Characterization and Productivity of Alluvial Aquifers in Sustainability Oasis Areas: A Case Study of the Tata Watershed (Southeast Morocco)
Abstract
:1. Introduction
2. Study Area
3. Materials and Methods
4. Results and Discussion
4.1. Well Location
4.2. Factors Influencing the Productivity of Wells
4.2.1. Rock-Type Impact
4.2.2. Wells Depth Impact
4.2.3. Hydrodynamic Properties of Alluvial Aquifers
4.3. Impact of a Proposed Recharge Dam on the Infiltration of Water on the Tata Alluvial Aquifer
4.3.1. Site Choice of the Future Recharge Dam
4.3.2. Geo-Electrical Methods for Estimating the Volume of Alluvial Deposits
- A resistant set Ro, consisting of alternating conductive and resistant layers that represent the dry and heterogeneous alluvium (containing intercalations of clayey sands).
- A deep conductor Cp, corresponding to the saturated which corresponds to alluvium shows alternating layers of limestone.
- A resistant substratum Rs, attributed to the sandstone formations with schistous intercalations.
4.3.3. Geoelectrical Cross-Sections
- Section 1 shows alternating resistive and conductive layers (Figure 10). The alluvium formations above the piezometric level (PL) are resistant. Those below the PL have low resistivity whose origin can be due to the impact of water or, possibly, the existence of clayey elements in this layer. The resistant bedrock, not reached by the mechanical borehole S3, is estimated at a depth of 41, 50, and 52 m at TA5, TA3, and TA4 VESs. This geo-electrical section shows this alluvial aquifer’s significant potential (average of 50 m).
- Section 3 shows a slight dip of the bedrock from SW to NE, reaching a depth of about 57 m at TA14 VES.
4.3.4. Modeling the Infiltrated Water Volumes by the Effect of the Future Recharge Dam
Volume of Water Infiltrated in the Absence of the Future Dam
Estimation of Water Volumes Infiltrated in the Presence of the Future Dam
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sarti, O.; Otal, E.; Morillo, J.; Ouassini, A. Integrated assessment of groundwater quality beneath the rural area of R’mel, Northwest of Morocco. Groundw. Sustain. Dev. 2021, 14, 100620. [Google Scholar] [CrossRef]
- Moksitt, A. La sécheresse au Maroc; Direction de Météorologie Marocaine: Casablanca, Morocco, 2000; 126p. [Google Scholar]
- Pouffary, S.; De Laboulaye, G.; Antonini, A.; Quefelec, S.; Dittrick, L. Les Défis du Changement Climatique en Méditerranée: Transformer les Contraintes en Opportunités d’Agir, ENERGIES 2050, Report. 2016. 143p. Available online: https://www.climate-chance.org/bibliotheque/les-defis-du-changement-climatique-en-mediterranee/ (accessed on 26 December 2022).
- Direction de la Recherche et de la Planification de l’Eau (DRPE). Eaux Souterraines au Maroc: Comment Concilier Satisfaction des Besoins et Développement Durable des Ressources en Eau Souterraines; Unpublished Report; Ministère Délégué Auprès du Ministre de l’Energie, des Mines, de l’Eau et de l’Environnement Chargé de l’Eau: Rabat, Morocco, 2014; 53p.
