. To fully describe and model SoS, strategic domain views are
needed to account for “managerial independence”, and operational domain views are
required to address “operational independence” [47]. This study focuses on both strategic
and operational domains.

Selecting architecture views and their sequence for a domain is challenging due to
various model kinds (e.g., taxonomy, structure, connectivity, and process), capturing unique
descriptions of SoS architecture. Flow-based functional representation [46] is a common
approach in SE to characterize functions as transformations of flows. However, analyzing
SoS architecture requires considering multiple domains and model kinds, and various
flows and relationships must be described to reflect the main concerns of the different
model kinds.
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This study proposes six model kinds and corresponding relationships and flows for
them, as shown in Table 2. Instead of solely relying on the model kind’s name, engineers
can identify the focus of architecture views by examining the proposed relationships and
flows. For example, a generalization relationship is defined as a hierarchical structure
whereby a specialized (child) element is developed based on a more generalized (parent)
element. The proposed context flow visually links general elements, enhancing the semantic
interpretation of the generalization relationship. The context flow does not provide any
specific properties of the flow but serves a schematic function within the relationship.
A composition represents a whole–part relationship and is a type of aggregation. A
dependency relationship between elements, similar to supporting functions [38], represents
prerequisites that enable other elements. A connector flow summarizes exchanges of
information, systems, personnel, and energy, among other things. A message flow defines
specific communication between elements during an interaction. An edge flow signifies
the flow of objects or information between activities, while a transition denotes a change in
the state of the system or object being modeled.

Table 2. Relationships and flows in selected model kinds.

Model Kinds Relationships Flows

Taxonomy (Tx) Generalization Context
Structure (Sr) Composition /

Connectivity (Cn) Dependency Connector
Sequences (Sq) / Message

Process (Pr) / Edge
State (St) / Transition

This study defines relationships and flows based on the Tuple from IDEAS for architec-
ture modeling in the strategic and operational domains. Figure 4 illustrates three relation-
ships for capturing capabilities in the strategic domain and another three relationships and
five flows for the operational domain. As illustrated in Figure 1, the performer exhibits capa-
bility, represented by activities capturing a logical process. The specific relationships/flows
that describe the operational performer are OperationalContext, PerformerGeneralization,
PerformerComposition, OperationalConnector, and OperationalMessage, while those used
to describe the operational process are ActivityComposition, OperationalActivityEdge, and
Transition. Three questions should be answered to construct AFs for SoS architecture based
on the relationships and flows in the early design phase:

Figure 4. Flow-based representation in strategic and operational domains.
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1. How to identify the general and specialized elements of the generalization relationship
in the strategic domain?

2. How to identify the context flow in the operational domain based on the capabil-
ity analysis?

3. How to identify the edge flow’s source, target, and swimlanes?

These questions connect the mission and capability analysis, strategic and operational
domains, and operational engineering activity. The relationships/flows that correspond
to these questions are highlighted in red in Figure 4 and require specific methods for
identification and organization.

3.3.2. SoS Capability Ontology (SoSCO)

The UAF defines capabilities as being realized through combinations of ways and
means. SoS metamodels frequently refer to capabilities [48–50], such as the “simple” and
“complex” types that describe capability attributes [40]. However, these terms remain vague
and require necessary attributes and relationships to support the SoS strategic architecture
model process. We propose that SoS missions are external demands, while capabilities are
internal abilities that enable SoS to adapt to the external environment. Complementary
capabilities related to each other through relationships can trace the mission, with each
capability characterized by its attributes. Figure 5 presents the core terminology of SoSCO.

Figure 5. Core terminology of SoSCO.

