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Abstract: A novel method for the determination of lipid oxidation using Raman microscopy was
developed. A home-made surface-enhanced Raman spectroscopy (SERS) substrate based on silver
nanoparticles deposited on a glass Petri dish was used. The degradation of ground pork stored at
5 ◦C was monitored for 16 days. Two packages were considered: an active packaging containing
an oregano extract with antioxidant properties and a conventional one consisting of a low-density
polyethylene (LDPE) film. The lipid fraction of the ground pork was extracted with a mixture of
diethyl ether/n-hexane (1:1). A remarkable maximum signal enhancement factor of 1.64 × 107 at
1439 cm−1 shift (and up to 8.58 × 106 at 1655 cm−1, chosen for fat oxidation assessment) was obtained
with SERS compared to conventional Raman. In addition, SERS provided better discrimination among
samples than the results obtained by the thiobarbituric acid reactive substances (TBARS) method.
The experimental conditions for SERS were optimized and discussed.

Keywords: lipid oxidation; surface-enhanced Raman spectroscopy (SERS); silver nanoparticles;
Raman microscopy

1. Introduction

Over the past few decades, consumer concern about the freshness and quality of meat
increased significantly [1]. Meat and meat products are an example of food products that
are susceptible to deterioration due to their composition [2]. In addition to the bacterial
spoilage, the main degradation process of ground pork is caused by protein oxidation,
which is characterized by loss of red color and lipid oxidation, associated with off-flavors
and off-odors [3,4].

Lipid peroxidation occurs via free radical chain reactions, with reactive oxygen species
(ROS) such as hydroxyl (OH·) and hydroperoxyl (OOH·) radicals being the major initia-
tors [5]. Several factors such as fat content, storage temperature, kind of meat, oxygen
availability, and type of packaging can greatly influence the extent of lipid oxidation [6].
Since the half-life of ROS is extremely short, their direct measurement is not an easy task.
Several methods based on the detection of different fat oxidation products are used. One
of the most common is the thiobarbituric acid reactive substances (TBARS) assay. In this
case, malondialdehyde (MDA), considered to be one of the main end products of lipid
peroxidation, already present in the meat is measured, as well as that generated by the
hydrolysis reaction. However, several considerations must be taken into account. First,
not all fats produce MDA. Second, other substances may be generated by fat peroxidation.
In addition, some food additives may react with MDA, thus underestimating the final
result. Finally, thiobarbituric acid can react with other food components [7,8]. For these
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reasons, and despite its popularity, TBARS results must be considered and interpreted with
caution [9].

Recent advances in active food packaging allow for the extension of the shelf life of
fresh foods [10–14]. Most researchers focused their work on delaying the lipid oxidation
of fatty foods and meats by adding active agents such as antioxidants to the packaging
materials [15–18]. Therefore, a new simple method for the determination of lipid oxidation
would be highly appreciated, not only because fatty acids are important for the nutritional
value of meat (especially the polyunsaturated ones, such as linoleic acid, around 11.8% and
linolenic acid, 1.0% in pork), but also to evaluate the efficiency of the new active packaging
in the preserved food.

Raman spectroscopy can be considered as a useful tool for such purposes. Its main
advantages are: little or no sample preparation, very weak scattering of water and carbon
dioxide, rapid analysis, selectivity, versatility and the possibility of qualitative and quan-
titative analysis of both organic and inorganic compounds. On the other hand, limited
sensitivity and high detection limits are relatively common. To overcome these disad-
vantages, surface-enhanced Raman spectroscopy (SERS) is a technique in which a special
substrate, such as surfaces covered with roughened metals, or colloidal particles greatly
enhances the Raman signal. The most common SERS substrates are made of silver, gold,
or copper [19] and allow enhancement factors (EF) up to 1011 [20,21]. SERS allows both
quantitative and qualitative analysis of chemical species. Today, there are two reliable theo-
ries that explain the SERS phenomena, by considering either electromagnetic or chemical
mechanisms [21,22].

