Advances in Permeation of Solutes into Hair: Influencing Factors and Theoretical Models
Abstract
:1. Introduction
2. Hair Structure and Composition
2.1. Hair Structure
2.2. Chemical Composition of Hair
3. Main Factors That Affect the Permeation and Absorption of Solutes in Hair
3.1. Hair
3.1.1. Geometry of Hair
3.1.2. Charge Characteristics of Hair
3.2. Solutes
3.2.1. Size and Shape of Solute Molecules
3.2.2. Solute Hydrophobicity
3.3. Solvent
3.3.1. Solvent Composition
3.3.2. Solvent Temperature
3.3.3. Solvent pH
4. Permeation Models of Solutes in Hair
4.1. Two-Part/Two-State Model
4.2. Porous Media Diffusion Model
4.3. Homogeneous Diffusion Model
4.4. Heterogeneous Partition and Diffusion Model
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Gavazzoni Dias, M.F. Hair cosmetics: An overview. Int. J. Trichology 2015, 7, 2. [Google Scholar] [CrossRef]
- Madnani, N.; Khan, K. Hair cosmetics. Indian J. Dermatol. Venereol. Leprol. 2013, 79, 654. [Google Scholar] [CrossRef] [PubMed]
- Morel, O.J.X.; Christie, R.M. Current trends in the chemistry of permanent hair dyeing. Chem. Rev. 2011, 111, 2537–2561. [Google Scholar] [CrossRef]
- Gupta, A. Human hair “waste” and its utilization: Gaps and possibilities. J. Waste Manag. 2014, 2014, 498018. [Google Scholar] [CrossRef]
- Kang, Y.; Wang, H.S.; Cheung, K.C.; Wong, M.H. Polybrominated diphenyl ethers (PBDEs) in indoor dust and human hair. Atmos. Environ. 2011, 45, 2386–2393. [Google Scholar] [CrossRef]
- Covaci, A.; Tutudaki, M.; Tsatsakis, A.M.; Schepens, P. Hair analysis: Another approach for the assessment of human exposure to selected persistent organochlorine pollutants. Chemosphere 2002, 46, 413–418. [Google Scholar] [CrossRef] [PubMed]
- Schramm, K.; Kuettner, T.; Weber, S.; Lützke, K. Dioxin hair analysis as monitoring pool. Chemosphere 1992, 24, 351–358. [Google Scholar] [CrossRef]
- Im, S.H.; Jeong, Y.H.; Ryoo, J.J. Simultaneous analysis of anionic, amphoteric, nonionic and cationic surfactant mixtures in shampoo and hair conditioner by RP-HPLC/ELSD and LC/MS. Anal. Chim. Acta 2008, 619, 129–136. [Google Scholar] [CrossRef]
- Morelli, J.J.; Szajer, G. Analysis of surfactants: Part II. J. Surfactants Deterg. 2001, 4, 75–83. [Google Scholar] [CrossRef]
- Turner, G.A.; Matheson, J.R.; Li, G.Z.; Fei, X.Q.; Zhu, D.; Baines, F.L. Enhanced efficacy and sensory properties of an anti-dandruff shampoo containing zinc pyrithione and climbazole. Int. J. Cosmet. Sci. 2013, 35, 78–83. [Google Scholar] [CrossRef]
- Robbins, C.R. Chemical and Physical Behavior of Human Hair, 5th ed.; Springer: New York, NY, USA, 2012; p. 494. [Google Scholar]
- Mahajan, A. Advancements in polymers used in hair care: A review. Int. J. Res. Cosmet. Sci. 2016, 6, 6–16. [Google Scholar]
- Talaiekhozani, A.; Talaei, M.R.; Yazdan, M.; Mir, S.M. Investigation of formaldehyde removal from synthetic contaminated air by using human hair. Environ. Health Eng. Manag. J. 2016, 3, 191–196. [Google Scholar] [CrossRef]
- Ghanbarnejad, P.; Goli, A.; Bayat, B.; Barzkar, H.; Talaiekhozani, A.; Bagheri, M.; Alaee, S. Evaluation of formaldehyde adsorption by human hair and sheep wool in industrial wastewater with high concentration. J. Environ. Treat. Tech. 2014, 2, 12–17. [Google Scholar]
