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Abstract: As ground subsidence accidents in urban areas that occur due to damage to underground
utilities can cause great damage, it is necessary to predict and prepare for such accidents in order
to minimize such damage. It has been reported that the main cause of ground subsidence in urban
areas is cavities in the ground formed by damage to underground utilities. Thus, in this study,
attribute information and historical ground subsidence information of six types of underground
utility lines (water supply, sewage, power, gas, heating, and communication) were collected to develop
a ground subsidence risk prediction model based on machine learning. To predict the risk of ground
subsidence in the target area, it was divided into a grid with a square size of 500 m × 500 m, and
attribute information of underground utility lines and historical information of ground subsidence
included in the grid were extracted. Six types of underground utility lines were merged into single-
type attribute information, and the risk of ground subsidence was categorized into three levels
using the number of ground subsidence occurrences to develop a dataset. In addition, 12 datasets,
which were developed based on the conditions of certain divided ranges of attribute information
and risk levels, and 12 additional datasets, which were developed using the Synthetic Minority
Oversampling Technique to resolve the imbalance of data, were built. Then, factors that represented
significant correlations between input and output data were singled out and were then applied to
the RandomForest, XGBoost, and LightGBM algorithms to select a model that produced the best
performance. By classifying the ground subsidence risk levels through the selected model, it was
found that density was the most important influencing factor used in the model. A risk map of
ground subsidence in the target area was made through the model; the map showed the trend of
well-predicted risk levels in the area where ground subsidence was concentrated.

Keywords: ground subsidence; machine learning; ground subsidence risk prediction model; risk map

1. Introduction

Damage to underground utility lines is known to be one of the main causes of ground
subsidence. Since underground utility lines are concentrated in urban areas with highly
dense populations, accidents due to ground subsidence can cause significant social chaos [1].
As such, it is necessary to prevent accidents related to ground subsidence by analyzing
their fundamental causes and mechanisms.

An investigation of the causes and the number of ground subsidence occurrences from
2010 to July 2014 in Seoul showed that the number of accidents has steadily increased,
and their main cause was found to be damage to water supply and sewage lines [2]. A
mechanism by which ground subsidence occurs is often when pipes are damaged by
external impacts and deterioration due to aging, causing water channels to form around the
damaged location. Soil particles in the ground can then move along the channels, creating
and expanding cavities around the pipes [3]. Thus, ground subsidence is likely to increase
as excavation construction work is repeatedly performed over time.
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Extensive research has been performed on ways to prevent accidents related to ground
subsidence. In Japan, a study using indoor model experiments simulating ground subsi-
dence using standard sand was published to identify the mechanism of how cavities, a
precursor to ground subsidence, were generated inside the ground, while a study on the
identification of a cavity generation mechanism inside the ground by simulating a crack in
the sewage pipeline under the soil box and visualization of the cavity generation through
equipment such as X-rays and computed tomography has also been published [4,5].

Research that aims to identify the mechanism of ground subsidence occurrence using
numerical analysis has also been active. Using the finite element method to simulate the
ground cavity and relaxation zone, several published studies have shown that the location
of the underground utility damage, the relative density of the ground, and the ground layer
conditions have a significant effect on the ground subsidence [6–8].

In addition, studies on performing a decision tree, which is one of the machine learning
algorithms, and the analytic hierarchy process, were published to derive factors influencing
ground subsidence and calculate the weights of influencing factors [9,10].

Studies aiming to predict the risk level of ground subsidence have also been steadily
conducted. One study on the evaluation of ground subsidence risk level that was an-
nounced uses surveyed CCTV data based on sewage pipelines, which is the main cause of
ground subsidence, as well as cavity exploration data by underground exploration radar. In
addition, a study was conducted to propose a regression equation of the ground subsidence
risk level in urban areas in Korea through logistic regression analysis [11]. Moreover, stud-
ies have been conducted to select a model for predicting the ground subsidence risk level
in urban areas in Korea through machine learning, after selecting influencing factors such
as the number of years used and pipeline diameter among attribute values of underground
utilities, and then to suggest a risk map [1].