The sub-mission is inherited from the mission to specify the top-level SoS mission
breakdown. The trace relationship illustrates what capabilities should have to realize mis-
sions. However, when modeling an SoS with AFs, it is crucial to identify the relationships
between capabilities and determine the appropriate modeling order. CapabilityRelation-
ship, which encompasses Generalization, Composition, and Dependency, can be used for
this purpose. Additionally, the concepts of CapabilityFactor, including TemporalFactor,
StructuralFactor, and OperationalFactor, enrich the semantics of the ontology to reason
about the general and specialized elements of the generalization relationship. Temporal-
Factor is a critical component of ensuring the coherence of capabilities with the strategic
phase plan of the SoS. Specifically, TemporalFactor considers time-related factors that may
influence the performance of constituent systems within an SoS, such as the duration
of operations or the frequency of events. StructuralFactor specifies that capabilities are
realized through various combinations of realistic entities. StructuralFactor refers to the
physical and logical structure of the constituent systems in an SoS, such as the hardware
and software components, the communication protocols, and the data formats. Opera-
tionalFactor provides information on the purpose of operational activities and physical
functions to enrich the context of the above two factors. After establishing the generaliza-
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tion relationship, the description of capabilities can be complemented by composition and
dependency relationships.

3.3.3. SoS Operational Ontology (SoSOO)

As the SoSCO emphasizes the relationship between capabilities (what), then it is
necessary to make a description of the performers (who) can exhibit capabilities and
activities (how) that can support capabilities. To this end, the SoS operational ontology
(SoSOO) is defined as shown in Figure 6. The SoSOO illustrates the refinement of missions
by mapping structure and behavior. The boxes with dashed lines represent the flows.

Figure 6. Core terminology of SoSOO.

OperationalPerformer is a logical entity that executes OperationalActivities to ma-
nipulate resources. ConceptRole denotes a role played by an asset or location in an SoS
operational context [29]. OperationalContext provides a visual connection between high-
level operational concepts. Although linking the operational structure with capabilities is
straightforward, such as OperationalPerformer exhibits Capability, such mappings are too
simplified to reflect the underlying relationships between operational ontologies. Hence,
OperationalActivity is used to refine missions in the operational domain and support
capabilities (mapsToCapability). Since capabilities specify their expected behaviors (Op-
erationalActivity), and structures (OperationalPerformer) realize capabilities through the
behaviors they can perform, matching the behaviors improves the mapping between ca-
pabilities and operational structure. The proposed flow-based representation introduces
various flows in the SoS operational architecture to bridge structure and behavior. Op-
erationalExchange asserts the flow’s existence between OperationalPerformers, which
can be classified as follows: OperationalActivityEdge denotes the flow of resources (ob-
jects/information) between OperationalActivity; Transition indicates the state change of a
single OperationalPerformer under the influence of the OperationalExchange with other
OperationalPerformers and the internal OperationalActivityEdge; OperationalMessage
shows the execution sequence of OperationalExchange among multiple OperationalPer-
formers in operational interaction scenarios.

4. SoSCO-Based Architectural Steps and Application Example

This study describes the proposed architectural process using a search and rescue
(SAR) case study used widely in SoS-related research [51,52]. The civilian maritime SAR
scenario involving a distressed yacht is modeled using UAF. Initially, a monitoring device
receives the distress signal from the ship and transmits it to a command and control
(C2) center. Subsequently, the C2 center coordinates the search and rescue operation



Appl. Sci. 2023, 13, 5419 10 of 25

involving helicopters, naval ships, and civilian sea rescue organizations. A mainstream SoS
architecture modeling platform, Cameo Enterprise Architecture, models the SAR case.

The strategic architecture is primarily anchored on the capability defined by the factors
and relationships specified in the SoSCO. This section outlines ontology-based modeling
steps for strategic architecture, which leverage the SoSCO to identify capabilities that
match desired attributes and relationships. Figure 7 illustrates four architectural steps
in the strategic domain, where the parallelograms denote elements such as mission and
CapabilityFactor, and white rectangles represent engineering activities or methods. The
green boxes denote the architecture views, while the orange boxes indicate the utilization
of CapabilityRelationship.

Figure 7. Four-step process of the strategic domain.

4.1. Step 1: Identify Operational Factors with Requirement Analysis

This step aims to connect mission analysis with capability factors to identify the pur-
pose of operational activities and physical functions. It is necessary to gradually decompose
the top-level missions and break down complex missions into simple ones. The Opera-
tionalFactor in the SoSCO can be extracted from sub-missions. Figure 8 displays traceability
relationships from strategic domain to missions. A method that creates stereotypes extend-
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ing existing meta-classes [53] is applied for modeling SoS missions. The stereotype Mission
inherits the properties of its super stereotype Requirement from SysML.

