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Department of Electronic Systems, Vilnius Gediminas Technical University (VILNIUS TECH), Plytinės g. 25,
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Abstract: This paper discusses an algorithm that attempts to automatically calculate the effect of room
reverberation by training a mathematical model based on a recurrent neural network on anechoic
and reverberant sound samples. Modelling the room impulse response (RIR) recorded at a 44.1 kHz
sampling rate using a system identification-based approach in the time domain, even with deep
learning models, is prohibitively complex and it is almost impossible to automatically learn the
parameters of the model for a reverberation time longer than 1 s. Therefore, this paper presents a
method to model a reverberated audio signal in the frequency domain. To reduce complexity, the
spectrum is analyzed on a logarithmic scale, based on the subjective characteristics of human hearing,
by calculating 10 octaves in the range 20–20,000 Hz and dividing each octave by 1/3 or 1/12 of the
bandwidth. This maintains equal resolution at high, mid, and low frequencies. The study examines
three different recurrent network structures: LSTM, BiLSTM, and GRU, comparing the different
sizes of the two hidden layers. The experimental study was carried out to compare the modelling
when each octave of the spectrum is divided into a different number of bands, as well as to assess
the feasibility of using a single model to predict the spectrum of a reverberated audio in adjacent
frequency bands. The paper also presents and describes in detail a new RIR dataset that, although
synthetic, is calibrated with recorded impulses.

Keywords: room reverberation; room impulse response; recurrent neural networks; audio signal
spectrum; filter bank

1. Introduction

The room impulse response, which represents the acoustic properties of the room, is
widely used in a broad range of audio signal-processing tasks. RIR can be useful for sound
source localisation [1], speech recognition [2], or speech signal separation [3]. If the room
being analyzed is characterized by unwanted acoustic phenomena, the measured RIR can
show spectral changes [4]. These changes can be eliminated by an equalization scheme.
The influence of room acoustic characteristics on the RIR spectrum can vary depending
on the location of the measurement, so the equalization scheme must be adaptive. Such
adaptive equalization schemes typically use an FIR filter whose attenuation coefficients
are continuously updated to reduce the difference between the spectrum actually obtained
at the measurement position and the desired spectrum [5]. However, the flexibility of the
filter depends on the filter order and the coefficient estimation algorithms.

Updating the attenuation coefficients of the FIR filter is usually performed using the
filtered-x least mean square (FxLMS) algorithm [6]. However, it was later discovered
that this algorithm is not stable and can cause sudden interference in its error signal [7].
Subsequent studies have proposed the use of the maximum correntropy criterion (MCC)
method for adaptive filtering, which has been shown to be more robust than previously
popular methods [8]. Even later, the generalised maximum correntropy criterion (GMCC)
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method was proposed and performed better than the standard MCC [9]. The RIR impulse
is observed to be a sparse set of coefficients, i.e., some of its intermediate values are close to
zero. On this basis, it was decided that the equalization process could be further improved
if the adaptive algorithm took advantage of the sparseness of the RIR impulse [10].

To create the impression of realistic room acoustics as the listener’s position varies in
the virtual room, we need to continuously convolve an anechoic signal in real time with a
different RIR filter from a large dataset. The dataset should consist of RIRs recorded in a
real room, but this is time consuming, as each new RIR requires a new measurement when
a new position is chosen for the sound source or receiver. This means that, for example, to
capture a set of RIR data covering the entire area of a small room (up to 10 sq. m.), more
than 1000 measurements may be required, with the position of the measuring microphone
changing every 10 cm. In addition, a quiet environment is needed to ensure the quality
of the RIR measurements. According to ISO 3382-1, the sound source must emit a sound
pressure level at least 35 dB above the background noise in the room [11].