Researchers have used various ways to predict risk levels in order to prevent accidents
related to ground subsidence. However, they have had difficulty deriving highly accurate
and reliable results, as ground subsidence occurs in complex ways and is caused by various
factors in a wide range of areas. Thus, this study aims to propose a machine learning-
based ground subsidence risk prediction model by selecting the following as influence
factors among the attribute information of underground utility lines in representative
urban areas in Korea: the number of years used, pipeline diameter and length, and the
density of pipelines, which are likely to have a close correlation with ground subsidence.
We compared the results of machine learning models by applying datasets with a range
of conditions and selected the model that exhibited optimal performance. Furthermore,
we aimed to present the importance of each influencing factor, which was used when
classifying the ground subsidence risk levels by the machine learning model through the
selected model.

2. Method and Data Characteristics
2.1. Subsection Flow of the Study

In this study, a representative urban area in Korea was selected as the target region. To
develop a ground subsidence risk level prediction model based on machine learning, the
historical information of ground subsidence, and attribute information of underground
utility lines in the target region were used to build a dataset and then applied to the machine
learning algorithm. The target region was divided into a grid with a total of 2391 squares
of 500 m × 500 m in size, using the ArcGIS program to predict risk level. Six types of
underground utility lines included in each grid square were merged into a single type to
extract the attribute information and density. The dataset was built using a method that
calculated a risk level based on the number of ground subsidence occurrences in the grid
using the historical ground subsidence information.

The developed dataset was divided into training and test datasets at an 80:20 ratio
to prevent overfitting of the model and to test the model. To mitigate the data imbalance,
the Synthetic Minority Oversampling Technique (SMOTE) was applied to the training
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data. This developed training dataset was applied to machine learning algorithms: Ran-
domForest (RF), XGBoost (XGB), and LightGBM (LGBM) to check the model results by
adjusting the hyperparameters that exhibited the optimal performance. Using the 20% test
data, the model’s performance was validated through the test indices of accuracy, F1-score,
and area under the curve (AUC). Based on the test results, dataset types and machine
learning models that exhibited optimal performance were selected, and the importance of
the influencing factors was derived. Figure 1 shows the flow chart of the study.
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2.2. Characteristics of the Data

A representative area in Korea was selected as the target region for the prediction of
ground subsidence risk level. The target region was divided into a grid with a total of
2391 squares of 500 m × 500 m in size for the risk level evaluation. For each grid square,
the attribute data of six types of underground utility lines (water supply, sewage, power,
gas, heating, and communication cables) and the historical data of ground subsidence were
compiled. As described above, six types of underground utility lines were merged into a
single type to extract attribute data. In the attribute information of underground utility
lines to build a dataset, the number of years used, pipeline type, diameter, length, burial
depth, slope, etc., were included, but there were many missing and erroneous values as
well. Thus, as the data that could be usable, the number of years used, pipeline diameter,
and length were selected. Then, the density of all pipelines was calculated to be used
as a factor influencing the occurrence of ground subsidence. To improve the model’s
performance, raw data were not directly used, but they were preprocessed to divide the
attribute information of underground utility lines by a certain range. The years used were
divided into 5- and 10-year units, and the pipeline diameter was divided into 50 mm and
100 mm units. The basic unit of data that belongs to the corresponding range was set to the
pipeline’s length. For example, an underground pipeline that was used for three years in
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the grid was assigned to a class corresponding to an age of 1 to 4 years, and the length of
the pipeline was reflected.