Conventional Raman spectroscopy was already applied to evaluate lipid oxidation [23],
to discriminate and characterize oils [24–27] and to control fat content or changes in
meat [28,29], with mixed results. Although some SERS studies focused on lipids [30–32], to
the best of our knowledge, SERS was never used as a method for the determination of lipid
oxidation in meat or meat products.

In this work, a different approach to evaluate fat degradation is presented. For
the first time, a home-made SERS substrate, much cheaper than commercial ones, was
developed and used for the analysis of lipids in ground meat. Silver nanoparticles (AgNPs)
were deposited in situ on glass Petri dishes by means of a “silver mirror” reaction. The
degradation of ground meat stored at 5 ◦C was monitored for 16 days. Two packaging
systems were used to evaluate differences in lipid oxidation: an active packaging containing
an oregano extract with antioxidant properties and a conventional packaging consisting of a
low-density polyethylene (LDPE) film used as a reference. The results were also compared
with the TBARS method. The experimental conditions were optimized and discussed.

2. Materials and Methods
2.1. Reagents

Trichloroacetic acid (≥99%, CAS 76-03-9), thiobarbituric acid (98%, CAS 504-17-6),
1,1,3,3-tetraethoxypropane (≥96.0%, CAS 122-31-6), silver nitrate (≥99.0%, CAS 7761-88-8),
and nitric acid (70%, CAS 7697-37-2) were purchased from Sigma-Aldrich Química S.A.
(Madrid, Spain). Hydrochloric acid (37%, CAS 7647-01-0), ammonium hydroxide solution
(32%, CAS 1336-21-6), ethanol (≥99.9%, 64-17-5), n-hexane (analytical grade, CAS 110-54-3),
and diethyl ether (≥99.7%, CAS 60-29-7) were from Sharlau (Barcelona, Spain). Potassium
sodium tartrate tetrahydrate (≥99%, CAS 7697-37-2) was from Merck Millipore (Madrid,
Spain). Ultrapure water was obtained from a Wasserlab Ultramatic GR system (Barbatáin,
Spain).

2.2. Samples

Samples of fresh ground pork were purchased in bulk from a local supermarket. For
this study, the use of packaged ground pork was not recommended because the ingredient
lists reported the addition of vegetable extracts including carrots and spices. These extracts
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contained lycopene, a red pigment, which can be easily extracted along with the lipids,
causing serious interferences in the Raman spectra.

2.3. Films

Polymeric films were prepared and supplied by Artibal S.A. (Sabiñánigo, Spain). The
active films consisted of low-density polyethylene (LDPE) coated with an active varnish
containing oregano extract as antioxidant, produced under patent EP1477519 A1. Blank
reference films of conventional LDPE, without active coating but with the same structure,
were also supplied.

2.4. Sample Preparation

For each sample, 22 g of meat was placed in 5 cm diameter polystyrene Petri dishes.
Then, the meat was covered with active film (6 × 6 cm) and packed in a LDPE bag (7 × 9 cm)
under normal atmosphere using an impulse sealer PFS-200 Zhejiang Dongfeng Packing
Machine Co (Wenzhou, Zhejiang, China). Reference samples were also prepared using
conventional LDPE film. After being packaged, samples were refrigerated at 5 ◦C, and they
were analyzed after 0, 7, 9, 11, 14, and 16 days.

2.5. Extraction of Lipids

The lipid extraction method developed in our previous research was applied [33].
Briefly, 12 g of meat was accurately weighed and extracted three times with a mixture of
n-hexane/diethyl ether (1:1, v/v). After combining the three fractions together, the extract
was evaporated to dryness in an R-124 rotary evaporator with a B-480 water bath from
Büchi (Flawil, Switzerland), redissolved in 5 mL of n-hexane, and carefully evaporated
under nitrogen stream until 1 mL. After deposition in the silvered glass Petri dish and
evaporation of the solvent, SERS measurement of the fatty extract was carried out. All the
experiments were performed in triplicate and all the measurements were performed three
times.