As an alternative to RIR measurements, RIR can be modeled using one of the geometric
acoustics methods. The most commonly used one is the image source method (ISM) [12].
However, satisfactory results can only be achieved in this way by modelling an almost
empty room with clear geometry (e.g., a rectangle). The ISM method is a simplified
assumption that sound waves propagate in straight lines at a fixed speed, the energy
is uniformly attenuated, and the waves are mirrored when they reach a surface. In the
real world, the sound wave is not perfectly reflected; some of it is scattered in different
directions, depending on the roughness of the surface. Only the early reflections are mirror-
like, and later they become increasingly diffuse. Thus, in practice, a hybrid approach is
often used, where the first reflections are modeled by an ISM and the later ones by the
ray-tracing method. The ISM method also does not allow the modelling of objects in the
room that interfere with the propagation of the sound wave and cause reflections. Tang
et al. proposed improvements using a Monte Carlo path-tracing method that can model
diffuse reflections, which means better simulation of existing obstacles [13]. However, the
authors point out that this algorithm also has the disadvantage of not being able to model
low frequencies and diffraction well. There have been attempts to to solve the problem
with the use of artificial neural networks which, trained on existing RIRs, can predict the
desired data.

The use of neural networks can be a more flexible approach and a good alternative to
this task. The RIR can be estimated using its spectrogram as an image, as well as individual
RIR parameters such as the geometry of the simulated room and the absorption coefficients
of its surfaces. In the study by Yu and Kleijn, the RIR parameters were estimated separately,
with convolutional neural networks (CNNs) used for room geometry and feedforward
multilayer perceptrons (MLPs) for surface absorption coefficients [14]. The authors claim
that their method works when neural networks are trained with a single RIR impulse. In
fact, it should be noted that this condition is only partially fulfilled, as the algorithm is
initially allowed to learn from a single simulated RIR impulse that has been generated by
the ISM method using the RIR generator [15]. Afterwards, it has been shown that much
better results can be achieved by increasing the number of RIRs dedicated to training.
In addition, the performance of the algorithm is tested by training the networks on the
recorded RIRs. The BUT ReverbDB dataset is used for this purpose [16].

Machine learning methods are applied not only to RIR generation but also to other
acoustic environment analysis tasks. Classification of rooms by volume using RIR can be
performed using statistical pattern recognition [17]. The authors of this paper claim that
their algorithm does not require data about the distance between the sound source and
the microphone. However, good results were only achieved using simulated rather than
measured RIRs. Convolutional neural networks are used to perform speech recognition
tasks and to build speech-to-text models. In [18], the authors used a CNN-based approach
to recognise tonal speech signals. Feature extraction was performed using Mel frequency
cepstral coefficients (MFCC). Machine learning can also be used to assess the competence
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of psychotherapists by performing speech recognition from audio and text analysis from a
report together. In [19], the possibility of determining the quality of a practitioner’s perfor-
mance by analysing audio recordings and transcripts of psychotherapeutic conversations
and comparing the result with manual assessments of competency was explored. The best
predictive performance was achieved by a Lasso regression model. In [20], the authors
used time-domain features (MFCCT) in addition to MFCCs in speech emotion recognition
(SER) to extract features from an audio signal. The CNN-based SER model outperformed
comparable models that used non-hybrid features. Machine learning is also being applied
in the field of tourism to generate additional recommendations for destinations with fewer
reviews on specialised tourism portals. Missing reviews can be identified and selected from
social media posts containing geolocation information. In [21], the authors used machine
learning-based clustering and classification methods, namely a fine-tuned transformer
neural network-based BERT model.

In this paper, we present a new dataset for RIR estimation based on the fusion of
recorded and simulated RIRs. In addition, we present a study of an alternative method for
modeling the spectrum of a reverberated signal. The idea of this paper is to check if a neural
network can learn the effects of acoustics and replace the traditional method of using RIR
filters. We train the neural network with frequency-domain data, dividing logarithmically
into 1/3 or 1/12 octave. The studies test the feasibility of modeling reverberated audio for
several different frequency bands by training a model for only one band, thus trying to
avoid the need to train different models for each frequency band separately.