For the output data, the risk level of ground subsidence was calculated by summing
the number of ground subsidence occurrences in the grid using the historical information of
ground subsidence occurrences. It is difficult to provide a quantifiable measure of ground
subsidence risk. Thus, multiple datasets of ground subsidence risk levels, categorized by
the number of ground subsidence occurrences, were developed. The developed datasets
were applied to the machine learning algorithms to select a condition of the risk level of
ground subsidence that exhibited good performance. The ground subsidence risk was
categorized into three levels. Risk Level 1 means an area where the number of ground
subsidence occurrences in the grid is “0”. The conditions of Risk Levels 2 and 3 were
adjusted depending on the number of ground subsidence occurrences in the grid. If the
number of ground subsidence occurrences in the grid of Risk Level 2 is one, the number of
ground subsidence occurrences of Risk Level 3 was set to two or more. If the number of
ground subsidence occurrences in the grid of Risk Level 2 is set to a range of one to two,
the number of ground subsidence occurrences of Risk Level 3 was set to three or more. If
the number of ground subsidence occurrences in the grid of Risk Level 2 is set to a range
of one to three, the number of ground subsidence occurrences of Risk Level 3 was set to
four or more. Risk Level 1 of ground subsidence means a relatively safer area from ground
subsidence. The boundary between Levels 2 and 3 varies depending on the conditions, but
Level 2 means an area that needs attention, and Level 3 is an area that is at the highest risk.
Table 1 presents the categories of factors in the datasets. Table 2 presents the dataset which
is set according to the data category condition. A total of 24 datasets were built according
to whether or not SMOTE was applied to each dataset.

Table 1. Category of factors.

Factors Unit Category

Year
(year)

5 1~5, 6~10, 11~15, 16~20, 21~25, 26~30,
31~35, 36~40, 41~45, 46~50

10 1~10, 11~20, 21~30, 31~40, 41~50

Diameter (mm)
50

1~50, 51~100, 101~150, 151~200, 201~250,
251~300, 301~350, 351~400, 401~450,

451~500, 501~550, 551~600

100 1~100, 101~200, 201~300, 301~400,
401~500, 501~600

Risk level
(Sum of occurrences of ground

subsidence in grid)

1 0
2 1, 1~2, 1~3
3 2~, 3~, 4~

Table 2. Category of Factors.

No. Grid Year (Year) Diameter
(mm)

Risk Level
(Level 2′s Range)

1

500 m × 500 m

5

50
3 (1)

2 3 (1–2)
3 3 (1–3)
4

100
3 (1)

5 3 (1–2)
6 3 (1–3)
7

10

50
3 (1)

8 3 (1–2)
9 3 (1–3)
10

100
3 (1)

11 3 (1–2)
12 3 (1–3)
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2.3. Density

A previous study proved that the density of pipelines was significantly correlated with
ground subsidence [9] Accordingly, we used the density of the pipeline as the influencing
factor of the model to predict the ground subsidence risk level. The density was calculated
using a linear density analysis on the pipelines in the grid using ArcGIS. This method
calculated the length of the pipeline that corresponded to the unit area.

2.4. Risk Level of Ground Subsidence

The risk levels used as the output data in this study were divided into three levels
according to the number of times ground subsidence occurred in the grid. Since there are no
quantifiable measures to categorize the risk level, we build datasets by selecting different
numbers of data belonging to risk level 2 according to the number of occurrences of ground
subsidence in the grid. Thus, the number of data varies according to the category based
on the number of occurrences of ground subsidence of each dataset, which is presented
in Table 3. As presented in Table 3, the ratio of Risk Level 1 data was the highest (57%),
and the ratios of Risk Level 2 and 3 data varied according to the conditions. As such, the
composition of the data shows unbalanced features, and we applied SMOTE, an over-
sampling technique, to the 12 datasets to balance the data [12–14].

Table 3. The ratio of data according to the risk level of ground subsidence.

Range of Risk Level 2

Risk Level
1 2 3

1 1374 (57%) 348 (15%) 669 (28%)

1–2 1374 (57%) 635 (27%) 382 (16%)

1–3 1374 (57%) 706 (30%) 311 (13%)

2.5. Data Correlation Analysis

A Pearson correlation analysis was conducted to verify the correlation between the
input and output data of the dataset which was developed according to the data category
conditions. The results are presented in Table 4.

Table 4. Results of correlation analysis of the influencing factors.