- Ait Kadi, M.; Ziyad, A. Integrated Water Resources Management in Morocco. In Global Water Security: Water Resources Development and Management; Springer: Singapore, 2018; pp. 143–163. [Google Scholar] [CrossRef]
- Knippertz, P.; Christoph, M.; Speth, P. Long-term precipitation variability in Morocco and the link to the large-scale circulation in recent and future climates. Meteorol. Atmos. Phys. 2003, 83, 67–88. [Google Scholar] [CrossRef]
- Shah, T.; Molden, D.; Sakthivadivel, R.; Seckler, D. The global groundwater situation: An overview of opportunities and challenges. Econ. Political Wkly. 2000, 36, 4142–4150. [Google Scholar]
- Gautam, A.; Rai, S.C.; Rai, S.P. Impact of anthropogenic activities on the alluvial aquifers of north-east Punjab, India. Environ. Monit. Assess. 2020, 192, 527. [Google Scholar] [CrossRef]
- Fekkoul, A.; Zarhloule, Y.; Boughriba, M.; Barkaoui, A.E.; Jilali, A.; Bouri, S. Impact of anthropogenic activities on the groundwater resources of the unconfined aquifer of Triffa plain (Eastern Morocco). Arab. J. Geosci. 2013, 6, 4917–4924. [Google Scholar] [CrossRef]
- Siebert, S.; Burke, J.; Faures, J.M.; Frenken, K.; Hoogeveen, J.; Döll, P.; Portmann, F.T. Groundwater use for irrigation—A global inventory. Hydrol. Earth Syst. Sci. 2010, 14, 1863–1880. [Google Scholar] [CrossRef]
- Foster, S.; Shah, T. Groundwater Resources and Irrigated Agriculture: Making a Beneficial Relation More Sustainable; GWP Perspectives Paper, Global Water Partnership: Stockholm, Sweden, 2012. [Google Scholar]
- Rao, T.G.; Rao, S.Y.; Mahesh, J.; Surinaidu, L.; Dhatake, R.; Rao, G.V.; Prasad, D.M. Hydrological assessment of groundwater in alluvial aquifer region, Jalandhar district, Punjab, India. Environ. Earth Sci. 2015, 73, 8145–8153. [Google Scholar] [CrossRef]
- Zghibi, A.; Mirchi, A.; Zouhri, L.; Taupin, I.D.; Chekirbane, A.; Tarhouni, J. The implication of groundwater development and seawater intrusion for the sustainability of a Mediterranean coastal aquifer in Tunisia. Environ. Monit. Assess. 2019, 191, 696. [Google Scholar] [CrossRef]
- Bouchaou, L.; Tagma, T.; Boutaleb, S.; Hssaisoune, M.; El Morjani, Z.E.A. Climate Change and Its Impacts on Groundwater Resources in Morocco: The Case of the Souss- Massa Basin. In Climate Change Effects on Groundwater Resources. A Global Synthesis of Findings and Recommendations; Treidel, H., Martin-Bordes, J.L., Gurdak, J.J., Eds.; UNESCO, International Hydrological Programme: Paris, France, 2011; pp. 129–143. [Google Scholar] [CrossRef]
- Direction de la Recherche et de la Planification de l’Eau (DRPE). Etude D’actualisation du Plan Directeur D’aménagement Intégré des Ressources en Eau (PDAIRE) du Bassin Hydraulique du Draa; Secrétariat d’Etat auprès du Ministère de l’Energie, des Mines, de l’Eau et de l’Environnement, chargé de l’Eau et de l’Environnement: Rabat, Morocco, 2008.
- Bourg, A.C.; Bertin, C. Biogeochemical processes during the infiltration of river water into an alluvial aquifer. Environ. Sci. Technol. 1993, 27, 661–666. [Google Scholar] [CrossRef]
- Mabee, S.B. Factors influencing well productivities in glaciated metamorphic rocks. Groundwater 1999, 37, 88–97. [Google Scholar] [CrossRef]
