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Abstract: The automation of bin-picking processes has been a research topic for almost two decades.
General-purpose equipment, however, still does not show adequate success rates to find application
in most industrial tasks. Human–robot collaboration in bin–picking tasks can increase the success
rate by exploiting human perception and handling skills and the robot ability to perform repetitive
tasks. The aim of this paper, starting from a general-purpose industrial bin picking equipment
comprising a 3D–structured light vision system and a collaborative robot, consists in enhancing its
performance and possible applications through human–robot collaboration. To achieve successful
and fluent human–robot collaboration, the robotic workcell must meet some hardware and software
requirements that are defined below. The proposed strategy is tested in some sample tests: the results
of the experimental tests show that collaborative functions can be particularly useful to overcome
typical bin picking failures and to improve the fault tolerance of the system, increasing its flexibility
and reducing downtimes.

Keywords: bin picking; collaborative robotics; human–robot interaction; Industry 4.0/5.0

1. Introduction

Since the introduction of robots to industrial processes, researchers have been increas-
ingly interested in fully automating as many tasks as possible. One of them is the task of
grasping objects randomly placed in a bin for subsequent manipulation or positioning in a
different place and pose, and it is usually referred to as bin-picking. This task is challenging
because it involves 3D-object recognition, grasping strategies, and path planning. In many
industrial processes, such as assembly operations or kitting, most of the parts come in boxes
or bins, where the parts are randomly located and potentially interlocked. As a regular
practice, parts are unloaded either manually or automatically using part feeders, such as
long conveyor belts. However, manual bin-picking has several drawbacks, such as the
possibility of causing health problems due to the weight of parts and the typically limited
task execution throughput [1]. Conversely, the use of part feeders is often expensive, is not
flexible, and requires large spaces. For these reasons, many research groups have addressed
the problem of enabling robots to perform bin-picking tasks, guided by machine vision
and other sensors [2–4]. Full automation of bin-picking tasks is challenging because it
involves 3D object recognition and pose estimation, grasp planning, path planning, and
collision avoidance. Each of these problems represents a vast area of research in itself and is
usually treated separately. Despite technical developments in all these areas, robotic arms
still cannot surpass human hands in terms of speed, adaptability, and dexterity [5]. As a
consequence, applications of robotic bin-picking are often difficult to implement and lack
standardization. However, some general-purpose equipment is available on the market,
which can be used just in basic bin-picking scenarios, especially for bins containing a single
type of part with a relatively simple shape. On the contrary, handling mixed bins that
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contain multiple different types of parts with complex or unknown shapes remains an open
and challenging task.

Because humans and robots share complementary strengths in performing tasks, a
collaborative bin-picking workcell where robots and humans work in close proximity can
enhance bin-picking success rates, increase system flexibility and productivity while im-
proving the operators’ working conditions by exploiting the strengths of both humans and
robots. Indeed, robots can repeatedly perform pick-and-place operations without fatigue,
and humans excel in their perception and handling ability in unstructured environments.
Human–robot collaboration is made possible by collaborative robots (cobots), which are
designed to work uncaged and interact with operators in the same working environment.
Despite current interest and advancements in collaborative robotics, few studies have
addressed the collaboration between robots and human operators in bin-picking tasks.
In [6–8], a remotely located human assists the robot in critical situations by solving any
automated perception problems encountered during bin-picking. In [9], a collaborative
robotic cell for bin-picking was proposed, where the interaction between the human and
robot is limited to a laser sensor that determines how far the operator is from the robot,
and the controller adjusts the robot’s velocity accordingly. In [10], another collaborative
bin-picking cell was proposed, where the robot can hand over the picked item to the op-
erator or take it back. However, in previous studies, robot collaborative functions such
as manual hand guidance or collision detection have not been exploited to solve typical
bin-picking failures.

This paper proposes a new framework for bin-picking, where a human operator
working alongside the robot can help quickly and easily resolve faults when they inevitably
occur. Starting from a general-purpose industrial bin-picking device composed of a 3D-
structured light vision system and a collaborative robot, we show how its performance can
be improved and its possible applications enhanced through human–robot collaboration.
In particular, fault tolerance can be improved using collaborative functions such as robot
manual guidance and the robot’s ability to detect contacts. The hardware and software
requirements that are needed to achieve successful and fluent human–robot collaboration
when performing bin-picking tasks are defined, and the proposed strategy is tested in
significant sample tests. Human–robot collaboration is proved to be particularly useful in
resolving bin-picking faults and therefore increasing system fault tolerance.