Model No. 1 2 3

Factor Corr p-Value Corr p-Value Corr p-Value

5Y_5 −0.138 0.000 −0.149 0.000 −0.150 0.000
5Y_10 −0.108 0.000 −0.098 0.000 −0.096 0.000
5Y_15 −0.004 0.858 −0.007 0.724 −0.049 0.017
5Y_20 −0.141 0.000 −0.178 0.000 −0.171 0.000
5Y_25 −0.108 0.000 −0.161 0.000 −0.154 0.000
5Y_30 −0.065 0.002 −0.099 0.000 −0.106 0.000
5Y_35 −0.150 0.000 −0.165 0.000 −0.173 0.000
5Y_40 −0.150 0.000 −0.169 0.000 −0.168 0.000
5Y_45 −0.167 0.000 −0.187 0.000 −0.167 0.000
5Y_50 −0.135 0.000 −0.134 0.000 −0.144 0.000

50DTR_50 0.057 0.005 0.061 0.003 0.064 0.002
50DTR_100 0.146 0.000 0.147 0.000 0.148 0.000
50DTR_150 0.159 0.000 0.163 0.000 0.169 0.000
50DTR_200 0.117 0.000 0.116 0.000 0.112 0.000
50DTR_250 0.015 0.478 0.008 0.698 0.013 0.522
50DTR_300 0.153 0.000 0.155 0.000 0.158 0.000
50DTR_350 0.038 0.067 0.026 0.198 0.022 0.274
50DTR_400 0.059 0.004 0.062 0.002 0.059 0.004
50DTR_450 0.099 0.000 0.109 0.000 0.107 0.000
50DTR_500 0.043 0.035 0.044 0.032 0.052 0.011
50DTR_550 0.014 0.494 −0.006 0.783 −0.003 0.895
50DTR_600 0.082 0.000 0.090 0.000 0.089 0.000

Density 0.544 0.000 0.534 0.000 0.526 0.000
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Table 4. Cont.

Model No. 4 5 6

Factor Corr p-Value Corr p-Value Corr p-Value

5Y_5 −0.138 0.000 −0.149 0.000 −0.150 0.000
5Y_10 −0.108 0.000 −0.098 0.000 −0.096 0.000
5Y_15 −0.004 0.858 −0.007 0.724 −0.049 0.017
5Y_20 −0.141 0.000 −0.178 0.000 −0.171 0.000
5Y_25 −0.108 0.000 −0.161 0.000 −0.154 0.000
5Y_30 −0.065 0.002 −0.099 0.000 −0.106 0.000
5Y_35 −0.150 0.000 −0.165 0.000 −0.173 0.000
5Y_40 −0.150 0.000 −0.169 0.000 −0.168 0.000
5Y_45 −0.167 0.000 −0.187 0.000 −0.167 0.000
5Y_50 −0.135 0.000 −0.134 0.000 −0.144 0.000

100DTR_100 0.131 0.000 0.134 0.000 0.136 0.000
100DTR_200 0.152 0.000 0.154 0.000 0.155 0.000
100DTR_300 0.128 0.000 0.127 0.000 0.132 0.000
100DTR_400 0.067 0.001 0.064 0.002 0.060 0.004
100DTR_500 0.103 0.000 0.111 0.000 0.113 0.000
100DTR_600 0.083 0.000 0.089 0.000 0.088 0.000

Density 0.544 0.000 0.534 0.000 0.526 0.000

Model No. 7 8 9

Factor Corr p-Value Corr p-Value Corr p-Value

10Y_10 0.085 0.000 0.077 0.000 0.071 0.000
10Y_20 0.123 0.000 0.126 0.000 0.131 0.000
10Y_30 0.150 0.000 0.156 0.000 0.159 0.000
10Y_40 0.108 0.000 0.113 0.000 0.116 0.000
10Y_50 0.107 0.000 0.117 0.000 0.118 0.000

50DTR_50 0.057 0.005 0.061 0.003 0.064 0.002
50DTR_100 0.146 0.000 0.147 0.000 0.148 0.000
50DTR_150 0.159 0.000 0.163 0.000 0.169 0.000
50DTR_200 0.117 0.000 0.116 0.000 0.112 0.000
50DTR_250 0.015 0.478 0.008 0.698 0.013 0.522
50DTR_300 0.153 0.000 0.155 0.000 0.158 0.000
50DTR_350 0.038 0.067 0.026 0.198 0.022 0.274
50DTR_400 0.059 0.004 0.062 0.002 0.059 0.004
50DTR_450 0.099 0.000 0.109 0.000 0.107 0.000
50DTR_500 0.043 0.035 0.044 0.032 0.052 0.011
50DTR_550 0.014 0.494 −0.006 0.783 −0.003 0.895
50DTR_600 0.082 0.000 0.090 0.000 0.089 0.000