- McFarlane, M.J.; Chilton, P.J.; Lewis, M.A. Geomorphological controls on borehole yields: A statistical study in an area of crystalline rocks in central Malawi. The hydrogeology of crystalline basement Aquifers in Africa. Geol. Soc. Lond. Spec. Publ. 1992, 66, 131–155. [Google Scholar] [CrossRef]
- Henriksen, H. Relation between topography and well yield in boreholes in crystalline rocks, Sognog Fjordane, Norway. Groundwater 1995, 33, 635–643. [Google Scholar] [CrossRef]
- Young, M.E.; De Bruijn, R.G.M.; Al-Ismaily, A.S. Exploration of an alluvial aquifer in Oman by time-domain electromagnetic sounding. Hydrogeol. J. 1998, 6, 383–393. [Google Scholar] [CrossRef]
- Shishaye, H.A.; Tait, D.R.; Befus, K.M.; Maher, D.T. An integrated approach for aquifer characterization and groundwater productivity evaluation in the Lake Haramaya watershed, Ethiopia. Hydrogeol. J. 2019, 27, 2121–2136. [Google Scholar] [CrossRef]
- Echogdali, F.Z.; Boutaleb, S.; Taia, S.; Ouchchen, M.; Id-Belqas, M.; Kpan, R.B.; Abioui, M.; Aswathi, J.; Sajinkumar, K.S. Assessment of soil erosion risk in a semi-arid climate watershed using SWAT model: Case of Tata basin, South-East of Morocco. Appl. Water Sci. 2022, 12, 137. [Google Scholar] [CrossRef]
- Echogdali, F.Z.; Boutaleb, S.; Bendarma, A.; Saidi, M.E.; Aadraoui, M.; Abioui, M.; Ouchchen, M.; Abdelrahman, K.; Fnais, M.S.; Sajinkumar, K.S. Application of Analytical Hierarchy Process and Geophysical Method for Groundwater Potential Mapping in the Tata Basin, Morocco. Water 2022, 14, 2393. [Google Scholar] [CrossRef]
- Echogdali, F.Z.; Boutaleb, S.; Jauregui, J.; Elmouden, A. Cartography of Flooding Hazard in Semi-Arid Climate: The Case of Tata Valley (South-East of Morocco). J. Geogr. Nat. Disast. 2018, 8, 214. [Google Scholar] [CrossRef]
- Echogdali, F.Z.; Boutaleb, S.; Elmouden, A.; Ouchchen, M. Assessing flood hazard at river basin scale: Comparison between HECRAS-WMS and food hazard index (FHI) methods applied to El Maleh basin. Morocco. J. Water Resour. Prot. 2018, 10, 957–977. [Google Scholar] [CrossRef]
- Choubert, G. Histoire Géologique du Précambrien de l’Anti–Atlas; Verlag Nicht Ermittelbar: Zürich, Switzerland, 1963; 352p. [Google Scholar]
- Faik, F.; Belfoul, M.A.; Bouabdelli, M.; Hassenforder, B. Les structures de la couverture Néoprotérozoïque terminal et Paléozoïque de la région de Tata, Anti–Atlas centre–occidental, Maroc: Déformation polyphasée, ou interactions socle/couverture pendant l’orogenèse hercynienne? J. Afr. Earth Sci. 2001, 32, 765–776. [Google Scholar] [CrossRef]
- Benssaou, M.; Hamoumi, N. The western Anti-Atlas of Morocco: Sedimentological and palaeogeographical formation studies in the Early Cambrian. J. Afr. Earth Sci. 2001, 32, 351–372. [Google Scholar] [CrossRef]
- Benssaou, M.; Hamoumi, N. Le graben de l’Anti–Atlas occidental (Maroc): Contrôle tectonique de la paléogéographie et des séquences au Cambrien inférieur. C. R. Geosci. 2003, 335, 297–305. [Google Scholar] [CrossRef]
- Ouchchen, M.; Boutaleb, S.; El Azzab, D.; Abioui, M.; Mickus, K.L.; Miftah, A.; Echogdali, F.Z.; Dadi, B. Structural interpretation of the Igherm region (Western Anti Atlas, Morocco) from an aeromagnetic analysis: Implications for copper exploration. J. Afr. Earth Sci. 2021, 176, 104140. [Google Scholar] [CrossRef]