The rest of this paper is organized as follows: in Section 2, the open technological issues
are presented, and the complexity of fully automating bin-picking tasks as well as typical
bin-picking failures are discussed. This is followed by Section 3, where improvement of
system fault tolerance through human–robot collaboration is presented, as well as possible
collaborative bin-picking applications. Section 4 outlines the hardware and software
requirements for an effective collaborative bin-picking cell. In Section 5, the proposed
strategy is tested in some illustrative experimental tests. Finally, in Section 6, the results are
presented and discussed, and in Section 7, the conclusions are drawn.

2. Open Technological Issues
2.1. Vision Sensors and Computer Vision Algorithms

Three-dimensional visual data acquisition is the first challenge of the bin-picking
problem chain. For this purpose, various technologies can be used: the most common are
3D laser scanners [11], structured light vision systems, consisting of a projector and one or
two cameras [12] and stereo vision systems [13]. In bin-picking applications, the choice of
the applied sensor for object registration is strongly correlated with failures, as discussed
in [14]. When designing a robotic bin-picking workcell, a choice has to be made not only on
the sensor’s technology, but also on the vision sensor placement: it can be attached directly
to the robot end effector or placed on a separate fixed camera stand.

Once the 3D point cloud map has been acquired, sophisticated computer vision algo-
rithms are required for object detection and pose estimation, taking into account factors
such as sensor noise, changing lightning conditions, shadows, and reflectance properties.
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Most research on computer vision algorithms for bin-picking tasks has focused on Deep
Learning Algorithms, in particular Convolutional Neural Networks and Deep Reinforce-
ment Learning [15]. These approaches generally require 3D models of objects during testing
or physical objects during training. Furthermore, they are very often supervised networks,
and labeling is an indispensable stage for training the network and teaching where to grab
an object based on its 3D model or its geometry. Therefore, these techniques do not scale
easily for applications that frequently present objects that have never been seen before [16].

In the last decade, several manufacturers, such as Fanuc, Keyence, Cognex or Mech-
Mind, developed their own ready-to-use 3D vision sensors with integrated computer vision
algorithms for bin-picking. These systems are usually easy to install and set up, but it is
not possible to customize the computer vision algorithms or access directly to the acquired
3D map.

2.2. End-Effector Design

The design of the end effector also plays a crucial role in bin-picking success rates, as
the objects that need to be grasped from the bin are non-orientated, potentially interlocked,
jumbled, and heavily occluding each other.

Gripper designs in bin-picking applications range from two-finger to multi-finger
grippers, from suction or magnetic grippers [17] to soft grippers [18]. In the field of bin-
picking, suction typically has an advantage over parallel-jaw or multi-finger grasping due
to its ability to reach narrow spaces and pick up objects with a single point of contact [19].
However, the choice of the most suitable end effector for bin-picking tasks depends on a
number of factors.

First, the optimal end effector design depends on the geometric shape of the parts
that need to be picked from the bin. For example, in a crowded bin filled with adjacent
cuboid objects, there may be no gaps to insert fingers for picking. In this situation, the
objects can only be grasped from above, and a suction gripper is more effective than a
two-fingered gripper. Additionally, when the bin is filled with items with various shapes,
textures, and materials, a single end effector may not be able to effectively grasp all of them.
Tool chargers, commonly used in bin-picking systems, can allow robots to switch grippers
to attempt different types of grasp on the object [20]. In [9], a multi-gripper strategy has
been implemented in order to enable more robust ways of grasping objects using suction
and multiple fingertips. Additionally, in [16], the possibility of using a dual-arm cobot with
a different end effector in each arm has been explored. Moreover, the most appropriate end
effector also depends on the state of the bin, which changes while robots pick items from it:
a multi-gripper switching strategy based on object sparseness was proposed in [21].

Finally, end-effectors used in bin-picking applications may also include force sensors
to detect collisions with items and perform force control to avoid damaging items, as well
as to ensure that the objects have been correctly grasped.