Density 0.544 0.000 0.534 0.000 0.526 0.000

Model No. 10 11 12

Factor Corr p-Value Corr p-Value Corr p-Value

10Y_10 0.085 0.000 0.077 0.000 0.071 0.000
10Y_20 0.123 0.000 0.126 0.000 0.131 0.000
10Y_30 0.150 0.000 0.156 0.000 0.159 0.000
10Y_40 0.108 0.000 0.113 0.000 0.116 0.000
10Y_50 0.107 0.000 0.117 0.000 0.118 0.000

100DTR_100 0.131 0.000 0.134 0.000 0.136 0.000
100DTR_200 0.152 0.000 0.154 0.000 0.155 0.000
100DTR_300 0.128 0.000 0.127 0.000 0.132 0.000
100DTR_400 0.067 0.001 0.064 0.002 0.060 0.004
100DTR_500 0.103 0.000 0.111 0.000 0.113 0.000
100DTR_600 0.083 0.000 0.089 0.000 0.088 0.000

Density 0.544 0.000 0.534 0.000 0.526 0.000

In Table 4, Y refers to the number of years used, and 5Y and 10Y mean the five-year
and 10-year units, respectively (5–50 refers to the data range). In addition, DTR refers to
the pipeline diameter; 50 and 100 refer to the pipeline diameter of 50 mm and 100 mm,
and 50–600 refers to the range of the pipeline diameters. In this study, the presence of data
correlation was verified by p-value in the correlation analysis. If the p-value was less than
0.05, it was interpreted as showing a significant correlation, so it was used as input data.
Conversely, if the p-value is more than 0.05, it was interpreted as not showing a significant
correlation, so it was excluded from the input data.
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3. Results of Analysis of Ground Subsidence Risk Levels Using Machine Learning

In this study, a machine learning algorithm was used to develop a model to predict
the risk level of ground subsidence, focusing on urban areas in South Korea. The machine
learning algorithms used were RF, XGB, and LGBM, which have produced good results in
previous studies [1,15].

3.1. Random Forest

The Random Forest (RF) algorithm is a tree-based ensemble model that is developed to
solve regression and classification problems in machine learning [16]. An ensemble model
derives better results than a model that trains a single model once, as it trains multiple
algorithms iteratively. It includes techniques such as voting and bagging.

RF presents the best result among the results derived from the trees after creating
multiple tree-based algorithms as the representative result. RF is based on a tree algorithm,
has a low overfitting risk, and can be easily applied to various data. It is widely used in
problem-solving through machine learning to derive a good result [17–20].

RF predicts the outcome as a binary value of 0 or 1, as presented in (1), after extracting
an arbitrary number of input data from a number of single-algorithm predictors and
performing a final decision by majority vote on the results derived from each predictor,
where yi = fi(X), and wi refers to the weight. If the calculated value is larger than the
threshold value, the predicted value is 1, otherwise it is 0 [21].

F(X) = ∑ wiyi (1)

3.2. XGBoost (eXtreme Gradient Boosting)

XGBoost (XGB) is a typical algorithm of a boosting technique where a result is derived
by learning a single model sequentially, and the result of the previous model affects the
next result. XGB is a tree-based algorithm used in solving regression and classification
problems. It is effective in preventing overfitting due to its different regularization penalties.
In addition, it has the advantage of being able to process big data in a short period of time,
so it has been actively used in various fields [22,23].

The calculation equation for the decision-making of XGBoost is presented in (2), where
ŷi refers to the i-th sample’s prediction value and fk refers to the prediction value where the
k-th tree’s sigmoid function is applied. The output is derived by summing all prediction
values. The prediction value can be calculated using (3).

ŷi = ∑K
K=1 fi(xi) (2)

ŷi=
1

1 + e− f (xi)
(3)

The error is calculated using the difference between the prediction and real values in
the tree, and the weight is calculated to reduce the error as presented in (4). ŷi

(t−1) refers to
the prediction value of the previous model, ht(xi) refers to the tree trained by the current
model, and η refers to the learning rate, which is the percentage of reflections from the
prior model. The model’s error is reduced by iterating this method [24,25].