We have chosen recurrent neural networks (RNNs) for this task because they could
be good for modeling reverberating audio, as they are designed to handle sequential
data, allowing them to account for the time-varying nature of audio signals, and their
internal memory cells can effectively capture the dependencies between successive audio
samples, leading to a more accurate representation of reverberation characteristics. The
bidirectional LSTM, LSTM, and GRU recurrent neural network architectures offers unique
strengths and trade-offs in terms of modeling capacity, computational efficiency, and
memory requirements, and a thorough evaluation can help identify the most suitable
approach for capturing the complex temporal relationships present in reverberating audio
signals, ultimately leading to better performance and practical applicability.

The structure of the article is as follows: Section 2 presents the dataset and the methods
used in our study. The preparation of the dataset is described in detail in Section 2.1.
Section 2.2 provides a detailed explanation of our method, which compared three recurrent
neural network structures that attempted to predict room reverberation for each octave
band. Section 3 describes our experimental setup and a comparison of the reverberation
prediction results using different recurrent neural network models. Section 4 provides a
discussion and concludes the results of our study.

2. Materials and Methods
2.1. Preparation of the Dataset

To train the algorithm properly, we need to create a large set of data samples, avoiding
to record all RIRs as this would be time-consuming, but trying to maintain the authenticity
of the RIR impulses. To achieve these goals, we decided to create a dataset of synthetic
impulses, but based on the recorded RIRs. First, measurements were made in a university
laboratory, choosing a small number of fixed measurement positions. Subsequently, an
identical room was designed and imported into the “Odeon” acoustic design software. The
acoustic parameters of the measured and modeled RIRs were compared and the absorption
coefficients of the modeled room surfaces were changed accordingly. This allowed the
creation of new synthetic RIRs that are authentic and correspond not only to several
measured room positions but also to any selected point in the virtual room.

Measurements were taken in a small rectangular room. The main purpose of the room
was to test the VR software, so it was almost empty; only three wooden tables remained
after the computer screens were removed. The room has a floor area of 31.35 m2 and a
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ceiling height of 2.86 m. Three walls of the room are covered with large porous bricks, one
wall is concrete and painted, and the ceiling is made up of small square plasterboards with
aluminium gaps between them. The floor of the room is linoleum floored and access to the
room is through a wide glass door.

Authentic room pulses were recorded according to ISO 3382-1 [11]. It is recommended
to select and test at least two different sound source positions in the room (with a height
of 1.5 m from the ground), as well as at least three to four microphone positions, which
should be spaced at least 2 m (half the measured wavelength of the lowest frequency) apart,
and at least 1 metre (a quarter of the wavelength of the lowest frequency) away from any
reflecting surface. The different microphone positions should be chosen in such a way that
the results take into account the reflections produced by all walls covered with different
materials, and the height of the measuring microphone should be adjustable to 1.2 m, which
corresponds to the typical height of the ear position of a seated listener. To maintain the
distances specified in the standard, two positions of the sound source and three positions of
the microphones were selected and tested, resulting in a total of six different combinations.
The sound source and microphone positions are shown in Figure 1, as well as the grid of
microphone positions used in the virtual version of this room. The standard also specifies
that the sound source should be omnidirectional and should reproduce all frequencies
uniformly between 125 Hz and 4000 Hz. However, to analyze the effect of room acoustics
on human voice, these measurements were carried out using a directional loudspeaker,
Genelec 8010A, whose directivity is compared to that of human speech in Figure 2 [22].

Figure 1. Left image shows the locations of the sound source and the measurement microphone in a
real room, the different combinations of which were recorded as separate RIR impulses. Right image
shows the selected positions of the 2 sources and 25 receivers respectively in the virtual room.

A sonarworks XREF 20 omnidirectional microphone and RME Fireface UC sound
card were used as receiver and recorder. We also used the Measure impulse response tool
offered by Odeon 16, which allows us to generate and transmit an exponential sweep signal
and record the impulse.