2.3. Bin-Picking Failures

Because robotic bin-picking involves picking of overlapping complex objects with
an undefined position and subsequent grasping and placing, several types of failures can
occur. Bin-picking failures can be classified as follows:

• Object recognition failures (perception failures): this type of failure occurs when the
implemented computer vision algorithm is not able to recognize one or more items
inside the bin. This happens frequently with reflective, shiny, or transparent objects or
also with changes in lighting conditions. It is strongly correlated to the chosen vision
sensor technology and computer vision algorithm, as well as with the resolution of
the 3D map acquired;

• Pose estimation failures: this kind of failure happens when an object inside the bin
is successfully recognized, but its calculated 3D pose is incorrect, and therefore the
subsequent grasp fails. This may be due to vision sensor calibration errors or, more
often, to an inaccurate pose estimation algorithm;
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• Failures because of constraints on robot motion: this type of failure happens when it
is not possible to reach the calculated object pose without collisions of the end effector
with the bin edges and bin corners or with other objects inside the bin. These failures
are strongly correlated to the shape and height of the bin, along with the shape of
the end effector. For example, suction grippers are usually more compact and can
reach the edges of the bin more easily than parallel grippers. In [22], an eccentrically
mounted gripper and chamfered bin edges have been exploited in order to decrease
the rate of this type of failure;

• Grasping failures: even though object recognition and pose estimation are successful,
grasping can still fail for a number of reasons such as a porous or uneven surface,
insufficient friction, grasp interference, entangled objects or multiple grasping of
neighboring objects. A very detailed investigation of grasping failures in bin-picking
applications with different end effectors can be found in [20].

Bin-picking task execution failures typically require the assembly/manufacturing line
to be paused if the fault is unrecoverable and human intervention to enter the robotic
workcell (thus, entering safety fences), clear the fault (for example, pick the entangled
objects and either separate or discard them), and restart the line. Failures negatively
influence the average cycle time, which often has a large impact on the value of bin-picking.

3. Collaborative Human–Robot Bin-Picking

Bin-picking is a challenging task to fully automate, and failure rates are still high for
practical industrial applications. Rather than focusing on decreasing the rate of the typical
bin-picking failures described in Section 2.3, we focused on improving the fault tolerance
of an already existing workcell through human–robot collaboration, combining the best
features of both operators and robots.

The diagram representing human–robot collaboration when resolving bin-picking
failures is depicted in Figure 1. The green box represents successful bin-picking task
execution, which consists of cyclically repeating 3D map acquisition with a 3D vision
sensor, object recognition, pose estimation, path planning, and subsequent pick and place
of the objects until the bin is empty. The use of a collaborative robot ensures that this
sequence of operations can be performed by the robot while a human operator works by its
side sharing the same working environment. Safe and fluent human–robot interaction can
also be enhanced by implementing collision avoidance algorithms.

Regular bin-picking task execution can be interrupted either due to one of the failures
described in Section 2.3 or due to autonomous human intervention. In a non-collaborative
bin-picking scenario, when a fault occurs, the line needs to be paused, and a human
operator needs to enter safety cages, clear the fault, for example, by removing interlocked
objects, and restart the line. Instead, in a collaborative bin-picking scenario, when one of
the possible faults occurs (orange box in Figure 1), an operator is already working side by
side with the cobot and can interrupt his or her work and quickly clear the fault (light blue
box in Figure 1).

The use of a collaborative robot also enriches possible applications, as human inter-
vention is not limited to the separation of entangled objects or to their being discarded.
For example, when a perception failure occurs, the cobot can seek help from the human
operator, who can intuitively hand guide the robot to the pick position. The cobot then
proceeds to pick the part and restore bin-picking task execution.

Moreover, bin-picking task execution can also be interrupted by human intervention.
The human operator working alongside the cobot can autonomously predict and prevent
bin-picking failures: if the operator notices that two objects are entangled, he or she can
intervene and disentangle them. In addition, if the operator notices that an object cannot
be picked because of constraints in robot motion, he or she manually removes it from the
bin and places it where it needs to be placed. Finally, the operator can deposit more items
inside the bin when it is almost empty: in this case, the cobot must behave accordingly, for
example, by moving away from the bin.
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Figure 1. Human–robot collaboration when resolving bin-picking failures.