ŷ(t)i = ŷ(t−1)
i + ηht(xi) (4)

3.3. LightGBM (Light Gradient Boosting Machine)

LightGBM (LGBM) is an algorithm in which a tree-based boosting technique is applied
in the same manner as XGB. It has been used in solving regression and classification
problems and in selecting the priority of importance of influencing factors. LGBM is
advantageous for its fast operation speed because it derives a result using a method that
reduces data characteristics by employing partial data only. Thus, LGBM processes big
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data quickly and with a high level of accuracy, and can derive the importance among the
influencing factors used, advantages which have made it a popular choice [26].

LightGBM calculates the loss function using cross-entropy. The equation for calculat-
ing the cross-entropy is presented in (5), where N is the number of samples, K is the number
of classes, yi,j refers to the binary variable indicating whether the i-th sample belongs to
the j-th class, and pi,j refers to the probability that the i-th sample belongs to the j-th class.
LightGBM derives its results by learning to update the model while minimizing the CE
received from the previous model [27].

CE =
1
N ∑N

i=1 ∑N
j=1 yi,j log

(
pi,j

)
(5)

3.4. Evaluation Indexes of Machine Learning Algorithms

For evaluation indexes of machine learning models to solve a classification problem,
accuracy, F1-score, and AUC are generally used. The results of these evaluation indexes
can be calculated using Equations (6)–(10) via the confusion matrix.

Accuracy =
TP + TN

TP + TN + FP + FN
(6)

Recall(Sensitivity) =
TP

TP + FN
(7)

Precision =
TP

TP + FP
(8)

F1Score = 2 × Precision × Recall
Precision + Recall

(9)

Specificity =
TN

TN + FP
(10)

Intuitively, it is highly convenient if the model’s performance is evaluated through
the model’s accuracy, but it is also difficult to identify the objective model performance
for imbalanced data. Thus, a model using imbalanced data is evaluated by employing
the F1-score, which uses a harmonic mean of the data. The model confidence is evaluated
using the AUC that uses the receiver operation characteristic (ROC) [28–34].

3.5. Results of Applying Machine Learning

To build a machine learning-based model for the prediction of ground subsidence risk
levels in urban areas, we selected a model that exhibited the best performance by applying
24 datasets, which were developed using the attribute information of underground utility
lines and the historical information of ground subsidence, to RF, XGB, and LGBM classifiers.
To implement machine learning, Python 3.8 was used, and the Scikit-learn library was
employed.

The model’s evaluation indexes, accuracy, F1-score, and AUC were selected. The
accuracy was used to determine the presence of overfitting by comparing the results of the
training set with those of the test set. If the difference between the training and test scores
is equal to or less than 0.1, it was determined that overfitting was avoided. In addition,
the model’s performance was identified using the F1-score and AUC indices to select the
optimal model.

The results of an evaluation of the machine learning models derived in this study
are presented in Tables 5 and 6. Table 5 shows the model results where SMOTE was not
applied, and Table 6 presents the model results where SMOTE was applied.
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Table 5. Results of machine learning model (SMOTE not applied).

Model RF XGB LGBM

No. Train
Score

Test
Score

F1-
Score

(Macro)

AUC
(Macro)

Train
Score

Test
Score

F1-
Score

(Macro)

AUC
(Macro)

Train
Score

Test
Score

F1-
Score

(Macro)

AUC
(Macro)

1 0.742 0.670 0.450 0.780 0.725 0.668 0.480 0.770 0.765 0.676 0.480 0.800
2 0.766 0.645 0.500 0.800 0.719 0.628 0.490 0.790 0.714 0.666 0.550 0.800
3 0.745 0.649 0.490 0.810 0.768 0.660 0.560 0.800 0.759 0.643 0.560 0.810
4 0.791 0.676 0.470 0.780 0.724 0.674 0.490 0.770 0.763 0.670 0.480 0.790
5 0.764 0.664 0.530 0.800 0.719 0.628 0.500 0.790 0.758 0.660 0.550 0.810
6 0.751 0.664 0.520 0.810 0.732 0.658 0.550 0.810 0.768 0.666 0.570 0.820
7 0.736 0.639 0.420 0.750 0.696 0.641 0.410 0.750 0.714 0.645 0.440 0.750
8 0.681 0.591 0.310 0.750 0.694 0.601 0.390 0.750 0.655 0.591 0.360 0.760
9 0.732 0.635 0.390 0.770 0.680 0.620 0.410 0.770 0.715 0.616 0.410 0.770