- Echogdali, F.Z.; Boutaleb, S.; Abia, E.H.; Ouchchen, M.; Dadi, B.; Id-Belqas, M.; Abioui, M.; Pham, L.T.; Abu-Alam, T.; Mickus, K.L. Mineral prospectivity mapping: A potential technique for sustainable mineral exploration and mining activities—A case study using the copper deposits of the Tagmout basin, Morocco. Geocarto Int. 2022, 37, 9110–9131. [Google Scholar] [CrossRef]
- Ouchchen, M.; Boutaleb, S.; Abia, E.H.; El Azzab, D.; Miftah, A.; Dadi, B.; Echogdali, F.Z.; Mamouch, Y.; Pradhan, B.; Santosh, M.; et al. Exploration targeting of copper deposits using staged factor analysis, geochemical mineralization prospectivity index, and fractal model (Western Anti-Atlas, Morocco). Ore Geol. Rev. 2022, 143, 104762. [Google Scholar] [CrossRef]
- Echogdali, F.Z.; Boutaleb, S.; Abioui, M.; Aadraoui, M.; Bendarma, A.; Kpan, R.B.; Ikirri, M.; El Mekkaoui, M.; Essoussi, S.; El Ayady, H.; et al. Spatial Mapping of Groundwater Potentiality Applying Geometric Average and Fractal Models: A Sustainable Approach. Water 2023, 15, 336. [Google Scholar] [CrossRef]
- Echogdali, F.Z.; Boutaleb, S.; Kpan, R.B.; Ouchchen, M.; Bendarma, A.; El Ayady, H.; Abdelrahman, K.; Fnais, M.S.; Sajinkumar, K.S.; Abioui, M. Application of Fuzzy Logic and Fractal Modeling Approach for Groundwater Potential Mapping in Semi-Arid Akka Basin, Southeast Morocco. Sustainability 2022, 14, 10205. [Google Scholar] [CrossRef]
- Abia, E.H.; Benssaou, M.; Abioui, M.; Ettayfi, N.; Lhamyani, B.; Boutaleb, S.; Maynard, J.B. The Ordovician iron ore of the Anti-Atlas, Morocco: Environment and dynamics of depositional process. Ore Geol. Rev. 2020, 120, 103447. [Google Scholar] [CrossRef]
- Wendt, J. Disintegration of the continental margin of northwestern Gondwana: Late Devonian of the eastern Anti-Atlas (Morocco). Geology 1985, 13, 815–818. [Google Scholar] [CrossRef]
- Sahabi, M.; Aslanian, D.; Olivet, J.L. Un nouveau point de départ pour l’histoire de l’Atlantique central. C. R. Geosci. 2004, 336, 1041–1052. [Google Scholar] [CrossRef]
- Hassan, E.; Rai, J.K.; Anekwe, U.O. Geoelectrical Survey of Ground Water in Some Parts of Kebbi State Nigeria, a Case Study of Federal Polytechnic Bye-Pass Birnin Kebbi and Magoro Primary Health Center Fakai Local Government. Geosciences 2017, 7, 141–149. [Google Scholar] [CrossRef]
- Soomro, A.; Qureshi, A.L.; Jamali, M.A.; Ashraf, A. Groundwater investigation through vertical electrical sounding at hilly area from Nooriabad toward Karachi. Acta Geophys. 2019, 67, 247–261. [Google Scholar] [CrossRef]
- Mlangi, T.M.; Mulibo, G.D. Delineation of shallow stratigraphy and aquifer formation at Kahe Basin, Tanzania: Implication for potential aquiferous formation. J. Geosci. Environ. Prot. 2018, 6, 78. [Google Scholar] [CrossRef]
- Flathe, H.; Leibold, W. The Sounding Graph: A Manual for Fieldwork in Direct Current Resistivity Sounding; Federal Institute for Geosciences and Natural Resources: Hannover, Germany, 1976.
- Telford, W.M.; Geldart, L.P.; Sheriff, R.E. Applied Geophysics, 2nd ed.; Cambridge University Press: Cambridge, UK, 1990. [Google Scholar] [CrossRef]
- Niculescu, B.M.; Andrei, G. Using Vertical Electrical Soundings to characterize seawater intrusions in the southern area of Romanian Black Sea coastline. Acta Geophys. 2019, 67, 1845–1863. [Google Scholar] [CrossRef]