Possible Collaborative Bin-Picking Applications

Implementing a collaborative human–robot bin-picking cell allows a wide variety of
possible applications, such as:

• When perception failures occur (i.e., the computer vision algorithm recognizes that
the bin is not empty, but object recognition fails), the human operator can manually
move the robot above the grasping pose by pushing it directly, exploiting zero gravity
torque control [23]. Once the robot has been moved to the pick position, the operator
notifies the cobot, for example, by touching it, exploiting collaborative (i.e., the robot
ability to detect contacts) features, or by pushing a button. The robot then proceeds to
approach and pick the part. The bin-picking execution task is restored and the fault is
quickly and easily cleared;

• When bin-picking fails because of pose-estimation failures or because of constraints in
robot motion, the cobot seeks external help from the operator. The human operator
can manually perform bin-picking and subsequent placement of the part;

• When the computer vision algorithm recognizes that two or more objects are entangled
with each other, the robot asks for external help, and the human operator can manually
pick the entangled objects, separate them, and either put them back in the bin or place
them where they need to be placed;

• The operator working alongside the robot can also autonomously predict possible
bin-picking failures. For example, the operator can notice that two or more objects
are entangled and disentangle them, without waiting for the cobot to ask for help. In
addition, the operator can notice that an object near the edges of the bin cannot be
picked and pick it manually. In these situations, the cobot must interrupt the execution
of normal bin-picking tasks and behave accordingly: it might move away from the bin
or decrease its speed;

• Human–robot interaction in collaborative bin-picking is not limited to fault handling
and resolution. Since bin-picking is often the preliminary task in kitting or assembly
applications, the robot can perform bin-picking and subsequently place heavier ob-
jects with a relatively simple shape, while the operator can perform bin-picking and
subsequently place the objects with complex shapes that can easily become entangled
and are difficult to separate;

• The workspace can be divided into two or more zones with bins or heaps of objects
that need to be picked and placed, and the operator and the robot can work together,
each on a different bin/heap of objects. To give an example, the operator might switch
from an area to the area where a cobot is already working: in this case, the cobot
moves away from that area and starts working in another one;

• The operator can also manually deposit more items inside the bin or replace an empty
bin with a full one: in this scenario, the system recognizes the presence of the operator
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and the robot can move away from the bin and resume its work once the operator has
finished the operation;

• When an human operator enters the workcell, the velocity of the robot can be adapted
to its relative distance from the operator. In particular, the robot’s speed can be reduced
proportionally to its distance from the operator. The robot path can also be modified
to prevent collisions by exploiting collision avoidance algorithms.

In particular, the great advantage of collaborative bin-picking applications is that
operators can work alongside robots and intervene only when necessary, increasing system
flexibility, productivity, and fault tolerance. Moreover, collaborative bin-picking allows
handling a wide assortment of parts, without the need for any change in the hardware
structure and design.

4. Requirements of a Collaborative Bin-Picking Robotic Cell

In order to effectively perform collaborative bin-picking tasks, the robotic workcell
must satisfy some hardware and software requirements defined in this section.

4.1. Hardware Requirements

• The human operator and the robot must be able to work in close proximity without
safety fences: therefore, a collaborative robot must be used, since it is designed to
interact with operators in the same working environment [24]. Safety is guaranteed
by torque measurements in each joint that allow the implementation of collaborative
features, i.e., impedance control algorithms [25]. Many modern cobots also offer the
possibility to manually hand guide the robot end effector to a certain position [26],
which can be particularly useful for some collaborative bin-picking applications;

• A 3D vision sensor is needed for 3D visual data acquisition of the bin [27]. The vision
sensor technology must be chosen in accordance with the objects that need to be
picked and its 3D point cloud resolution must be sufficient to detect the objects inside
the bin;

• The presence of a human worker inside the workcell must be detected, and his/her
position must be tracked, for example, in order to avoid collisions. A vision sensor can
be used for this purpose. This could be a 2D- or 3D-camera and could even be the same
one used for object recognition, as experimented in Section 5 of this paper. It is worth
noting that using a collaborative robot already ensures the operator’s safety, since if
collisions occur, they are not dangerous. However, a collision usually results in an
undesirable fault state of the robot and for this reason should be avoided in advance;

• Robot end effectors must ensure the operator safety: collaborative or soft robotic end
effectors must be used [18];

• The robot and the operator must be able to communicate: in particular, the robot must
be able to ask for help when it detects a potential failure. This might be carried out,
for example, by turning on one or more LEDs or by exploiting a human–machine
interface (HMI). The operator must also be able to notice the robot when the fault has
been cleared and bin-picking task execution can be restored. For this purpose, the
operator can use some buttons on the robot arm or on the HMI panel. However, to
inform the robot that the fault has been cleared, the operator can also simply touch
the robot, since cobots are able to detect contacts.