Figure 8. Identify operational factors by tracing sub-missions.

4.2. Step 2: Identify Temporal Factors with Visions and Goals

In this step, the SoS is divided into phases of the development plan, each with specific
goals that must be achieved for mission success [16]. The required capabilities to achieve
the goals vary across different phases, and the TemporalFactor in the SoSCO is used to
identify and segment these phases. The number of phases decides the TemporalFactor
number. Only the number of phases must be determined in the first modeling process. As
the SoS architecture is iteratively developed, the models of the phases will be completed by
associating them with capabilities, operational architecture, goals, start and end times, and
other elements.

The Strategic Process (St-Pr) view of the UAF, implemented by the SysML block
definition diagram (BDD), shows the relationship between phases, as illustrated in Figure 9.
The SAR SoS has four goals, which can be assigned in three different time-span phases, with
each temporal factor corresponding to a phase. Each strategic phase can be instantiated and
associated with different capabilities, operational architecture, and other elements. These
elements will be gradually refined in subsequent steps.
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Figure 9. Strategic Processes (St-Pr) of the SoS phases.

4.3. Step 3: Define Capabilities Based on Factors

This step addresses question 1 and involves identifying capabilities by combining the
three capability factors using a three-level approach to defining capabilities.

At the top level, basic capabilities are derived from a combination of TemporalFactors
and StructuralFactors. The Semantic Web Rule Language (SWRL) is a rule language that
semantic web reasoners can process to enable automated semantic inference [54]. SWRL
rules can be specified in an implicit form and are well suited for describing filtering
rules [55]. Propositions involved in the rules are represented as atoms of P(x,y), where P
is an object property. In P(x,y), the source element x represents the client, and the target
element y represents the supplier. Table 3 shows an example of SWRL rules for creating the
generalization of capability, where the atom correspondsToCapability (?sos, ? c) represents
a transformation of OWL class type from CapabilityFactor to Capability. Figure 10 illustrates
the excerpt facts of SoSCO in SAR after reasoning with SWRL rules in Protégé with a Pellet
reasoner [56]. SAR includes SAR phase 1 and SAR phase 2 as TemporalFactor, and SAR can
be further subdivided into maritime and land-based SAR based on StructuralFactor. These
attributes correspond to various sub-capabilities, and the SoS Search and Rescue corresponds
to the top-level capability SAR. The object property isParentOf represents the generalization
of capabilities. The capabilities can be modeled in the Strategic Taxonomy (St-Tx) view of
the UAF implemented by the SysML BDD, as shown in Figure 11.
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Table 3. SWRL rules for the generalization of capabilities.

Comments SWRL Rules

Generalization reasoned by TemporalFactor SoS(?sos) ˆ TemporalFactor(?tf) ˆ owns(?sos, ?tf) ˆ correspondsToCapability(?sos, ?c) ˆ
correspondsToCapability(?tf, ?tc) -> isParentOf(?c, ?tc)

Generalization reasoned by StructuralFactor SoS(?sos) ˆ StructuralFactor(?sf) ˆ owns(?sos, ?sf) ˆ correspondsToCapability(?sos, ?c) ˆ
correspondsToCapability(?sf, ?sc) -> isParentOf(?c, ?sc)

Figure 10. Excerpt of facts of SoSCO.

Figure 11. Strategic Taxonomy (St-Tx) of capabilities.

At the middle level, the mission should be decomposed into sub-missions, and the
corresponding capabilities characterized by the OperationalFactor of the mission view can be
traced. Figure 11 shows that the capabilities of search, assistance, and recovery are modeled
by verbs based on operational factors of the St-Pr view.

At the bottom level, the captured capabilities are supplemented by additional Opera-
tionalFactors based on domain knowledge to provide a more comprehensive context. On the
one hand, capabilities captured based on sub-mission may lack the information necessary
for explaining their relationship with other operational factors. For example, Figure 11
shows that the C2 center should control the search capability and track information from the
distress signal monitor. On the other hand, capabilities captured based on TemporalFactor
and StructuralFactor also require additional capabilities based on operational factors. For
example, maritime SAR has more capabilities than land-based SAR.