- Talaie, A.R.; Bagheri, M.; Ghotbinasab, S.; Talaie, M.R. Evaluation of formaldehyde wastewater adsorption on human hair. Health Syst. Res. 2011, 6, 735–743. [Google Scholar]
- Banat, F.A.; Al-Asheh, S. The use of human hair waste as a phenol biosorbent. Adsorpt. Sci. Technol. 2001, 19, 599–608. [Google Scholar] [CrossRef]
- Tan, T.C.; Chia, C.K.; Teo, C.K. Uptake of metal ions by chemically treated human hair. Water Res. 1985, 19, 157–162. [Google Scholar] [CrossRef]
- Altshul, L.; Covaci, A.; Hauser, R. The relationship between levels of PCBs and pesticides in human hair and blood: Preliminary results. Environ. Health Persp. 2004, 112, 1193. [Google Scholar] [CrossRef]
- Covaci, A.; Schepens, P. Chromatographic aspects of the analysis of selected persistent organochlorine pollutants in human hair. Chromatographia 2001, 53, S366–S371. [Google Scholar] [CrossRef]
- Tsatsakis, A.; Tutudaki, M. Progress in pesticide and POPs hair analysis for the assessment of exposure. Forensic Sci. Int. 2004, 145, 195–199. [Google Scholar] [CrossRef]
- Zheng, J.; Wang, J.; Luo, X.; Tian, M.; He, L.; Yuan, J.; Mai, B.; Yang, Z. Dechlorane Plus in human hair from an e-waste recycling area in South China: Comparison with dust. Environ. Sci. Technol. 2010, 44, 9298–9303. [Google Scholar] [CrossRef]
- Ran, G.; Zhang, Y.; Song, Q.; Wang, Y.; Cao, D. The adsorption behavior of cationic surfactant onto human hair fibers. Colloids Surf. B Biointerfaces 2009, 68, 106–110. [Google Scholar] [CrossRef] [PubMed]
- Wortmann, F.J.; Gotsche, M.; Schmidt-Lewerkuhne, H. Diffusion and distribution of element-labelled surfactants in human hair. Int. J. Cosmet. Sci. 2004, 26, 61–69. [Google Scholar] [CrossRef] [PubMed]
- Jenneson, P.M.; Clough, A.S.; Keddie, J.L.; Lu, J.R.; Meredith, P. Non-ionic surfactant concentration profiles in undamaged and damaged hair fibres determined by scanning ion beam nuclear reaction analysis. Nucl. Instrum. Methods Phys. Res. 1997, 132, 697–703. [Google Scholar] [CrossRef]
- Chan, K.L.A.; Tay, F.H.; Taylor, C.; Kazarian, S.G. A novel approach for study of in situ diffusion in human hair using Fourier transform infrared spectroscopic imaging. Appl. Spectrosc. 2008, 62, 1041–1044. [Google Scholar] [CrossRef]
- Wang, L.; Chen, L.; Han, L.; Lian, G. Kinetics and equilibrium of solute diffusion into human hair. Ann. Biomed. Eng. 2012, 40, 2719–2726. [Google Scholar] [CrossRef] [PubMed]
- Chandrashekara, M.N.; Ranganathaiah, C. Diffusion of permanent liquid dye molecules in human hair investigated by positron lifetime spectroscopy. Colloids Surf. B Biointerfaces 2009, 69, 129–134. [Google Scholar] [CrossRef]
- Morel, O.; Christie, R.M.; Greaves, A.; Morgan, K.M. Enhanced model for the diffusivity of a dye molecule into human hair fibre based on molecular modelling techniques. Color. Technol. 2008, 124, 301–309. [Google Scholar] [CrossRef]
- Silva, A.L.D.S.; Joekes, I. Rhodamine B diffusion in hair as a probe for structural integrity. Colloids Surf. B Biointerfaces 2005, 40, 19–24. [Google Scholar] [CrossRef]