The same room was then modeled in SketchUp and imported into Odeon. With the
same positions for the sound sources and microphones, as well as the assumed absorption
coefficients for the surfaces, the RIR simulation was performed. Odeon allows the technical
characteristics of a real loudspeaker—directivity, frequency response, dynamic range,
etc.—to be assigned to a virtual sound source. The user has to import and activate a CLF
(common loudspeaker format) file, which can be downloaded for each specific model of
almost all popular loudspeaker manufacturers.
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Figure 2. Comparison of the directionality of the human voice in different vowels (a–h) with the
directionality of the Genelec 8010A loudspeaker used in the measurements (i–l), in the horizontal
((a–d) and red line in (i–l)) and in the vertical planes ((e–h) and blue line in (i–l)) in different bands:
1 kHz (a,e,i), 2 kHz (b,f,j), 4 kHz (c,g,k), and 8 kHz (d,h,l).

Odeon has the ability to import recorded pulses and compare them with simulated
ones. The accuracy of the results depends on the precise choice of the surface absorption
coefficients, and initially the results varied considerably. Another Odeon tool, “Genetic
Material Optimizer”, was then used [23]. It compares the characteristics of the recorded and
simulated pulses and tries to recalculate the possible absorption coefficients. Before running
the algorithm, it is necessary to select the permissible limits of variation of the absorption
coefficient for each material. For porous bricks and plasterboard, we have set a higher
modification limit. These materials cover 3 walls and the ceiling; in general, most of the
room surface. We can see that the algorithm only slightly changed the absorption coefficient
of the materials with a modification limit of 50%, whereas the absorption coefficient of the
materials with a higher modification limit was changed in detail.

The differences between the recorded and simulated impulses are evaluated by the
JND (just-noticeable difference) value [24], which is also described in the ISO standard
and corresponds to 1 dB for most acoustic evaluation parameters. This means that if the
difference between the impulses is less than 1 JND, it can be assumed to be negligible
and can be ignored. Before the algorithm was run, this value ranged from 13 to 15 JND
in the individual frequency bands; after optimization it ranged from 0.7 to 3. Only in the
lower frequency bands did the differences remain larger, but the developers of Odeon
warn the user that the algorithm is not able to reduce the differences to below 1 JND in
the lower frequency bands. Once the absorption coefficients have been optimized and the
differences between the simulated and recorded impulse parameters have been verified to
be within acceptable limits, it can be said that we have simulated the acoustics of a virtual
room that closely matches the acoustics of a real room. In this case, we can create RIRs not
only for the 3 fixed measurement locations but also for any point in the virtual room. In
Figure 3 a comparison of the measured and simulated RIRs can be seen in terms of the early
decay time before and after optimisation of the absorption coefficients. Figure 4 shows
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the similarity of the spectrum of the human voice when such a signal is convolved with a
measured or simulated RIR impulse.

Figure 3. The recorded and simulated RIRs were compared with early decay time (EDT) values in
different frequency bands before optimization (left) and after optimization (right).

Using the methodology described above, 50 RIRs were created for this study from
2 source positions and 25 receiver positions spaced 0.5 m apart. Using our calibrated virtual
room model, we can create a larger dataset if necessary. Most importantly, the simulation
is realistic, validated by real records. This makes any new study more valuable, as newly
implemented models can be trained and tested on real acoustic behaviour, rather than on a
dataset that is usually built using simplified models in an environment that will never be
close to a real room. The latest version of the described dataset and more detailed technical
information can be found in https://github.com/tamulionism/Room-Impulse-Response-
dataset, accessed on 30 April 2023.

Figure 4. Comparison of the spectra of the anechoic voice signal of a singing woman convolved with
an Odeon simulated RIR and an RIR impulse measured in a real room.

https://github.com/tamulionism/Room-Impulse-Response-dataset
https://github.com/tamulionism/Room-Impulse-Response-dataset
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2.2. Deep Recurrent Neural Networks for Reverberated Signal Modeling

Three slightly different recurrent neural network structures were compared, which
could be used as candidates for a reverberation prediction model:

• Long short-term memory (LSTM) [25];
• Bi-directional long short-term memory (BiLSTM) [26];
• Gated recurrent units (GRU) [27].