4.2. Software Requirements

• Object recognition and pose estimation [28] must have a fairly high success rate, thus
justifying the automation of manual bin-picking;

• The computer vision system needs to be able to predict if a potential failure may occur.
For example, it needs to recognize whether an object cannot be grasped because it is
entangled with a neighboring object, whether no objects are recognized but the bin is
not empty, or whether a certain pose cannot be reached without collisions. In these
situations, the robot will ask for external help;
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• The system must perform collision avoidance [29]: in particular, collisions with the bin
edges and corners must be predicted and, if possible, path planning must be modified
accordingly. In addition, collisions with the operators must also be avoided [30];

• For some collaborative bin-picking applications, it might also be necessary for the
computer vision system to recognize the position of the bin and, in particular, to
recognize if the bin has been moved from its previous position (this can happen
when removing an empty bin and replacing it with a new one and the parameters for
collision avoidance must be updated);

• The presence of an operator inside the workcell must be detected promptly to ensure
his/her safety.

5. Improving a Bin-Picking Workcell through Human–Robot Collaboration

The proposed strategy was tested in a collaborative robotic workcell that meets the
aforementioned requirements consisting of a general-purpose industrial bin-picking device.
The bin-picking process taken into account consists of picking M30 hexagon nuts from a
30 × 40 × 15 mm European standard plastic bin. When failures occur, a human operator
intervenes to quickly and effectively resolve them.

5.1. Collaborative Bin-Picking Robotic Workcell

The collaborative bin-picking robotic workcell exploited during the experimental
tests is depicted in Figure 2: it is composed of a robot arm and a 3D vision sensor. The
robot arm is a 6-axis Fanuc CR-15iA collaborative robot, which has a payload of 15 kg,
a reach of 1441 mm and its controller is the R-30iB Plus Fanuc controller. This cobot has
an increasingly common feature: it can either work in collaborative mode (TCP speed
under 250 mm/s and impedance control active) or standard mode (maximum TCP speed
800 mm/s and robot inside safety fences). During the experimental tests, the robot was
always used in a collaborative mode. Collaborative robots are sometimes equipped with
torque sensors in every joint which, together with an accurate dynamic model of the robot,
enable detecting contacts and estimating contact forces along the entire robot structure. The
tested robot is equipped with a single force sensor incorporated into its base that enables
collaborative functions, i.e., can detect and estimate contacts along the structure. The robot
arm also presents two LEDs (white and red) and a button.

On the robot flange, a force sensor and a collaborative electric gripper are fitted. The
force sensor is an FS-15iA Fanuc force sensor: it detects collisions with items and avoids
damaging objects when picking or placing them. The gripper is a Schunk Co-act EGP-C
electric 2-finger parallel gripper certified for collaborative operation with an integrated
LED strip light (which can assume three different colors: yellow, green, and red).

The 3D vision sensor is a Fanuc 3DA structured light sensor, and it is placed on a fixed
camera stand. As can be seen in Figure 2, the vision sensor is composed of a projector unit
and two camera units. The 3D Area Sensor obtains 3D information in the field of view by
using the two camera units to capture multiple stripe pattern images as projected by the
projector unit.

Fanuc provides its own computer vision system (iRVision) as an option that can be
installed and integrated directly into the robot controller, which performs image acquisition
and processing. The use of iRVision system enables the user to plug in a camera directly
without any additional third-party hardware and software for image processing. This
minimizes the time and number of activities performed during the implementation phase
and eliminates the need to configure a communication between the robot controller and
an external vision sensor. The iRVision system also provides its own computer vision
algorithms (which Fanuc calls tools) for part recognition and localization, eliminating
the need to develop complex image processing algorithms. However, this can also be
a limitation as users cannot implement personalized computer vision algorithms. The
robot controller is connected to a PC through an Ethernet network: on the PC, the setup of
vision processes can be carried out by exploiting one or more predefined iRVision tools.
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Alternatively, the configuration of vision processes can also be performed directly using
the robot teaching pendant.

3D structured
light sensor

Collaborative 
gripper

Force sensor

Collaborative 
robot arm 

Camera stand

Bin containing parts

3D structured
light sensor

Force sensor

Collaborative 
gripper

Collaborative 
robot arm 

Camera stand

Bin containing parts

Figure 2. Collaborative bin-picking robotic workcell used during the tests.

5.2. Object and Human Detection
5.2.1. Object Detection

The objects picked from the bin during the experimental tests are M30 hexagon nuts.
Hexagon nuts were chosen as objects to pick because they can be difficult objects to detect
because of their reflectance properties.