- Volkov, V.; Cavaco-Paulo, A. Enzymatic phosphorylation of hair keratin enhances fast adsorption of cationic moieties. Int. J. Biol. Macromol. 2016, 85, 476–486. [Google Scholar] [CrossRef]
- Rele, A.S.; Mohile, R.B. Effect of mineral oil, sunflower oil, and coconut oil on prevention of hair damage. J. Cosmet. Sci. 2003, 54, 175–192. [Google Scholar]
- Keis, K.; Persaud, D.; Kamath, Y.K.; Rele, A.S. Investigation of penetration abilities of various oils into human hair fibers. Int. J. Cosmet. Sci. 2006, 28, 78. [Google Scholar] [CrossRef]
- Ruetsch, S.B.; Kamath, Y.K.; Rele, A.S.; Mohile, R.B. Secondary ion mass spectrometric investigation of penetration of coconut and mineral oils into human hair fibers: Relevance to hair damage. J. Cosmet. Sci. 2001, 52, 169–184. [Google Scholar] [PubMed]
- Kempson, I.M.; Skinner, W.M.; Kirkbride, K.P. Advanced analysis of metal distributions in human hair. Environ. Sci. Technol. 2006, 40, 3423–3428. [Google Scholar] [CrossRef] [PubMed]
- Pragst, F.; Balikova, M.A. State of the art in hair analysis for detection of drug and alcohol abuse. Clin. Chim. Acta 2006, 370, 17–49. [Google Scholar] [CrossRef]
- Jones, L. Hair structure anatomy and comparative anatomy. Clin. Dermatol. 2001, 19, 25. [Google Scholar]
- Efremenko, I.; Zach, R.; Zeiri, Y. Adsorption of Explosive Molecules on Human Hair Surfaces. J. Phys. Chem. C 2007, 111, 11903–11911. [Google Scholar] [CrossRef]
- Kelch, A.; Wessel, S.; Will, T.; Hintze, U.; Wepf, R.; Wiesendanger, R. Penetration pathways of fluorescent dyes in human hair fibres investigated by scanning near-field optical microscopy. J. Microsc. Oxford 2000, 200, 179–186. [Google Scholar] [CrossRef]
- Wei, G.; Bhushan, B.; Torgerson, P.M. Nanomechanical characterization of human hair using nanoindentation and SEM. Ultramicroscopy 2005, 105, 248–266. [Google Scholar] [CrossRef]
- Randebrook, R.J. Neue erkenntnisse über den morphologischen aufbau des menschlichen haares. J. Soc. Cosmet. Chem. 1964, 15, 691–706. [Google Scholar]
- Wortmann, F.; Wortmann, G.; Zahn, H. Pathways for dye diffusion in wool fibers. Text. Res. J. 1997, 67, 720–724. [Google Scholar] [CrossRef]
- He, X. Relationship between the damage of hair and the structure and composition of hair. China Surfactant Deterg. Cosmet. 2000, 30, 34–36. (In Chinese) [Google Scholar]
- Masukawa, Y.; Tanamachi, H.; Tsujimura, H.; Mamada, A.; Imokawa, G. Characterization of hair lipid images by argon sputter etching—Scanning electron microscopy. Lipids 2006, 41, 197–205. [Google Scholar] [CrossRef] [PubMed]
- Holmes, A.W. Diffusion processes in human hair. J. Soc. Cosmet. Chem. 1964, 15, 595–603. [Google Scholar]
- Leeder, J.D.; Rippon, J.A. Some observations on the dyeing of wool from aqueous formic acid. J. Soc. Dye. Colour. 1983, 99, 64–65. [Google Scholar]
- Gummer, C.L. Elucidating penetration pathways into the hair fiber using novel microscopic techniques. J. Cosmet. Sci. 2001, 52, 265–280. [Google Scholar] [PubMed]