4.4. Step 4: Organize Capabilities Based on Their Relationships

This step involves organizing and representing the capabilities through the compo-
sition relationship to establish the top-level capability and sub-capabilities that must be
achieved together to attain the overall capability. To this end, a cluster of capabilities
based on OperationalFactor can complement the ones with the same TemporalFactor or Struc-
turalFactor in the generalization relationship. The Strategic Structure (St-Sr) view of the
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UAF, implemented by the SysML BDD, can be used to display the class diagram of the
capability clusters.

To support the analysis of the SoS context, capability correlations need to be identified.
Dependencies between capabilities demonstrate that one capability cannot achieve its full
potential without the presence of other capabilities [29]. Based on the capability structure
obtained in the St-Sr view, domain experts can establish the dependency relationship
between capabilities using knowledge about the relationships between OperationalFactors.
We propose using the Strategic Connectivity (St-Cn) view of the UAF implemented by the
SysML internal block diagram (IBD) to address the logical grouping of capabilities within a
specific context and their dependencies.

This Strategic Connectivity (St-Cn) view helps group capabilities and display their
dependencies, as shown in Figure 12, where SAR command and control (C2) depends on the
military C2 capability. Similarly, the assistance, search, and recovery capabilities depend on
the SAR C2 capability, which relies on the distress signal monitoring capability. The SysML
IBD defines capabilities in a specific context, and the dependencies are scoped accordingly.

Figure 12. Strategic Connectivity (St-Cn) of capabilities.

5. SoSOO-Based Architectural Steps and Application Example

The operational viewpoints should leverage the outcomes of the strategic viewpoints
to identify the operational performers needed to execute the designated capabilities for the
SoS [57]. The operational architecture describes the context, operational structure, behavior,
and interchanges required to exhibit capabilities. It is imperative that the operational
architecture links the capabilities in the strategic domain and explains how to describe the
operational structure and behavior. With the SoSOO, a 5-step architecture process for the
operational architecture can be devised, as depicted in Figure 13. The white rectangles indi-
cate the engineering activities or proposed methods, while the blue-filled boxes represent
the views capturing relationships, and the boxes with dashed lines represent the views
capturing flows. The following subsections provide a detailed account of the architecture
process and associated view products.



Appl. Sci. 2023, 13, 5419 15 of 25

Figure 13. Architectural steps of the operational domain.

5.1. Step 1: Bridge Strategic Domain and Operational Domain by Structural Elements

This step, which addresses question 2, aims to clarify the structure of the SoS context,
where the OperationalContext is a visual connection between high-level operational concepts.
Dependencies between capabilities mean the prerequisites that enable other capabilities,
and the supporting functions similar to dependencies can be used for designs based on
causal semantics [58] or temporal relations [55]. Accordingly, dependency can be used to
reason about OperationalPerformer (who) and OperationalActivity (how). The transformation
method from Dependency in SoSCO to OperationalContext in SoSOO involves four steps:

1. Use the depth-first search (DFS) algorithm to search for each capability through
dependency until the one that does not depend on any other capability is found.

2. Cycle from the deepest to the shallowest capabilities and supplement the context
of capabilities by adding the required OperationalPerformer and OperationalContext
between performers. Note that the OperationalContext only schematically conveys
data/control without an explicit type.

3. When the complement process returns to the outermost capabilities (i.e., those not
relied upon by any other capability), list the performers of these capabilities according
to the specific operational scenario.

4. Because the OperationalPerformer for different capabilities may overlap, merge the above
performers and arbitrary connection flows to obtain a high-level operational concept
that can be represented as a picture to facilitate understanding of the SoS context.
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Figure 14 illustrates the context of maritime rescue by showing the SAR operation
involving a yacht in distress at sea. The OperationalContext is modeled as a dashed line with
an open arrow pointing from flow sources to targets. The diagram shows that the monitor-
ing unit receives the yacht’s distress signal and sends it to the C2 center, which coordinates
operations between the helicopter, the navy ship, and the rescue boat. Each model element
may include a graphical depiction and a brief description of the OperationalContext between
the elements. The OperationalContext can represent abstract conceptual relationships and
will be refined in subsequent diagrams.