2.6. SERS Substrate

Based on a well-known procedure for silvering glass [34], 15 mL of aqueous solution
of silver nitrate at concentration 6.2% (w/v) was prepared and a small part, about 1 mL,
was reserved. Then, 32% ammonium hydroxide solution was added drop by drop to
the AgNO3 solution until the chocolate-colored precipitate was just dissolved. Then, the
remaining mL of AgNO3 was added, showing an incipient turbidity. The resulting solution
was diluted to 100 mL with ultrapure water and stored in a brown glass bottle. Second,
the reducing solution was prepared as follows: 0.19 g of potassium sodium tartrate was
added to 100 mL of boiling water. Then, 20 mL of an aqueous solution of AgNO3 at a
concentration of 1.1% (w/v) was slowly added while stirring vigorously. The solution was
boiled for 10 min and then cooled to room temperature. The resulting solution was filtered
through a cellulose acetate syringe filter (25 mm diameter, 0.50 µm pore size) and stored in
a brown glass bottle.

To prepare the SERS substrate, 2 mL of silver nitrate solution and 2 mL of the reducing
solution were added to a soda lime glass Petri dish (40 mm diameter, 12 mm height). The
solutions were mixed and the Petri dish was left for the deposition of silver nanoparticles
(AgNPs) which should start after approximately 20 s. The initial reaction time was used as
an indicator of the freshness of the solutions. In our experience, they should be renewed
every month to ensure optimal performance. After 10 min of reaction, the Petri dish
was washed with ultrapure water and rinsed with ethanol. Finally, a gentle stream of
nitrogen was applied to completely dry the surface. Figure 1a shows a finished silvered
Petri dish, and the structure of the AgNPs was verified by scanning electron microscopy
(see Figure 1b).
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Figure 1. (a) Petri dish with SERS substrate, (b) SEM micrograph of SERS substrate.

2.7. Equipment

The Raman spectra were obtained using a DXRTM Raman spectrometer equipped
with a microscope from a Thermo Scientific (Waltham, MA, USA). In addition, a motorized
microscope stage sample holder and an excitation laser source at 532 nm were used,
while the detector consisted of a charge-coupled device. The Raman microscope was first
automatically aligned and calibrated to ensure and maintain optimal results. Both neon
and polystyrene standards were used in the calibration process with the tool provided with
the system. The following conditions were used for SERS measurements: 10× objective
(0.4 NA), aperture was 25 µm pinhole, the grating was 900 lines·mm–1, and the spectral
range was 3500–50 cm−1. The optimal laser power was set to 5 mW, and 20 exposures of
30 s each were selected to acquire all spectra. The following options were applied: white
light correction, fluorescence correction, cosmic ray rejection, and a smart background
option. The camera temperature was −51 ◦C. Omnic v. 9.2 software from Thermo Fisher
Scientific was used for data collection and analysis. Spectra were compared using the
common scale mode.

Scanning electron microscopy images of the silver substrate were obtained with a Carl
Zeiss (Jena, Germany) MERLIN™ field emission scanning electron microscope (FE-SEM)
with an accelerating voltage of 20.0 kV.

Absorbance of TBARS samples was measured using a Shimadzu UV1700 Pharmaspec
spectrophotometer (Kyoto, Japan).

2.8. Cooling System for Improved Raman Measurement

In our previous study, on the application of SERS for the determination of butylated
hydroxyanisole in edible and essential oils [35], a special cooling system was developed
to perform analyses at low temperature. Significant differences between room and low
temperature were obtained due to the presence of very intense Raman shifts belonging
to the oil, a complex matrix. In short, a Thermo-Haake K20 refrigerated bath with a C10
immersion circulator was used. A stainless steel block with two 8 mm holes was connected
to the circulator by Tygon® tubing covered by air-conditioning pipe insulation. A Petri dish
containing the oil samples was placed on the block, which was placed on the microscope
stage. Raman spectra were recorded at −2 ◦C. Figure 2 shows a diagram of the system.
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2.9. TBARS