- Sakai, M.; Nagase, S.; Okada, T.; Satoh, N.; Tsujii, K. A universal structural model for human hair to understand the physical properties. 2. mechanical and permeation behaviors. Bull. Chem. Soc. Jpn. 2000, 73, 2169–2177. [Google Scholar] [CrossRef]
- Speakman, J.B. The micelle structure of the wool fibre. Nature 1931, 126, 167–191. [Google Scholar] [CrossRef]
- Mertin, D.; Lippold, B.C. In-vitro permeability of the human nail and of a keratin membrane from bovine hooves: Influence of the partition coefficient octanol/water and the water solubility of drugs on their permeability and maximum flux. J. Pharm. Pharmacol. 1997, 49, 30–34. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Han, L.; Lian, G. Recent advances in predicting skin permeability of hydrophilic solutes. Adv. Drug Deliver. Rev. 2013, 65, 295–305. [Google Scholar] [CrossRef] [PubMed]
- Hansen, S.; Selzer, D.; Schaefer, U.F.; Kasting, G.B. An extended database of keratin binding. J. Pharm. Sci. US 2011, 100, 1712–1726. [Google Scholar] [CrossRef]
- Wang, L.; Chen, L.; Lian, G.; Han, L. Determination of partition and binding properties of solutes to stratum corneum. Int. J. Pharmaceut. 2010, 398, 114–122. [Google Scholar] [CrossRef] [PubMed]
- Steinhardt, J.; Zaiser, E.M. Combination of wool protein with cations and hydroxyl ions. J. Biol. Chem. 1950, 183, 789–802. [Google Scholar] [CrossRef]
- Scott, G.V.; Robbins, C.R.; Barnhurst, J.D. Sorption of quaternary ammonium surfactants by human hair. J. Soc. Cosmet. Chem. 1969, 20, 135–152. [Google Scholar]
- Robbins, C.R.; Reich, C.; Patel, A. Adsorption to keratin surfaces: A continuum between a charge-driven and a hydrophobically driven process. J. Soc. Cosmet. Chem. 1994, 45, 85–94. [Google Scholar]
- Han, S.K.; Kamath, Y.K.; Weigmann, H.D. Diffusion of semipermanent dyestuffs in human hair. J. Soc. Cosmet. Chem. 1985, 36, 1–16. [Google Scholar]
- Valko, E.I.; Barnett, G. A study of the swelling of hair in mixed aqueous solvents. J. Soc. Cosmet. Chem. 1952, 3, 108–117. [Google Scholar]
- Otsuka Saito, K.; Ikeda, R.; Endo, K.; Tsujino, Y.; Takagi, M.; Tamiya, E. Isolation of a novel alkaline-induced laccase from Flammulina velutipes and its application for hair coloring. J. Biosci. Bioeng. 2012, 113, 575–579. [Google Scholar] [CrossRef]
- Vickerstaff, T. The Physical Chemistry of Dyeing, 2nd ed.; Oliver and Boyd: London, UK, 1954; p. 413. [Google Scholar]
- Faucher, J.A.; Goddard, E.D. Influence of surfactants on the sorption of a cationic polymer by keratinous substrates. J. Colloid Interface Sci. 1976, 55, 313–319. [Google Scholar] [CrossRef]
- Faucher, J.A.; Goddard, E.D.; Hannan, R.B. Sorption and desorption of a cationic polymer by human hair: Effects of salt solutions. Text. Res. J. 1977, 47, 616–620. [Google Scholar] [CrossRef]
- Nagase, S.; Ohshika, M.; Ueda, S.; Satoh, N.; Tsujii, K. A universal structural model for human hair to understand the physical properties. 1. B. Chem. Soc. Jpn. 2000, 73, 2161–2167. [Google Scholar] [CrossRef]
- Li, L.; Yang, S.; Chen, T.; Han, L.; Lian, G. A measurement and modeling study of hair partition of neutral, cationic, and anionic chemicals. J. Pharm. Sci. 2018, 107, 1122–1130. [Google Scholar] [CrossRef]