The architecture of the recurrent neural networks (RNN) includes feedback connec-
tions, making them more suitable for modeling acoustic effects than feed-forward net-
work structures.

We try to predict the spectrum of the reverberated signal separately for each octave.
In our study, we test all three neural network structures by training them on different
frequency bands of the reverberated signal. Each prediction model consists of an input
layer to which a sequence of time-varying spectral node values is sent, as well as two layers
of recurrent neural network cells, one fully connected layer, and a regression layer, which
generate a predicted sequence of changes in the spectral nodes over time.

To investigate the relationship between the number of RNA cells in a layer and the
accuracy of the predicted spectral band, we tested the performance of networks with three
different combinations of cell numbers. We first selected 10 cells in the first layer and
20 cells in the second layer, then repeated the experiments by equalling the number of
cells in the two layers to 20, and finally we performed another series of experiments by
increasing the number of cells in the second layer to 40.

In the experiments, we try to evaluate the ability of different network structures to
predict a reverberated signal:

1. In the same frequency band used in the training, but replacing the input samples with
previously unknown ones;

2. In two adjacent frequency bands, when the model was trained on the middle band
and tested on adjacent bands

3. In all frequency bands when the octave is divided into 12 parts. Firstly, when a
separate model was trained to predict each frequency band, and secondly, when
the prediction was performed by taking input data from each frequency band sepa-
rately, and the reverberated signal was predicted using a model trained on only one
frequency band.

Variations of the experimental set-up were carried out to determine how flexible the
prediction model can be to predict a specific band of the reverberated signal. In addition, it
was necessary to see how different the model should be for neighboring frequency bands
when the octave is divided into 3 or 12 parts.

The audio used for model training and experimental testing was divided into 250 ms
analysis frames. This is the maximum delay time that can be accepted in real-time auraliza-
tion systems [28]. The conversion from time to frequency domain was performed using a
window of 512 sample width with 256 sample overlaps.The data used to train the models
were divided into three parts: training (70%) validation (15%) and testing (15%). All models
were trained using the same training options: the ADAM optimizer, a constant learning
rate of 0.001, shuffle of the data after each epoch from 10,000, and a small batch size of 50.

3. Results

Table 1 presents the results of an experimental study where we used different RNN
types (bidirectional LSTM, LSTM and GRU) architectures to simulate the reverberated
signal in a single frequency band. The aim of this study was to investigate which RNN
architecture can be used for reverberant signal modeling and how the size of the recurrent
layers affects the results.

As can be seen from Table 1, RNN structures with more parameters, such as LSTM
and BiLSTM, show a stable increase in R-squared as we increase the size of the hidden layer
(the number of recurrent unit cells in the layer). The GRU-based RNN structure showed
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unstable results after training, so that in some experimental studies the GRU-based model
was not used at all (see Table 2).

Table 1. Comparison of different RNN structures by varying the number of cells in the layers of the
recurrent neural network.

RNN Layer Size SSE (103) RSS [min max] R-Squared RMSE [min max]

10 + 20 15.85 [0.24 65.29] −0.13 [3.36 × 10−5 1.46]
LSTM 20 + 20 3.67 [0.23 37.39] 0.74 [2.24 × 10−5 0.66]

20 + 40 1.36 [0.19 26.03] 0.90 [1.57 × 10−5 0.56]

10 + 20 6.43 [0.15 43.44] 0.54 [1.18 × 10−4 0.81]
BiLSTM 20 + 20 2.71 [0.17 22.16] 0.81 [7.09 × 10−6 0.37]

20 + 40 2.16 [0.17 20.38] 0.85 [2.06 × 10−5 0.38]

10 + 20 5.05 [0.32 29.97] 0.64 [1.30 × 10−4 0.60]
GRU 20 + 20 2.45 [0.21 34.03] 0.83 [6.37 × 10−5 0.60]

20 + 40 3.31 [0.18 32.59] 0.77 [7.99 × 10−5 0.66]

Table 2. Comparison of different RNN structures with fixed layer sizes, trained on a single bin,
covering 1/12 of the octave band width. Tested on 12 neighboring bins.