Figure 14. Operational Taxonomy (Op-Tx) of SoS context with graphics.

5.2. Step 2: Organize Operational Performers Based on Their Relationships

To enhance the understanding of various stakeholders, logical and physical informa-
tion is included in the graphical elements at both ends of the OperationalContext. Therefore,
complementary performers are created based on the StructuralFactor in the SoSCO to com-
plete the logic further. Besides, to refine the TemoporalFactor mentioned in the SoSCO,
relevant performers can be added through the generalization relationship. The Operational
Taxonomy (Op-Tx) view of the UAF, implemented by the SysML BDD, can be used to
model the performers. For instance, Figure 15 illustrates the taxonomy of operational
performers for the SAR phases. As the high-level operational concept diagram describes
the primary context of the SAR, complementary performers should be created to enrich
the context, e.g., a safe place represents what follow-up measures should be taken after
victims are located. Besides, relevant performers such as “Searcher ph2” and “Searcher ph3”
are added to refine the analysis of the search team from a time perspective. A searcher’s
primary role is to locate and evaluate the status of missing persons or objects, while the
primary focus of a rescuer is to deliver prompt aid and care to individuals in distress.
Models with the stereotype of OperationalArchitecture can contain models whose stereotype
is OperationalPerformer. The Operational Structure (Op-Sr) view of the UAF implemented
by the SysML BDD can be used to model composition relationships to support a specific
set of operational performers.
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Figure 15. Operational Taxonomy (Op-Tx) of operational performers.

5.3. Step 3: Capture Structural Flows among Performers

To further refine OperationalContext logically, we propose using the Operational Con-
nectivity (Op-Cn) view of the UAF implemented by the SysML IBD to specify the type and
object name of the object passed on the flow. As the OperationalContext conveys objects
without an explicit type, Figure 13 shows that the OperationalConnector defines the flow ob-
jects exchanged by the OperationalPerformers that generate and consume the stream objects.
Additionally, OperationalContext is complemented by the generalization and composition of
performers, with the result that additional OperationalPerformers on which the flows pass
also should be captured through the OperationalConnector.

Figure 16 presents the Operational Connectivity (Op-Cn) perspective, which illustrates
the stakeholders and their corresponding information exchange interactions involved in
the SAR operation. This view builds on the various types of OperationalPerformer defined
in the Op-Tx and Op-Sr views. These diagrams underscore the crucial role of information
exchange and demonstrate the interactions among OperationalPerformers. For instance, the
distressed party sends the distress signal as information to the search and rescue team.
Other interactions can be exchanged between the OperationalPerformers, such as equipment
and energy.

Figure 16. Operational Connectivity (Op-Cn) of operational performers.

The OperationalMessage represents the order of execution of the OperationalExchange
in the operational interaction scenario, which is captured by the Operational Sequences
(Op-Sq) view of the UAF implemented by the SysML sequence diagram (SEQ). The Op-Sq
view defines time-based behavioral scenarios between operational elements. Figure 17
shows the sequence of interactions for the SAR operation depicted in the Op-Cn view. For
example, as the Op-Cn view shows that the search team will transmit status to the rescue
team and warning order to the safe place, the order in which these two behaviors can be
known in the Op-Sq view.
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Figure 17. Operational Sequences (Op-Sq) of operational performers.

5.4. Step 4: Bridge Strategic and Operational Domains by Behavioral Elements

This step links strategic and operational domains by mapping between capabilities and
activities. A capability is realized once the activity that utilizes it occurs. ActivityComposition
represents that an activity can be composed of several lower-level activities to meet the
required capabilities collectively. The Operational Processes (Op-Pr) view describes the
operations generally conducted by the different operational performers. Figure 18 shows
that a search activity corresponding to the search capability includes monitoring health
and finding victims when a distress signal is received.

Figure 18. Operational Processes (Op-Pr) of operational activities.