Object recognition is performed by exploiting 3D One Sight Model Locator Tool, an
iRVision tool that detects a pre-trained 3D model in the acquired 3D data and calculates the
3D position and posture. The 3D model is created from 3D data obtained by measuring a
workpiece from a certain point of view or can be a 3D CAD model. In this case, a 3D CAD
model of the hexagonal nut was used to teach the tool which shape to find in the acquired
3D map. Figure 3 represents a successful object recognition of hexgon nuts exploiting the
3D One Sight Model Locator Tool.

Once recognized, the detected objects are also numbered in the order in which they
will be picked up from the bin. The order depends on the criteria chosen when setting up
the vision process: in general, the first objects to be picked are the ones with the highest z
quote. For example, the red nut in Figure 3 is labeled with number 1 and it will be picked
before the green one underneath, labeled with number 6. Moreover, the nut under the
orange and yellow one (labeled with numbers 2 and 3 respectively) is not recognized: this
is not a problem because after each pick, the 3D map is acquired again, and therefore that
nut will be recognized in the following scans, when the overlapping parts will be removed.

Due to the reflectance properties of the nuts and sensor technology, object recognition
failures may occur. In particular, they may occur with the change in lightening conditions.
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Figure 3. Three-dimensional object recognition of hexagon nuts through exploiting 3D One Sight
Model Locator Tool.

5.2.2. Human Detection

Because we were interested in improving bin-picking performance through human–
robot collaboration using only off-the-shelf components, the presence of humans is detected
using the same vision sensor used for 3D data acquisition.

As mentioned above, the Fanuc 3D sensor is composed of a projector and two camera
units. One of the cameras was also used for human detection, exploiting the pre-defined
2D iRVision tools. However, the use of Fanuc iRVision tools does not easily allow the
detection of complex shapes, such as human hands. Moreover, the two camera units
are monochrome cameras and, therefore, it is not possible to detect a specific color in
the captured image. Taking into account these limitations, we assumed that the human
operator working alongside the cobot wears a special bracelet with geometric shapes that
are easy to detect (rhombuses), as can be seen from Figure 4. Geometric shapes are placed
all around the bracelet, making it easy to detect the presence of the operator with the arm
in different positions and orientations.

The geometric target is recognized using the Geometric Pattern Matching (GPM) Locator
Tool, which detects and locates a previously trained image pattern. This tool is based on 2D
vision, and to make recognition even faster, the resolution of captured images was reduced.
Detecting the presence of a human operator can be useful, for example, to slow down the
robot if the operator enters the workcell and to avoid collisions.

Figure 4. Human detection through exploiting 3D One Sight Model Locator Tool.

5.2.3. Synchronization between the Two Vision Processes

The two vision processes (2D for human detection, 3D for object recognition), as well
as robot motion instructions, must be synchronized with each other. Figure 5 illustrates



Appl. Sci. 2023, 13, 5429 10 of 15

a simplified flowchart the collaborative bin-picking program implemented, which was
written exploiting the robot’s teaching pendant. The main program (purple box in Figure 5)
is a multitasking program that calls two subprograms: one that manages the 3D vision
process and motion instructions (green box in Figure 5) and the other that manages the 2D
vision process (red box in Figure 5).

Call human detection
subprogram

Call bin picking 
subprogram

Start

Finish

3D data acquisition
and object recognition

Objects 
detected?

Finish

Pick the part

3D data acquisition
and object recognition

Place the part

Start

Bin picking 
subprogram

finished?

2D data acquisition and 
human recognition

Failure

Wait for human 
intervention

Human 
operator 
detected?

Pose estimation of the 
selected part

Pose estimation of the 
operator

Speed setting according
to relative distance
from the robot arm

Finish

yes

no

no

yes

Main program

Human detection subprogram

Start

Is the bin 
empty?

yes

yes

no

no

Bin picking subprogram

Figure 5. Flowchart of the collaborative bin-picking program implemented.

5.3. Collision Avoidance

The tested bin-picking system performs collision avoidance, both between the robot
end effector and between the robot end effector and the human operator.