The lipid oxidation results obtained by SERS were compared with those obtained by
the TBARS method [36]. Briefly, 20 mL of an aqueous solution of trichloroacetic acid at a
concentration of 10 µg·g–1 was added to 10 g of ground pork. An IKA (Staufen, Germany)
Ultra-Turrax at 18,000 rpm was used to grind the mixture until a uniform slurry was
obtained. The supernatant was then filtered through 90 mm diameter Whatman grade
5 qualitative filter paper from Sigma Aldrich (Madrid, Spain). 2 mL of a 20 mM aqueous
of thiobarbituric acid solution was added to 2 mL of the filtered aliquot and mixed. The
mixture was then kept in a silicone oil bath at 97 ◦C for 20 min. Absorbance was measured
at 532 nm against a blank. The results were expressed in equivalent concentration of MDA
(mg of malondialdehyde·kg–1 of meat). The MDA solution was prepared from 1,1,3,3-
tetraethoxypropane dissolved in aqueous HCl 1 M. Concentrations from 0.1 to 0.8 µg·g–1

of the MDA solution were used for the calibration curve.

2.10. Optical Images of Samples

A Nikon Coolpix 4300 (Tokyo, Japan) digital camera was used to photograph meat
samples at a height of 15 cm and at an angle of 45◦. The samples were illuminated from
above. Manual mode with flash cancel was used. White balance was adjusted manually
using a white chroma meter standard. The following settings were used: macro close-up as
focus mode, fine image quality, image size of 1600, sensitivity in ISO auto, and metering in
matrix mode.

2.11. Statistical Analysis

All results presented are expressed as mean ± standard deviation. Student’s t-test was
used to evaluate the significant differences between the TBARS and SERS results. The null
hypothesis was applied based on the similarity of the samples. The difference between the
samples was significant (significance level α = 0.05) when the experimental value of t was
greater than the tabulated value. In this case, the null hypothesis was rejected.

In addition, Grubb’s test was used to test for outliers. When the calculated value of G
(α = 0.05) exceeded the critical value, the suspect value was rejected.

3. Results and Discussion

It is worth noting that the SERS substrate obtained by AgNPs deposition resulted in a
smooth surface without defects. Moreover, the scanning electron microscope micrograph
(Figure 1b) showed a uniform surface of small nanoparticles (~150 nm) with homogeneous
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size distribution as result of the “silver mirror” reaction. The precision of the mean particle
size, expressed as %RSD, for three independent substrates was 14.2%.

First, the weight of meat was optimized to obtain a significant fraction of the extracted
lipids, since the amount of fat deposited on the SERS substrate was crucial. On the one
hand, a drop of lipid extract was completely evaporated after laser heating. On the other
hand, when a thick layer (8 mm) was applied, no SERS effect was observed at all. Finally, a
layer of about 3 mm of fat was used, which corresponds to about 12 g of meat.

The next parameter to be optimized was the measurement temperature. No significant
differences were found when comparing fresh and oxidized samples at room temperature.
Taking into account the results obtained from our previous work [35], when using the
cooling device at −2 ◦C, better definition of the relevant bands and notorious differences
in intensity appeared in the oxidized sample, and so, further analyses were performed at
low temperature. Although the effect of temperature on SERS was poorly explored, our
findings were consistent with a work [37] suggesting that the dielectric constant of noble
metal nanoparticles is influenced by electron–phonon scattering and electron–electron
scattering, with EF being favored at low temperatures. In addition, laser power (ranging
from 3.5 to 9.5 mW), exposure time, and number of exposures were adjusted by sequential
optimization. The selected conditions were as follows: 5 mW of laser power, 30 s of
exposure time, and 20 exposures. Finally, the results of area and height of the spectral
bands were collected. Since significant differences were obtained only in the case of areas,
this parameter was used in subsequent analyses.