10 0.729 0.643 0.430 0.740 0.697 0.647 0.420 0.740 0.715 0.635 0.420 0.750
11 0.651 0.597 0.330 0.750 0.686 0.599 0.380 0.740 0.681 0.603 0.360 0.750
12 0.729 0.635 0.400 0.770 0.683 0.599 0.350 0.760 0.706 0.610 0.350 0.760

Table 6. Results of machine learning model (SMOTE applied).

Model RF XGB LGBM

No. Train
Score

Test
Score

F1-
Score

(Macro)

AUC
(Macro)

Train
Score

Test
Score

F1-
Score

(Macro)

AUC
(Macro)

Train
Score

Test
Score

F1-
Score

(Macro)

AUC
(Macro)

1 0.676 0.626 0.560 0.790 0.648 0.608 0.560 0.770 0.716 0.628 0.560 0.790
2 0.683 0.593 0.550 0.790 0.705 0.608 0.580 0.800 0.656 0.593 0.560 0.800
3 0.718 0.608 0.550 0.790 0.744 0.644 0.590 0.800 0.706 0.620 0.570 0.810
4 0.662 0.624 0.560 0.790 0.679 0.585 0.510 0.770 0.656 0.582 0.520 0.790
5 0.687 0.595 0.560 0.800 0.666 0.587 0.550 0.790 0.690 0.597 0.550 0.800
6 0.699 0.585 0.540 0.800 0.712 0.612 0.560 0.800 0.729 0.624 0.570 0.820
7 0.671 0.603 0.530 0.760 0.655 0.580 0.520 0.770 0.668 0.580 0.520 0.770
8 0.645 0.543 0.460 0.750 0.615 0.553 0.500 0.740 0.655 0.545 0.490 0.750
9 0.632 0.501 0.380 0.740 0.628 0.553 0.490 0.770 0.627 0.551 0.490 0.760

10 0.682 0.597 0.520 0.770 0.660 0.578 0.520 0.760 0.669 0.578 0.510 0.770
11 0.608 0.541 0.450 0.750 0.647 0.555 0.490 0.740 0.651 0.570 0.500 0.750
12 0.636 0.511 0.390 0.750 0.615 0.532 0.460 0.760 0.676 0.568 0.490 0.750

Based on the evaluation results, the optimal model for the prediction of ground
subsidence risk levels in the target region was determined. It was SMOTE-applied XGB
(No. 3 model) when the number of years used was a five-year unit, the pipeline diameter
was 50mm, and the number of ground subsidence occurrences in the grid of risk level 2
was set to 1 to 3. In this model, the F1-score (0.590) and AUC (0.800) were the best, and the
difference between the training (0.744) and test (0.644) scores was equal to or less than 0.1,
which meant overfitting was avoided. Thus, this model was selected as the fittest classifier
for the prediction model of ground subsidence risk level in the target region.

The model results, according to whether or not SMOTE was applied, revealed that
when SMOTE was not applied there was an F1-score of 0.310 to 0.570, and when SMOTE
was applied there was an F1-score of 0.380 to 0.590. This meant that the imbalance in
the number of ground subsidence occurrences, which was the output data, was resolved
through SMOTE, thereby obtaining an efficient classification of the model. F1-Score and
AUC of the XGB classifier in this study were 0.590 and 0.8 (Figure 2). Thus, XGB was
found to not be a very good model from a computer science perspective. This result is due
to the deepening of the data imbalance caused by the wide range of target areas and the
limited use of influencing factors (underground utility attribute information). As ground
subsidence is a phenomenon caused by various causes (underground structures, ground
conditions, ground layer, etc.) in addition to the damage to underground utility lines, it is
expected that the performance of the model will be improved in the future by obtaining
more data on the underground space.
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Figure 2. ROC Curves of XGB Model.