RNN Bin Number SSE (104) RSS (Mean) R-Squared RMSE (Mean)

1 30.5 9.59 0.63 0.1621
2 52.6 12.54 0.37 0.2272
3 75.6 14.45 0.27 0.2703
4 84.3 14.74 0.27 0.2793
5 65.4 14.10 0.32 0.2545

LSTM 6 17.6 9.16 0.57 0.1337
7 1.72 2.95 0.92 0.0191
8 12.8 4.78 0.70 0.0523
9 106 5.69 0.33 0.0881

10 129 6.92 0.27 0.1177
11 117 6.55 0.35 0.1060
12 147 6.99 0.39 0.1091

1 15.9 8.48 0.81 0.1788
2 13.0 9.71 0.84 0.2240
3 15.1 10.55 0.85 0.2614
4 18.3 10.71 0.84 0.2749
5 15.7 10.77 0.84 0.2709

BiLSTM 6 8.1 7.28 0.80 0.1507
7 1.10 1.94 0.95 0.0145
8 10.4 4.22 0.76 0.0489
9 86.8 5.09 0.45 0.0821

10 104 4.76 0.41 0.1321
11 103 4.84 0.43 0.1218
12 114 6.28 0.52 0.0817

To compare the flexibility of the selected RNNs in learning individual frequency bands
of the reverberated signal, we trained 30 structures (each of the 10 octaves of the human
audible frequency spectrum was divided into three bands). We used RNN models with
20 cells in the first hidden layer and 40 cells in the second hidden layer, which is the largest
structure studied in the first experiment and which showed the best fitting results.

Tables 3 and 4 show the results of an experimental study to test whether a model
trained to predict the central band of an octave divided into three parts is good enough to
predict adjacent frequency bands. We compared the results for 8 different octaves, ignoring
only the first and last octaves—frequencies below 40 Hz and above 10 kHz. A noticeable
reduction of fit was observed. We can also see from the results that the use of the central
frequency band model to predict neighboring frequency bands also depends on the octave
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chosen. This is an expected result, as we cannot normally achieve a uniform distribution of
sound content across all octaves in any real recording dataset.

Table 3. R-squared fitting estimate comparison of LSTM trained on a single bin, tested on neighboring
ones, using resolution of 1/3 of the octave band width.

R-Squared 5 bin 8 bin 11 bin 14 bin 17 bin 20 bin 23 bin 26 bin

Bin at the Left 0.72 0.64 0.68 0.90 0.61 0.13 0.76 0.85

Bin at the Center 0.78 0.84 0.87 0.98 0.95 0.95 0.87 0.88

Bin at the Right 0.65 0.74 0.71 0.79 0.30 0.62 0.75 0.87

Table 4. RMSE fitting estimate comparison of LSTM trained on a single bin, tested on neighboring
ones, using resolution of 1/3 of the octave band width.

RMSE (Mean) 5 bin 8 bin 11 bin 14 bin 17 bin 20 bin 23 bin 26 bin

Bin at the Left 0.0971 0.1375 0.1491 0.0680 0.0742 0.3782 0.0746 0.0678

Bin at the Center 0.0777 0.0680 0.0687 0.0182 0.0189 0.0260 0.0367 0.0484

Bin at the Right 0.1644 0.1100 0.1335 0.1206 0.1737 0.2157 0.0940 0.0531

By dividing each octave into 12 parts, we can analyze the half-tone pattern of the
reverberated signal. In this part of the study, we first decided to compare the ability to
learn from samples for each frequency band separately. The results are shown in Table 5.
We again trained three RNN structures with layer sizes of 20 + 40 RNN cells in two hidden
layers, respectively. The LSTM and BiLSTM-based models showed relatively stable results,
but the GRU-based RNN was difficult to train to be close to matching all 12 frequency bands.