An analysis of the photographs of meat samples showed that active packaging con-
taining oregano extract prolonged the shelf life of meat. Oregano extract is a well-known
antioxidant that was widely studied for active packaging purposes [10,38–43]. Therefore,
it was chosen as antioxidant agent to inhibit the degradation of lipids in meat. Figure 3
shows the aspect of meat samples stored under refrigeration after 5 days. LDPE-packaged
samples started to lose color due to myoglobin oxidation. This process was shown to be
associated with lipid oxidation [4].
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In this work, the Raman spectrum of fat extracted from meat stored in active pack-
aging was collected and compared with the spectrum of fat extracted from meat stored
in conventional LDPE packaging. Figure 4 shows the spectrum of the extracted lipids
at 0 days, highlighting the major Raman shifts associated with fat oxidation in the SERS
spectrum. As can be seen, the SERS spectrum showed a much improved signal-to-noise
ratio compared to conventional Raman.
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Raman shifts corresponding to the oxidation of lipids present in oils and fats were
extensively described in the scientific literature [44–48]. The most relevant detected shifts
related to lipid degradation are briefly described in Table 1.

Table 1. Raman shifts responsible for lipid oxidation obtained by SERS.

Raman Shift [cm−1] Functional Group

3008 C–H stretching of C=C–H
2850 C–H stretching ν(C–H) in –CH3 and –CH2–
1655 stretching of C=C bonds
1439 scissoring deformation δ(CH2) of –CH2–
1301 in-plane C=C–H deformation
1266 in-phase –CH2– twisting

Three replicates of each sample were measured and three measurements of each
replicate were performed in the case of SERS. The RSD% values for the measurements of
lipids extracted from ground pork in LDPE and in active packaging, were less than 29% for
LDPE and 15% for active packaging.

The SERS bands showed strong enhancement with respect to the ordinary Raman
spectrum. In this work, the shifts at 1439 cm−1 and 1655 cm−1 were selected because they
gave the highest values of the EF. According to calculations [49] (considering the refractive
index of the fat as 1.46 [50], an average molecular weight of 272.27 Da, according to the fatty
acid composition of pork meat [51], and a fat density of 0.91 g·cm−3 [52]), the dimensions
of the hourglass-shaped sample volume were ~2.6 µm diameter spot in the focal plane with
a depth of ~30 µm. By subtracting the volume of silver nanoparticles, the effective Raman
sampling of fat was about 82 µm3. Considering the characteristics of the fat extract, the
detection volume contained ~0.88 pmol.
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The EFs were calculated from an analytical chemistry point of view [53,54] according
to the formula EF = (ISERS/NSERS)/(IRaman/NRaman), where ISERS and IRaman were the signal
intensities with and without silver substrate, respectively, NSERS the number of molecules
responsible for the enhancement (first layer in contact with silver, ~8.4 × 106) and NRaman
the number of fat molecules in the detection volume (~5.3 × 1011). The maximum EF
values obtained were 1.64 × 107 at 1439 cm−1 and 8.58 × 106 at 1655 cm−1. These Raman
shifts were chosen as reference for normalization (1439 cm−1, CH2 scissoring, which is
relatively unaffected by oxidation) and for assessing oxidative fat degradation, which was
mainly due to unsaturation (1655 cm−1, C=C stretching). Taking into account possible
interferences, MDA, one of the main end products of lipid peroxidation, was considered as a
reference. In a recent study [55], the MDA signal by SERS with mixed Au/Ag nanoparticles
in the vicinity of 1655 cm−1, more precisely at 1663 cm−1 used by the authors for the
effective measurement of a complex between MDA and 4-aminophenylthiophenol, was
negligible. Since lipid peroxidation occurs mainly in unsaturated fatty acids, and double
bonds between carbon atoms are lost in the process, the decrease in the peak at 1655 cm−1

can be satisfactorily attributed to lipid peroxidation. Figure 5 shows the overlapped spectra
on different days showing both bands, corresponding to samples stored with LDPE (left)
and with active packaging (right). It can be clearly seen that the decrease in the 1655 cm−1

band over time was much less pronounced in meat samples stored in active packaging.
This demonstrates the protective effect of active agent by delaying fat oxidation.
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compared to the normalized 1439 cm−1 band (CH2 scissoring) chosen as reference.