- Holland, M. Evaluation of factors influencing transmissivity in fractured hard-rock aquifers of the Limpopo Province. Water SA 2012, 38, 379–390. [Google Scholar] [CrossRef]
- Dapaah-Siakwan, S.; Gyau-Boakye, P. Hydrogeologic framework and borehole yields in Ghana. Hydrogeol. J. 2000, 8, 405–416. [Google Scholar] [CrossRef]
- Schiavo, M. Probabilistic delineation of subsurface connected pathways in alluvial aquifers under geological uncertainty. J. Hydrol. 2022, 615, 128674. [Google Scholar] [CrossRef]
- Holland, M.; Witthüser, K.T. Evaluation of geologic and geomorphologic influences on borehole productivity in crystalline bedrock aquifers of Limpopo Province, South Africa. Hydrogeol. J. 2011, 19, 1065–1083. [Google Scholar] [CrossRef]
- Yin, Z.Y.; Brook, G.A. The Topographic Approach to Locating High-Yield Wells in Crystalline Rocks: Does It Work? Groundwater 1992, 30, 96–102. [Google Scholar] [CrossRef]
- Rugh, D.F.; Burbey, T.J. Using saline tracers to evaluate preferential recharge in fractured rocks, Floyd County, Virginia, USA. Hydrogeol. J. 2008, 16, 251–262. [Google Scholar] [CrossRef]
- Barker, R.D.; White, C.; Houston, J.F.T. Borehole siting in an African Accelerated Drought Relief Project. Hydrogeology of crystalline basement aquifers in Africa. Geol. Soc. Lond. 1992, 66, 183–201. [Google Scholar] [CrossRef]
- Dewandel, B.; Maréchal, J.C.; Bour, O.; Ladouche, B.; Ahmed, S.; Chandra, S.; Pauwels, H. Upscaling and regionalizing hydraulic conductivity and effective porosity at watershed scale in deeply weathered crystalline aquifers. J. Hydrol. 2012, 416, 83–97. [Google Scholar] [CrossRef]
- Anaba Onana, A.B.; Ngoupayou, J.N.; Ondoa, J.M. Analysis of crystalline bedrock aquifer productivity: Case of central region in Cameroon. Groundw. Sustain. Dev. 2017, 5, 66–74. [Google Scholar] [CrossRef]
- Siddiqui, S.H.; Parizek, R.R. Hydrogeologic factors influencing well yields in folded and faulted carbonate rocks in Central Pennsylvania. Water Resour. Res. 1971, 7, 1295–1312. [Google Scholar] [CrossRef]
- Cline, G.C. Geological Factors Influencing Well-Yields in a Folded Sandstone siltstone-Shale Terrane within the East Manhantango Creek Watershed, Pennsylvania. Master’s Thesis, Pennsylvania State University, State College, PA, USA, 1968. [Google Scholar]
- Thayer, J.B.; Ashmore, P. Floodplain morphology, sedimentology, and development processes of a partially alluvial channel. Geomorphology 2016, 269, 160–174. [Google Scholar] [CrossRef]
- Mulligan, A.E.; Evans, R.L.; Lizarralde, D. The role of paleochannels in groundwater/seawater exchange. J. Hydrol. 2007, 335, 313–329. [Google Scholar] [CrossRef]
- Samadder, R.K.; Kumar, S.; Gupta, R.P. Paleochannels and their potential for artificial groundwater recharge in the western Ganga plains. J. Hydrol. 2011, 400, 154–164. [Google Scholar] [CrossRef]
- Benkaddour, A. Changements Hydrologiques et Climatiques dans le Moyen Atlas Marocain: Chronologie, Minéralogie, Géochimie Isotopique et Elémentaire des Sédiments Lacustres de Tigalmamine. Ph.D. Thesis, Université Paris-Sud, Paris, France, 1993. [Google Scholar]
- El Khalki, Y. Les Systèmes Hydro–Karstiques du Moyen Atlas du SO: Étude Hydrologique et Hydrochimique. Ph.D. Thesis, Université de Moulay Ismail, Béni Mellal, Morocco, 2002. [Google Scholar]