In addition, the tuning of the hyperparameters of each classifier was set to the hy-
perparameter that produces the optimal result using a trial-and-error method. Table 7
summarizes the main hyperparameters of the selected XGB model.

Table 7. Summary of hyperparameters in the model.

Model Hyper Parameter

XGB Estimators (300), learning rate (0.002), max depth (4)

The XGB model included a function to derive the importance of the input data em-
ployed in the process of solving the classification problem. Using this function, we selected
the main influencing factors used to classify the ground subsidence risk levels. Figure 3
shows a graph that exhibits the importance of the factors used in the model, in which Y
refers to the number of years used and DTR refers to the pipeline diameter. Density was
the most importantly used factor in the classification of ground subsidence risk levels in the
XGB model. The number of years used was found to be more important than the diameter
of the pipeline. In pipelines used between 20 and 40 years, it was found to be relatively
more important.
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3.6. Map of Ground Subsidence Risk

Figure 4 shows a prediction map of the ground subsidence risk level in the target
region using the selected prediction model of ground subsidence risk level, as well as a
map of ground subsidence risk level based on the historical data of past ground subsidence.
In the Figure, the red, yellow, and green colors refer to Level 3, Level 2, and Level 1 ground
subsidence risk, respectively. The points on the map indicate the regions where ground
subsidence occurred.
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When comparing the prediction map using the model and the map drawn based
on the past ground subsidence data, the prediction map had relatively higher risk levels.
The prediction model classified the region in which ground subsidence was concentrated
in the past as the high-risk region. The prediction map of ground subsidence risk levels
in the region will be used as a basis for the management entity to prioritize the areas to
be inspected when investigating cavities inside the ground for the prevention of ground
subsidence.

4. Conclusions

To develop a model that predicts the risk level of ground subsidence and create a risk
level map targeting the urban area in South Korea, a dataset was built using the pipeline
length, the number of years used, and the diameter and density of pipelines in the target
area. The developed datasets were applied to machine learning algorithms RF, XGB, and
LGBM, to comparatively analyze the evaluation indexes. Through this process, the best
performance was found in the model with the following dataset conditions applied to the
XGB classifier: the number of years used was five years, the pipeline diameter was 50 mm,
and the number of ground subsidence occurrences in the grid with risk Level 2 of ground
subsidence was set to 1 to 3, when using SMOTE applied data (F1 Score = 0.590, AUC
= 0.8). Previously, a machine learning-based ground subsidence risk prediction model
has been developed for a small subset of urban areas (two districts) in South Korea [15].
However, since the model was trained using data from a very small area, it is not reliable
enough to be applied to a wide range of target areas. Thus, in this study, we collected a
large number of data for the entire city and proposed a model for predicting the risk of
ground subsidence. As a result, it is now possible to create a reliable ground subsidence
risk map for urban areas in Korea through the ground subsidence risk prediction model
presented in this study.
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The ground subsidence risk prediction model presented in this study derives the
importance of influencing factors used when classifying the risk level of ground subsidence.
Our study results verified that the density had the highest importance, and the number of
years used was more important than the pipeline diameter. This result is similar to that of a
previous study which found the density and the number of ground subsidence occurrences
were highly correlated [9], as well as another study where the aging of pipelines had an
impact on the ground subsidence occurrence as the number of years used increased [3].
Thus, excavation work to bury underground utility lines should be minimized, and aged
pipelines should be managed to cope with ground subsidence.

The risk level map of ground subsidence in the target area was created using the
ground subsidence risk prediction model. This map predicted a number of spots with
higher risk levels than that in the risk map based on the historical data of past ground
subsidence. The ground subsidence risk prediction classifier presented in this study pre-
dicted the risk level of the area in which ground subsidence was concentrated in the past
relatively well.

It is expected that the results presented in this study can be used as foundational data
for a proactive response to the occurrence of ground subsidence in urban areas. In future
research, we will add underground structures (subway tunnels, etc.) and high-rise building
information in the target region to develop a more reliable prediction model of ground
subsidence risk level in urban areas.
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