- Chen, L.; Han, L.; Saib, O.; Lian, G. In silico prediction of percutaneous absorption and disposition kinetics of chemicals. Pharm. Res. 2015, 32, 1779–1793. [Google Scholar] [CrossRef] [PubMed]
- Mitragotri, S.; Anissimov, Y.G.; Bunge, A.L.; Frasch, H.F.; Guy, R.H.; Hadgraft, J.; Kasting, G.B.; Lane, M.E.; Roberts, M.S. Mathematical models of skin permeability: An overview. Int. J. Pharmaceut. 2011, 418, 115–129. [Google Scholar] [CrossRef] [PubMed]
- Lian, G.; Chen, L.; Han, L. An evaluation of mathematical models for predicting skin permeability. J. Pharm. Sci. 2008, 97, 584–598. [Google Scholar] [CrossRef] [PubMed]
- Potts, R.O.; Guy, R.H. Predicting skin permeability. Pharm. Res. 1992, 9, 663–669. [Google Scholar] [CrossRef] [PubMed]
Factors | References | |
---|---|---|
Hair | Pore size, shape, and density | [27,28,44] |
Transcellular/intercellular channel | [1,11,38,45,46] | |
Charge characteristics | [11,23,26] | |
Swellability | [11,57,58] | |
Wettability of surface | [55,59] | |
Keratin binding | [51] | |
Solute | Size and shape | [28,44,47,48] |
Charge characteristics | [23,26,28,55] | |
Hydrophobicity | [26,49,50,51,52] | |
Solvent conditions | pH | [11,23,28,55,56,57,58,59,60,61] |
Temperature | [23,44,56] | |
Composition of solvent | [55,56] |
Permeation Model of Solute in Hair | Factors under Consideration | Factors out of Consideration | References |
---|---|---|---|
Two-Part/Two-State Model | Hair structure and composition, hair moisture content, solvent temperature, and pH | Hair cuticle, the physical and chemical properties of solute, hair charge characteristics | [47,62] |
Porous Media Diffusion Model | The size, shape, and charge properties of solute | Limited data, hair composition, solute hydrophobicity | [28] |
Homogeneous Diffusion Model | Fick diffusion law | Hair microstructure and composition, physicochemical properties of solute, and solvent pH | [44,56] |
Heterogeneous Partition and Diffusion Model | Hair microstructure and composition; solute hydrophobicity; solute dissociation constant | Limited data, charge characteristics, and solvent pH | [26] |
Hair composition and charge properties, solute hydrophobicity, dissociation, charge properties, and solvent pH | Hair permeation channel and solvent temperature | [63] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, L.; Qin, J. Advances in Permeation of Solutes into Hair: Influencing Factors and Theoretical Models. Appl. Sci. 2023, 13, 5577. https://doi.org/10.3390/app13095577
Li L, Qin J. Advances in Permeation of Solutes into Hair: Influencing Factors and Theoretical Models. Applied Sciences. 2023; 13(9):5577. https://doi.org/10.3390/app13095577
Chicago/Turabian StyleLi, Lingyi, and Jiahao Qin. 2023. "Advances in Permeation of Solutes into Hair: Influencing Factors and Theoretical Models" Applied Sciences 13, no. 9: 5577. https://doi.org/10.3390/app13095577
APA StyleLi, L., & Qin, J. (2023). Advances in Permeation of Solutes into Hair: Influencing Factors and Theoretical Models. Applied Sciences, 13(9), 5577. https://doi.org/10.3390/app13095577