- Bakalowicz, M. Contribution de la Géochimie des Eaux à la Connaissance de L’aquifère Karstique et de la Karstifcation. Ph.D. Thesis, Université Paris VI, Paris, France, 1979. [Google Scholar]
- Bakalowicz, M. Karst et ressources en eau souterraine: Un atout pour le développement des pays méditerranéens. Sécheresse 2010, 21, 319–322. [Google Scholar] [CrossRef]
- El Baghdadi, M.; Zantar, I.; Jouider, A.; Nadem, S.; Medah, R. Evaluation of hydrogeochemical quality parameters of groundwater under urban activities—Case of Beni Mellal city (Morocco). Euro-Mediterr. J. Environ. Integr. 2019, 4, 6. [Google Scholar] [CrossRef]
- Jong, C.; Cappy, S.; Finckh, M.; Funk, D.A. Transdisciplinary analysis of water problems in the mountainous karst areas of Morocco. Eng. Geol. 2008, 99, 228–238. [Google Scholar] [CrossRef]
- Driouech, F. Distribution des Précipitations Hivernales sur le Maroc dans le Cadre d’un Changement Climatique: Descente d’Echelle et Incertitudes. Ph.D. Thesis, Université de Toulouse, Toulouse, France, 2010. [Google Scholar]
- Akdim, B. Karst landscape and hydrology in Morocco: Research trends and perspectives. Environ. Earth Sci. 2015, 74, 251–265. [Google Scholar] [CrossRef]
- Ettayfi, N.; Bouchaou, L.; Michelot, J.L.; Tagma, T.; Warner, N.; Boutaleb, S.; Massault, M.; Lgourna, Z.; Vengosh, A. Geochemical and isotopic (oxygen, hydrogen, carbon, strontium) constraints for the origin, salinity, and residence time of groundwater from a carbonate aquifer in the Western Anti-Atlas mountains, Morocco. J. Hydrol. 2012, 438, 97–111. [Google Scholar] [CrossRef]
- Benjmel, K.; Amraoui, F.; Aydda, A.; Tahiri, A.; Yousif, M.; Pradhan, B.; Abdelrahman, K.; Fnais, M.S.; Abioui, M. A multidisciplinary approach for groundwater potential mapping in a fractured semi-arid terrain (Kerdous Inlier, Western Anti-Atlas, Morocco). Water 2022, 14, 1553. [Google Scholar] [CrossRef]
- Neves, M.A.; Morales, N. Well productivity controlling factors in crystalline terrains of southeastern Brazil. Hydrogeol. J. 2007, 15, 471–482. [Google Scholar] [CrossRef]
- Douagui, A.G.; Kouadio, S.K.A.; Mangoua, J.O.M.; Kouassi, A.K.; Kouam, B.K.; Savané, I. Using specific capacity for assessing of the factors controlling borehole productivity in crystalline bedrock aquifers of N’Zi, Iffou and Moronou regions in the eastern area of côte d’Ivoire. Groundw. Sustain. Dev. 2019, 9, 100235. [Google Scholar] [CrossRef]
- Davis, S.N.; Turk, L.J. Optimum depth of wells in crystalline rocks. Groundwater 1964, 22, 6–11. [Google Scholar] [CrossRef]
- Banks, D. Optimal orientation of water-supply boreholes in fractured aquifers. Groundwater 1992, 30, 895–900. [Google Scholar] [CrossRef]
- Böhlke, J.K. Groundwater recharge and agricultural contamination. Hydrogeol. J. 2002, 10, 153–179. [Google Scholar] [CrossRef]
- Flury, M. Experimental evidence of transport of pesticides through field soils—A review. J. Environ. Qual. 1996, 25, 25–45. [Google Scholar] [CrossRef]
- Zaporozec, A.; Conrad, J.E.; Hirata, R.; Johansson, P.O.; Nonner, J.C.; Romijn, E.; Weaver, J.M.C. Groundwater Contamination Inventory: A Methodological Guide; IHP-VI Series on Groundwater No. 2; UNESCO: Paris, France, 2002. [Google Scholar]