Table 5. Comparison of different RNN structures with fixed layer sizes, trained on a single bin,
covering 1/12 of the octave band width. 12 trained models in total, for neighboring bins.

RNN Bin Number SSE (103) RSS (Mean) R-Squared RMSE (Mean)

1 30.42 3.59 0.96 0.0227
2 70.52 4.41 0.91 0.0325
3 59.89 4.89 0.94 0.0354
4 110.75 5.62 0.90 0.0483
5 117.16 5.53 0.88 0.0452

LSTM 6 38.58 4.55 0.91 0.0311
7 17.16 2.95 0.92 0.0191
8 19.62 2.93 0.95 0.0194
9 23.79 2.18 0.98 0.0113
10 245.23 1.94 0.86 0.0176
11 315.59 8.44 0.82 0.1642
12 16.87 2.13 0.99 0.0134

1 38.78 3.05 0.95 0.0278
2 62.71 3.30 0.92 0.0249
3 29.26 3.46 0.97 0.0236
4 36.86 3.94 0.97 0.0268
5 47.86 3.82 0.95 0.0283

BiLSTM 6 19.48 3.19 0.95 0.0222
7 10.99 1.94 0.95 0.0145
8 10.95 1.92 0.97 0.0126
9 10.47 1.55 0.99 0.0099
10 36.03 1.14 0.98 0.0097
11 39.34 1.25 0.98 0.0096
12 4.25 1.57 1.00 0.0092



Appl. Sci. 2023, 13, 5604 10 of 12

Table 5. Cont.

RNN Bin Number SSE (103) RSS (Mean) R-Squared RMSE (Mean)

1 32.56 3.69 0.96 0.0241
2 68.70 4.73 0.92 0.0365
3 86.63 5.16 0.92 0.0430
4 145.46 5.60 0.87 0.0527
5 73.08 5.49 0.92 0.0409

GRU 6 89.77 4.85 0.78 0.0405
7 95.12 3.90 0.58 0.0418
8 24.23 2.95 0.94 0.0216
9 57.30 2.43 0.96 0.0164
10 N/A 32.44 N/A 0.6615
11 N/A 31.48 N/A 0.6381
12 124.86 2.69 0.95 0.0210

For the last study, we chose the seventh band, which is in the middle of the twelve.
The experimental results of the model trained for one frequency band and used to predict
the reverberation of the other frequency bands are presented in Table 2. The GRU-based
RNN model was not considered in this experimental study because the initial tests showed
even worse fitting accuracy and the same trends as for the LSTM and BiLSTM-based RNNs.

4. Conclusions

This paper discusses the flexibility of a recurrent neural network to automatically
compute a reverberated audio signal. The algorithm models the reverberation-affected
signal in the frequency domain by analysing the spectrum on a logarithmic scale. The
study examines three different recurrent network structures and compares the modeling
of the reverberated signal when each octave of the spectrum is divided into a different
number of bands. Using a model trained for one mid-octave band (No. 7) and tested
as a model for applying the reverberation effect to the remaining 11 bands, it was found
that even a half-tone change in the spectrum should be analyzed separately. To ensure a
good prediction of the full spectrum of the reverberated signal, we need to train a separate
one-dimensional RNN model for each band. This can be defined as a limitation of our
proposed method.

The BiLSTM-based RNN has shown more stable results in part of the frequency
spectrum. Considering that all models were trained using the same audio recordings, it
can be concluded that this type of RNN is more flexible in adapting to frequency changes
related to room reverberation. Future work may explore methods for consolidating these
models or refining the architecture to achieve more efficient and scalable solutions for
modeling reverberated audio across different frequency bands.
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