Collisions between the end effector and the faces of the bin, as well as with the table,
are avoided thanks to the pre-defined Fanuc Interference Avoidance function. This function
checks interference between the robot end effector and fixed objects. It also automatically
generates the target position and posture in a specified range if interference occurs in the
checked robot position. To use this function, the positions and sizes of objects for which
interference must be checked should be set in advance. For the considered bin-picking
process, Fanuc Interference Avoidance function was set as in Figure 6. As can be seen in
Figure 6, the robot is enclosed in bounding volumes as sphere swept lines (SLL) to compute
online proximity checks between the robot and the fixed objects, as well as between the
robot and its human coworker. The robot tool is also enclosed in an hexahedron-shaped
object, whose dimensions are set up by the user. In the considered bin-picking robotic
workcell, robot and its end effector must not collide with the table and with the bin: both
are represented by a hexahedron-shaped fixed object. In particular, thanks to this integrated
function, the robot is able to avoid collisions with the container faces. If the system predicts
a collision but the part can still be picked by tilting the end effector, the robot autonomously
tilts the end effector when piking that item. If it is not possible to pick the detected part
without colliding with the container, the system notifies the user (e.g., by writing a defined
value in a register).

Collision avoidance between the robot arm and the human operator is performed
by first locating the operator’s wrist and then by calculating its distance from the robot
arm. Of course, the bracelet is placed on the operator’s wrist, but the potential collisions
occur between the operator’s fingers and/or arm and the robot end effector. This must be
taken into account when implementing collision avoidance algorithms. Moreover, in this
calculation, the delay introduced by the time needed to detect the operator must also be
taken into account.
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Figure 6. Setup of collision avoidance through Fanuc Interference Avoidance.

5.4. End Effector Design

The gripper mounted on the robot flange is a collaborative parallel electric gripper,
and the fingers have been specifically designed for this application. In particular, the
custom gripper fingers are designed to pick hexagonal nuts from the inside and have been
3D-printed.

5.5. Human–Robot Collaboration in Bin-Picking Failures

Even if the described bin-picking process has a high success rate, bin-picking failures
can still occur. When failures occur, human intervention is exploited to clear the fault.

5.5.1. Failures Because of Constraints in Robot Motion

Figure 7 represents a typical case of failure due to constraints in robot motion. The
circled nut in Figure 7a is correctly recognized, but because it is close to the edge of the bin,
it cannot be picked up, as can be seen in Figure 7b. In fact, picking it would mean colliding
with the bin faces, and tilting the robot end effector cannot solve the problem. In this case,
after 3D data acquisition and object recognition, the system is able to recognize that the
part cannot be picked and the robot does not try to move above the grasping point and pick
the part. Instead, it seeks the help of the human operator by turning the gripper LED strip
light red. Once the operator notices that the robot is looking for help, he or she manually
picks the part from the bin (Figure 7c) and places it where it needs to be placed. When
this is done, the operator informs the robot that the fault has been cleared. This is done by
simply touching the robot: the robot recognizes the contact and restores bin-picking task
execution. Alternatively, the operator can push the button placed on the robot arm, but this
typically requires a greater amount of time.

5.5.2. Human–Robot Collaboration during Object Detection Failures

Due to the reflectance properties of hexagon nuts, with changes in lightening condi-
tions, perception failures may also occur. An example of perception failure is depicted in
Figure 8a: the circled nut is not recognized, although it must be picked before the green nut
underneath (which, instead, has been correctly recognized). In Figure 8a also, a magnifica-
tion of the acquired 3D point map is reported (3D points are represented in light blue): it
can be seen that the map has too few points, and therefore the computer vision algorithms
cannot recognize the part. In this situation, the robot seeks help by turning on the red light
installed on the robot arm. The human operator then proceeds to manually move the robot
above the grasping pose, exploiting the manual guided teaching function. Once this is
done, the operator notices the robot that the fault has been cleared. This is also done by
simply touching the robot.
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(b)

(a)

(a)

(b)(c)

Figure 7. Example of a failure because of constraints in robot motion: (a) results of object recognition
(the highlighted nut is recognized but cannot be picked), (b) constraints in robot motion (bin faces),
and (c) resolution of the fault by manual pick of the part.

Figure 8. Example of a perception failure: (a) results of object recognition and magnification of the
3D point map acquired (it has too few points due to reflectance proprieties of the surface). (b) Fault
resolution by manual hand guidance to the pick pose.