- Cao, W.; Bowden, W.B.; Davie, T.; Fenemor, A. Modelling impacts of land cover change on critical water resources in the Motueka River catchment, New Zealand. Water Resour. Manag. 2009, 23, 137–151. [Google Scholar] [CrossRef]
- He, B.; Wang, Y.; Takase, K.; Mouri, G.; Razafindrabe, B.H. Estimating land use impacts on regional scale urban water balance and groundwater recharge. Water Resour. Manag. 2009, 23, 1863–1873. [Google Scholar] [CrossRef]
- Kostyuchenko, Y.; Artemenko, I.; Abioui, M.; Benssaou, M. Global and Regional Climatic Modeling. In Encyclopedia of Mathematical Geosciences; Sagar, B.D., Cheng, Q., McKinley, J., Agterberg, F., Eds.; Springer: Cham, Switzerland, 2022; pp. 1–5. [Google Scholar] [CrossRef]
Category | Data Type | Resolution | Source |
---|---|---|---|
Topographical | Raster | 30 m × 30 m | DEM (http://earthexplorer.usgs.gov/ (accessed on 14 December 2022)) |
Drainage network | Raster | 30 m × 30 m | DEM (http://earthexplorer.usgs.gov/ (accessed on 14 December 2022)) |
Geological | Raster | 1:500,000 | Geological map of Morocco (Ministry of Energy and Mines of Morocco) |
Geophysical | Raster | - | |
Well | Vector | - | The Drâa-Oued Noun Hydraulic Basin Agency (Agadir, Morocco) |
Groundwater Recharge (L/s) | |
---|---|
Infiltration of rainwater at the plain | 38.5 |
Recharge from the edges | 160 |
Infiltration from surface water | 45.9 |
Reinfiltration of irrigation water taken from groundwater | 22.04 |
Total inflow rates into the alluvial aquifer | 277.44 |
Groundwater Discharge (L/s) | |
Agricultural withdrawals and Drinking Water Supply | 245.4 |
Water evaporation at the level of the foum | 25 |
Downstream flow at the southern limit of the aquifer | 16 |
Total outflow rates from the alluvial aquifer | 286.4 |
Water balance of the alluvial aquifer | −8.96 |
Layer | Layer Designation | Resistivity (Ohm.m) | Thickness (m) | Roof Depth of the Layer (m) |
---|---|---|---|---|
1 | Ro | 1682.75 | 2.08 | 0 |
2 | 340.55 | 2 | −2.08 | |
3 | 893.41 | 2 | −4.08 | |
4 | 172.15 | 4 | −6.08 | |
5 | 1389.47 | 4 | −10.08 | |
6 | Cp | 29.02 | 36 | −14.08 |
7 | Rs | 1195.41 | inf. | −50.08 |
Section | VES | Thickness of the Alluvium (m) | Average Thickness (m) |
---|---|---|---|
1 | TA1 | 41 | 46 |
TA 2 | 44 | ||
TA 3/S3 | 50 | ||
TA 4 | 52 | ||
TA 5 | 42 | ||
2 | TA 6/S2 | 48 | 42 |
TA 7 | 48 | ||
TA 8 | 44 | ||
TA 9 | 38 | ||
TA 10 | 32 | ||
3 | TA 11 | 26 | 42 |
TA 12/S1 | 41 | ||
TA 13 | 35 | ||
TA 14 | 57 | ||
TA 15 | 50 |
t (h) | Q (m3/s) | V1 (Mm3) | V2 (Mm3) | V3 (Mm3) | V4 (Mm3) | V5 (Mm3) | V6 (Mm3) |
---|---|---|---|---|---|---|---|
0 | 0.0 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 |
0.5 | 73.4 | 0.0661 | 0.0036 | 0.0036 | 0.0036 | 0.0661 | 0.0625 |
2 | 277.0 | 0.9461 | 0.0108 | 0.0108 | 0.0144 | 1.0121 | 0.9977 |
4.5 | 130.0 | 1.8315 | 0.0180 | 0.0180 | 0.0324 | 2.8436 | 2.8112 |
7 | 68.4 | 0.8928 | 0.0180 | 0.0180 | 0.0504 | 3.7364 | 3.6860 |
10.5 | 30.0 | 0.6199 | 0.0252 | 0.0252 | 0.0756 | 4.3564 | 4.2808 |
15 | 16.7 | 0.3783 | 0.0324 | 0.0324 | 0.1080 | 4.7346 | 4.6266 |
31 | 0.0 | 0.4810 | 0.1152 | 0.1152 | 0.2232 | 5.2156 | 4.9924 |
h (m) | t (h) | Qinf Up (m3/s) | Qb+d Up(m3/s) | Vinf.p Up (Mm3) | Vinf.t Up (Mm3) | Qb+d Down (m3/s) | V1 Down (Mm3) | V2Down (Mm3) | V3Down (Mm3) | V4Down (Mm3) |