5.5. Step 5: Capture Behavioral Flows among Activities Based on the Synthesis Method

This step addresses question 3 by describing the behavior of operational performers
based on the OperationalActivityEdge. To achieve this, we propose a synthesis approach that
involves the following steps:

1. Transforming performers from the Op-Sr view into the heads of partitions within the
SysML activity diagram (ACT) to group all actions (usage of activities) performed by
the same performers.
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2. Transforming activities from the Op-Pr view into actions contained in the partitions
of the ACT.

3. Representing operational connectors from the Op-Cn view by object flows (full lines)
between the partitions in the ACT. Control flows (dashed lines) within each partition
should be informed by domain knowledge.

The Operational Processes Flow (Op-Pr-Fl) view identifies performers based on the
Op-Sr view, describes operational activities based on the Op-Pr view, and determines
input/output flows between activities based on the Op-Cn view. Figure 19 illustrates the
execution of the search activity, involving four performers engaged in a series of activities,
from discovering victims to their placement.

Figure 19. Operational Processes Flow (Op-Pr-Fl) of operational activities.

To capture the state-based behavior of operational performers, we propose using the
Operational States (Op-St) view of the UAF implemented by the SysML state machine
diagram (STM), as described in the SoSOO. This view enables us to model the operational
states of OperationalPerformer, including the behaviors that occur in these states, the Tran-
sitions between states, and the events and guards that cause these transitions. Figure 20
provides an example of the Op-St view, depicting the operational states of the “Searcher
ph1” in the Op-Pr-Fl view. In this example, the search node waits for a distress signal, and
once received, the assignment is validated, and the searcher node transitions to searching
for the victim.
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Figure 20. Operational States (Op-St) of operational performers.

6. Discussion

This study presents an ontology-based development approach to developing SoS archi-
tecture that covers strategic and operational domains. The approach provides a systematic
presentation of multiple perspectives and construction procedures to assist in developing
architecture models. Although the strategic domain is addressed first, it is closely inter-
related with the operational domains of operations, resources, projects, and others. Thus,
after analyzing the other domains, revisiting the strategic domain to revise traceability and
conduct further analysis becomes necessary. For instance, insufficient domain knowledge
in the strategic domain can be improved by constructing the operational architecture. The
operational high-level concept diagram can help domain experts comprehend the mission
decomposition. The traceability mechanism enables the appropriate implementation of
capabilities and facilitates analyzing the effects of changes [43]. This study presents a series
of architectural steps that enable traceability among various entities, including mission
and capability, capability and operational role, and capability and operational activity.
However, the traceability between assigned capability and corresponding CSs may require
additional UAF domains, such as resource (Rs), criteria/standard (Sd), and actual resources
(Ar), which could be considered in future work.

Compared with the ontology-based method for the breakdown of SoS missions [18],
which uses the UAF at the model level before reasoning based on ontology, this study
develops ontology at the metamodel level, thus providing more flexibility for the SoS
modeling based on AFs. Ontologies can help to avoid ambiguities, facilitate information
exchange between modules and external software, and provide a shared understanding
of the design process [59]. In contrast to an ontology-based common conceptual reference
used as a foundation for aircraft design processes [59], we employ the UAF metamodel to
develop an ontology with greater detail on the SoS architecture. This enriched ontology
extends the relationships and flows, facilitating the proposal of architecture steps. Unlike
the semantic approach [60] that seeks to resolve regulatory ambiguity in aircraft design
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and development through process mapping, Unified Modeling Language (UML), and
ontological modeling, we present a set of specific architectural steps that offer simplicity and
ease of use. The conceptual methodology for SoS development provides six steps to select
the preferred SoS [61] but does not implement the modeling process by any architecture
description language. This paper provides detailed steps based on ontology using the
UAF views implemented by SysML. The flow-based functional analysis is applied at the
system level [58], and the flow-based design process is expected to be used in individual
standalone systems [55]. This study introduces architectural steps at the SoS-level, which
can be upstream of the system design in SE.