6. Results and Discussion

The experimental test revealed that robot collaborative functions can be effectively
exploited when performing bin-picking tasks, and they allow a wide variety of possible
applications. For example, manual hand guidance of the robot end effector can be exploited
when clearing object-recognition faults, and the ability of a cobot to detect contacts can be
used to inform the robot that the fault has been cleared by simply touching it. In addition,
the experimental tests proved that it is, in fact, possible to use the same vision system
for object detection and human recognition in collaborative human–robot bin-picking
tasks. This is done by implementing a multitasking program that manages the two vision
processes: the one for object recognition is a 3D vision process, while the one for human
recognition is a 2D vision process. Three-dimensional map acquisition takes a significant
amount of time, around 2 s, while object recognition takes 650 ± 50 ms. Two-dimensional
image acquisition and human detection takes 914 ± 6 ms. It may seem a high value
compared to the time required for 3D object recognition, but this depends on the searching
area: reduced to the bin in 3D object recognition, extended to the whole field of view of the
camera in human recognition. However, considering that the maximum TCP speed when
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working in collaborative mode is 250 mm/s, the time required to detect the operator was
short enough to ensure safety during the tests, as no collisions occurred.

The results obtained suggest that human–robot collaboration when performing bin-
picking tasks increases flexibility and improves fault tolerance by combining human per-
ception skills and robots’ ability to perform repetitive tasks and lift heavy objects. In [6–8],
human perception skills were already exploited to solve object recognition failures in bin-
picking. In this case, the robot initiates a call to a remotely located human operator to
ask for help in resolving perception system failures during bin-picking operations. This
requires a user interface that allows information exchanges between the robot and the hu-
man operator that detects the objects that need to be picked from the bin. In the proposed
layout, the human operator is already working alongside the robot, and he or she can more
quickly resolve the fault by manually moving the robot end effector above the grasping
position without the need for an interface. Manual hand guidance of the robot to the pick
position can be particularly useful when resolving perception failures of heavy objects that
are difficult to pick manually. Moreover, in this work, human perception skills are exploited
not only for fault resolution, but also for fault prediction. In fact, the operator can predict
when a potential failure may occur and autonomously disentangle entangled objects or
manually pick a part that cannot be picked due to constraints in robot motion.

Tests have shown that it is useful, as suggested in [9], that the robot’s speed is adjusted
according to the relative distance between the robot end effector and the operator. However,
in [9], a laser sensor was used, while in this work the bracelet allows a more accurate and
almost costless location of the operator.

The experimental tests carried out showed that it is possible to effectively use the
same robot-integrated vision sensor for both object and human recognition, proving the
inexpensiveness of the proposed strategy. This has the advantage of minimizing the
hardware required, as well as the connections to the robot controller. It is worth noting that
the 3D scan usually takes a couple of seconds and during this time the human presence
cannot be detected. This is clearly a limitation, but when a structured light vision sensor
acquires a 3D map it is quite visible, so the operator can easily recognize the event and avoid
intervening. Additionally, the use of a robot-integrated vision sensor eliminates the need
to implement complex computer vision algorithms. Indeed, the use of robot-integrated
computer vision algorithms poses some limitations: for example, since it is not possible
to implement complex customized computer vision algorithms, we were forced to use a
bracelet with geometric shapes to detect and locate human operators rather than using a
hand/arm recognition algorithm. This is obviously a limitation, but it does not introduce
risks. The operator may forget to wear the bracelet, but safety is still ensured by using a
collaborative robot. Clearly, the presence of the operator cannot be detected, and its/her
position cannot be tracked. Extensions of the proposed work may consider the use of an
external 2D or 3D camera for human recognition. This solution, though more expensive,
allows the implementation of a wide range of more complex computer vision algorithms
that can detect the hand and possibly the whole body without the need for any additional
accessories or markers on the operator. Using an external PC for image processing may
also speed up recognition time, increasing safety. On the other hand, using an external
camera for human detection requires the setup of a communication between the camera
and the robot controller, for example, through TCP/IP or EtherCAT connection.

7. Conclusions

Bin-picking is a complex task and is very difficult to fully automate. The success rate of
state-of-the-art bin-picking solutions is still not high enough, and it is not very effective to
implement them in industrial applications. Starting from a general-purpose industrial bin-
picking device composed of a 3D-structured light vision system and a collaborative robot,
we showed how human–robot collaboration can improve success rates, increase system
flexibility and productivity, as well as reduce downtimes. The hardware and software
requirements necessary to implement a collaborative bin-picking cell were also defined.
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The proposed strategy was then tested, showing that using the same vision sensor for
object recognition and human recognition can be cheap and effective, and that collaborative
functions can be successfully exploited to solve typical bin-picking failures.

Future works will include a comprehensive analysis of collaborative human–robot
bin-picking performances compared to traditional or robotic bin-picking performances in
terms of failures, success rate, downtimes, and productivity using some representative
assembly tasks.
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