---|---|---|---|---|---|---|---|---|---|---|
0 | 0 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
8.32 | 3 | 6.098 | 89.325 | 0.033 | 0.033 | 89.325 | 0.482 | 0.009 | 0.009 | 0.474 |
8.36 | 6 | 6.154 | 102.161 | 0.066 | 0.099 | 102.161 | 1.034 | 0.009 | 0.018 | 1.499 |
8.16 | 9 | 5.919 | 47.352 | 0.065 | 0.164 | 47.352 | 0.807 | 0.009 | 0.027 | 2.297 |
8.07 | 12 | 5.811 | 21.899 | 0.063 | 0.228 | 21.899 | 0.374 | 0.009 | 0.035 | 2.662 |
8.03 | 15 | 5.773 | 12.688 | 0.063 | 0.290 | 12.688 | 0.187 | 0.009 | 0.044 | 2.840 |
8.02 | 18 | 5.755 | 8.442 | 0.062 | 0.352 | 8.442 | 0.114 | 0.009 | 0.053 | 2.945 |
8.01 | 21 | 5.742 | 5.316 | 0.062 | 0.415 | 5.316 | 0.074 | 0.009 | 0.062 | 3.011 |
7.99 | 24 | 5.721 | 3.214 | 0.062 | 0.476 | 3.214 | 0.046 | 0.009 | 0.071 | 3.048 |
7.90 | 27 | 5.624 | 3.181 | 0.061 | 0.538 | 3.181 | 0.035 | 0.009 | 0.080 | 3.074 |
7.74 | 30 | 5.435 | 3.119 | 0.060 | 0.597 | 3.119 | 0.034 | 0.009 | 0.089 | 3.099 |
5.81 | 60 | 3.482 | 2.219 | 0.482 | 1.079 | 2.219 | 0.288 | 0.089 | 0.177 | 3.299 |
4.12 | 90 | 2.099 | 0.205 | 0.301 | 1.380 | 0.205 | 0.131 | 0.089 | 0.266 | 3.341 |
1.92 | 120 | 0.755 | 0.211 | 0.154 | 1.534 | 0.211 | 0.022 | 0.022 | 0.288 | 3.341 |
0.86 | 150 | 0.290 | 0.144 | 0.056 | 1.591 | 0.144 | 0.019 | 0.019 | 0.307 | 3.341 |
0.39 | 180 | 0.120 | 0.075 | 0.022 | 1.613 | 0.075 | 0.012 | 0.012 | 0.319 | 3.341 |
0.17 | 210 | 0.052 | 0.035 | 0.009 | 1.622 | 0.035 | 0.006 | 0.006 | 0.325 | 3.341 |
0.08 | 240 | 0.023 | 0.016 | 0.004 | 1.626 | 0.016 | 0.003 | 0.003 | 0.328 | 3.341 |
0.03 | 270 | 0.010 | 0.008 | 0.002 | 1.628 | 0.008 | 0.001 | 0.001 | 0.329 | 3.341 |
0 | 300 | 0.000 | 0.000 | 0.008 | 1.631 | 0.000 | 0.006 | 0.006 | 0.335 | 3.341 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Echogdali, F.Z.; Boutaleb, S.; El Ayady, H.; Aadraoui, M.; Abdelrahman, K.; Bendarma, A.; Ikirri, M.; Abu-Alam, T.; Id-Belqas, M.; Abioui, M. Characterization and Productivity of Alluvial Aquifers in Sustainability Oasis Areas: A Case Study of the Tata Watershed (Southeast Morocco). Appl. Sci. 2023, 13, 5473. https://doi.org/10.3390/app13095473
Echogdali FZ, Boutaleb S, El Ayady H, Aadraoui M, Abdelrahman K, Bendarma A, Ikirri M, Abu-Alam T, Id-Belqas M, Abioui M. Characterization and Productivity of Alluvial Aquifers in Sustainability Oasis Areas: A Case Study of the Tata Watershed (Southeast Morocco). Applied Sciences. 2023; 13(9):5473. https://doi.org/10.3390/app13095473
Chicago/Turabian StyleEchogdali, Fatima Zahra, Said Boutaleb, Hasna El Ayady, Mohamed Aadraoui, Kamal Abdelrahman, Amine Bendarma, Mustapha Ikirri, Tamer Abu-Alam, Mouna Id-Belqas, and Mohamed Abioui. 2023. "Characterization and Productivity of Alluvial Aquifers in Sustainability Oasis Areas: A Case Study of the Tata Watershed (Southeast Morocco)" Applied Sciences 13, no. 9: 5473. https://doi.org/10.3390/app13095473
APA StyleEchogdali, F. Z., Boutaleb, S., El Ayady, H., Aadraoui, M., Abdelrahman, K., Bendarma, A., Ikirri, M., Abu-Alam, T., Id-Belqas, M., & Abioui, M. (2023). Characterization and Productivity of Alluvial Aquifers in Sustainability Oasis Areas: A Case Study of the Tata Watershed (Southeast Morocco). Applied Sciences, 13(9), 5473. https://doi.org/10.3390/app13095473