The SoS modeling process in this paper is considered to develop SoS architecture
based on AFs [13]. The development of architecture models involves selecting from more
than 80 views supported by AFs and building them in a proper sequence. Therefore, the
essential model elements in views such as mission, capability, and operational aspects
should be explicitly described, and their organization and consistency should also be
carefully considered. In particular, organizing elements meaningfully ensures explicit
relationships between views within viewpoints. Better consistency among elements can
improve communication and understanding among stakeholders. Therefore, relationships
between views can be more explicit, and the modeling sequence can be more precise.
Table 4 compares the proposed approach in this paper with three other studies regarding
the descriptions of architectural elements and the consistency between them. It can be seen
that other studies do not explicitly consider the connection between mission and capability.
This paper proposes three factors to analyze and bridge mission and capability. While other
methods describe capabilities and operations, the transition between them is not explicit.
Flow-based representation and related modeling procedures are proposed in this paper
to enrich the organization of the operational domain and strengthen the links between
strategic and operational domains. In addition, some studies use implicit organizational
relationships between views within viewpoints, which may result in a confusing modeling
order. With the increase in the number of models, they may not be fully leveraged in
subsequent models, resulting in decreased efficiency of architecture model development.
To this end, this paper highlights the importance of architecture model development steps
to avoid duplication of efforts and ensure efficient development.

Table 4. Comparison of view-based modeling approaches of SoS architecture.

Mission and
Role [39]

Break down SoS
Needs [18]

Decision
Patterns [13] This Study

Description of Mission + o o +
Description of Capability - - o -

Organization of Capability o - o +
Description of Operational + + + +

Organization of Operational - o - +
Consistency between Mission and Capability o o o +

Consistency between Capability and Operational o - - +

Legends: + means: Abundant content, - means: Moderate content, o means: Implicit or no content.

However, there are still some limitations to the proposed approach. Firstly, the pro-
posed process mainly focuses on strategic and operational architectures, neglecting the
resources (physical) architecture, which is crucial for implementing the operational architec-
ture and explaining the assignment of the operational roles to CSs. Additionally, this paper
does not consider the measure of performance (MoP) and the measure of effect (MoE),
which can be addressed using other UAF model kinds, such as the states, information,
parameters, and constraints. Secondly, although the proposed modeling process reduces
the gap between strategic and operational architecture, some elements of architecture,
particularly those pertaining to operational architecture, are known a priori. It still requires
domain experts to provide domain knowledge, which should be formally captured in the
ontology base to support SoS design based on reasoning [18]. Finally, the proposed process
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needs to be applied to more domains and case studies since the SAR case appears to be
a directed SoS. In contrast, other SoS types, including acknowledged, collaborative, and
virtual, exhibit higher degrees of autonomy of CSs, leading to a complexity that may be
difficult to handle by the SysML-based modeling alone. Therefore, agent-based modeling
may complement SysML-based modeling [62].

7. Conclusions

This study proposes an ontology-based modeling process for architecting SoS in the
early design phase of the SoS to translate SoS missions into strategic and operational
architectures through specific modeling steps based on the UAF views implemented by
SysML. The novelty of this work lies in providing a novel perspective to model strategic
and operational domains of AFs for an SoS architecture based on relationships and flows.
The contributions of this study are summarized as follows:

1. The metamodel for the SoS is customized using the UAF DMM, which provides a
comprehensive view of the mission from both structural and behavioral perspectives.
Mapping rules are then proposed to enable the construction of an ontology from the
metamodels, thereby enhancing the semantics for developing SoS architecture.

2. The proposed SoSCO and SoSOO rely on the relationships and flows between architec-
tural elements, thus enabling a shared comprehension of the strategic and operational
architectures of the SoS.

3. The detailed modeling steps of SoS strategic and operational architectures provide
a structured approach to defining capabilities, bridging strategic and operational
domains, and identifying the behavioral process of operational activities. These steps
enable the selection and construction order of architecture views for AFs during
early design.

Continued refinement and enhancement of the metamodel, ontologies, and modeling
process can lead to more sophisticated approaches for designing SoSs.

Future efforts can focus on two areas: (1) Validation and evaluation through analysis
of UAF model types (i.e., constraints and parameters) and domains (i.e., criteria/standard
and actual resources); (2) Establishment of a comprehensive knowledge base to support
SoS architecture design, such as knowledge-based reasoning for automating the matching
process from operational architecture to resource architecture.
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