Figure 6 shows the graphical results of the SERS analysis, where a significant difference
between conventional and active packaging was observed, as the error bars did not overlap.
Therefore, the developed method can be successfully applied to monitor fat oxidation or
to study the role of active packaging on fat and fatty products. Furthermore, a decreasing
trend was observed from day 7 onwards. Again, since the active packaging always had
a higher ratio area between 1655 and 1439 cm−1 bands compared to LDPE-packaged
samples, it can be confirmed that the active packaging provided an effective reduction in
unsaturation of fats as a consequence of their oxidation.
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Figure 6. Results of SERS analysis of meat samples from LDPE and active packaging expressed as
average area ratio (1655/1439 cm−1 shifts) ± standard deviation, n = 3.

The quantitative analysis of unsaturation was performed as follows: first, the pro-
tective effect of the active packaging was evaluated by dividing the area ratio of bands
at 1655/1439 cm−1 of conventional LDPE vs. active packaging samples. The lower the
value, the better the performance of the active packaging in preventing lipid oxidation. In
addition, the relative change of unsaturation (RCU%) over time was calculated for each
series of samples according to the equation: RCU% = ((AR0 − ARn)/AR0) × 100, where
AR0 and ARn are the area ratios between the 1655 and 1439 cm−1 shifts corresponding to
day 0 and after “n” days of storage, respectively. In this case, the higher the value, the more
pronounced the oxidative degradation of the fat. All the results, expressed in percentages,
are shown in Table 2. The results over time showed a significant efficacy of the active
packaging. In addition, the RCU% values indicated an increase in saturation between
samples of the same type with increasing storage time. The results always showed lower
RCU% values for active packaging samples compared to LDPE-packaged meat.

Table 2. Results of unsaturation analysis of meat samples based on the SERS measurement of area
ratio between 1655 and 1439 cm−1 bands. All results are expressed as mean ± standard deviation (in
percentage).

Day RCU% (LDPE) RCU% (Active Packaging)

0 0 ± 0 0 ± 0
7 19 ± 3 1 ± 0
9 51 ± 9 30 ± 3
11 66 ± 9 44 ± 5
14 71 ± 12 51 ± 10
16 74 ± 14 49 ± 10

The quantification of MDA was performed by external calibration based on the mea-
surement of absorbance. The linearity of the calibration curve was obtained in the range
of 0.09–0.81 µg·g–1 nominal concentrations with regression coefficient (r) 0.9990. Figure 7
shows the obtained values of TBARS for the meat samples stored in different packages
during the 16 days of storage.
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concentration of MDA ± standard deviation, n = 3.

An increasing trend was observed compared to the day 0 samples. As expected, lipids
underwent oxidation with the subsequent production of TBARS during the storage time,
although the rate of TBARS formation varied among samples. The RSD% ranged from 11%
(conventional LDPE) to 17% (active packaging samples). The t-test was used to compare
the average values of the LDPE stored samples and those with active packaging. It was
clear that the TBARS results were inconclusive and the inherent limitations of the method
(some fats do not produce MDA, some food additives may react with MDA leading to an
underestimation of results, and thiobarbituric acid may react with other food components)
were noted.

4. Conclusions

A novel application of SERS using a home-made silver substrate and a cooler for
improved measurement of samples was presented. The determination of lipid oxidation
in packaged ground pork was performed. The proposed method was fast, with minimal
handling of the fat sample. Better discrimination than the TBARS method to follow lipid
degradation in short time was successfully achieved. The detection of differences between
conventional and active packaging was confirmed. A cooling setup was shown to im-
prove the sensitivity of SERS and allowed the study of a complex matrix. Furthermore,
an outstanding SERS enhancement factor of more than 107 was obtained compared to
conventional Raman.
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