A Quantitative Stability Evaluation Method of VSC for Optimizing Control Parameters and Extending Stability Boundary to Avoid Oscillations
Abstract
:1. Introduction
2. VSC System Modeling and Quantitative Evaluation Method of System Stability
2.1. VSC Impedance Modeling
2.2. Quantitative Evaluation Method of VSC System Stability
3. Parameter Optimization of the Current Controller and PLL
3.1. Parameter Optimization of the Current Controller
3.2. Optimized Design of PLL Parameters
4. Simulation Verification and Analysis
4.1. Optimization for the Current Control Loop
4.2. Parameter Optimization of PLL
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Nomenclature
VSC | voltage source converter |
PLL | phase-locked loop |
DC | Direct Current |
Vdc | front-end DC voltage of VSC |
vox (x = a,b,c) | VSC output voltage |
iox (x = a,b,c) | VSC output current |
PCC | point of common coupling |
upcc | PCC voltage |
Ugx (x = a,b,c) | grid voltage |
Lf | filter inductance |
Lg | equivalent grid impedance |
iod | VSC output current d-axis component |
ioq | VSC output current q-axis component |
idref | grid-connected current d-axis reference value |
iqref | grid-connected current q-axis reference value |
kp-c | proportional coefficient of current control loop |
ki-c | integral coefficient of current control loop |
vmd | d-axis modulation signal |
vmq | q-axis modulation signal |
θpll | output angle of PLL |
kp-PLL | proportional coefficient of PLL |
ki-PLL | integral coefficient of PLL |
upccd | d-axis voltage component of upcc |
upccq | q-axis voltage component of upcc |
ω1 | fundamental wave angular frequency |
KPWM | equivalent gain of the VSC |
Utri | carrier amplitude |
ZVSC | output impedance matrix of VSC |
Zg | impedance matrix of grid |
ϕ | quantitative stability evaluation metrics |
m | coefficient of active damping |
ξ | damping ratio |
ωn | natural angular frequency |
vm | steady-state voltage amplitude at PCC |
KP | stability and controllability of PLL |
KI | response performance of PLL |
g | relationship between KI and KP |
βpm-PLL | stability margin of the open-loop transfer function of PLL |
ωc | cut-off frequency of PLL system |
References
- Wang, X.; Qin, K.; Ruan, X.; Pan, D.; He, Y.; Liu, F. A robust grid-voltage feedforward scheme to improve adaptability of grid-connected inverter to weak grid condition. IEEE Trans. Power. Electron. 2021, 36, 2384–2395. [Google Scholar] [CrossRef]
- Wen, B.; Dong, D.; Boroyevich, D.; Burgos, R.; Mattavelli, P.; Shen, Z. Impedance-Based Analysis of Grid-Synchronization Stability for Three-Phase Paralleled Converters. IEEE Trans. Power Electron. 2016, 31, 26–38. [Google Scholar] [CrossRef]
- Wang, X.; Blaabjerg, F. Harmonic stability in power electronic-based power systems: Concept, modeling, and analysis. IEEE Trans Smart Grid 2019, 10, 2858–2870. [Google Scholar] [CrossRef]
- Chen, X.; Zhang, Y.; Wang, S.; Chen, J.; Gong, C. Impedance-Phased Dynamic Control Method for Grid-Connected Inverters in a Weak Grid. IEEE Trans. Power Electron. 2017, 32, 274–283. [Google Scholar] [CrossRef]
- Harnefors, L.; Wang, X.; Yepes, A.G.; Blaabjerg, F. Passivitybased stability assessment of grid-connected VSCs—An overview. IEEE J. Emerg. Sel. Topics Power Electron. 2016, 4, 116–125. [Google Scholar] [CrossRef]
- Zhang, X.; Xia, D.; Fu, Z.; Wang, G.; Xu, D. An Improved Feedforward Control Method Considering PLL Dynamics to Improve Weak Grid Stability of Grid-Connected Inverters. IEEE Trans. Ind Appl. 2018, 54, 5143–5151. [Google Scholar] [CrossRef]
- Zhao, M.; Yuan, X.; Hu, J.; Yan, Y. Voltage dynamics of current control time-scale in a VSC-connected weak grid. IEEE Trans. Power Syst. 2016, 31, 2925–2937. [Google Scholar] [CrossRef]
- Parniani, M.; Iravani, M. Computer analysis of small-signal stability of power systems including network dynamics. IEE Proc. Gener. Transm. Distrib. 1995, 142, 613–617. [Google Scholar] [CrossRef]
- Lu, M.; Wang, X.; Blaabjerg, F.; Muyeen, S.M.; Al-Durra, A.; Leng, S. Grid-voltage-feedforward active damping for grid-connected inverter with LCL filter. In Proceedings of the 2016 IEEE Applied Power Electronics Conference and Exposition (APEC), Long Beach, CA, USA, 20–24 March 2016; pp. 1941–1946. [Google Scholar] [CrossRef]
- Sun, J. Impedance-Based Stability Criterion for Grid-Connected Inverters. IEEE Trans. Power Electron. 2011, 26, 3075–3078. [Google Scholar] [CrossRef]
- Bakhshizadeh, M.K.; Wang, X.; Blaabjerg, F.; Hjerrild, J.; Kocewiak, Ł.; Bak, C.L.; Hesselbæk, B. Couplings in Phase Domain Impedance Modeling of Grid-Connected Converters. IEEE Trans. Power Electron. 2016, 31, 6792–6796. [Google Scholar] [CrossRef]
- Burgos, R.; Boroyevich, D.; Wang, F.; Karimi, K.; Francis, G. Ac stability of high power factor multi-pulse rectifiers. In Proceedings of the 2011 IEEE Energy Conversion Congress and Exposition, Phoenix, AZ, USA, 17–22 September 2011; pp. 3758–3765. [Google Scholar] [CrossRef]
- Wen, B.; Boroyevich, D.; Burgos, R.; Mattavelli, P.; Shen, Z. Small-Signal Stability Analysis of Three-Phase AC Systems in the Presence of Constant Power Loads Based on Measured d-q Frame Impedances. IEEE Trans. Power Electron. 2015, 30, 5952–5963. [Google Scholar] [CrossRef]
- Vieto, I.; Sun, J. Sequence Impedance Modeling and Converter-Grid Resonance Analysis Considering DC Bus Dynamics and Mirrored Harmonics. In Proceedings of the 2018 IEEE 19th Workshop on Control and Modeling for Power Electronics (COMPEL), Padua, Italy, 25–28 June 2018; pp. 1–8. [Google Scholar] [CrossRef]
- Rygg, A.; Molinas, M.; Zhang, C.; Cai, X. A Modified Sequence-Domain Impedance Definition and Its Equivalence to the dq-Domain Impedance Definition for the Stability Analysis of AC Power Electronic Systems. IEEE J. Emerg. Sel. Topics. Power Electron. 2016, 4, 1383–1396. [Google Scholar] [CrossRef]
- Tang, Y.; Loh, P.C.; Wang, P.; Choo, F.H.; Gao, F.; Blaabjerg, F. Generalized Design of High Performance Shunt Active Power Filter With Output LCL Filter. IEEE Trans. Ind. Electron. 2012, 59, 1443–1452. [Google Scholar] [CrossRef]
- Wang, X.; Harnefors, L.; Blaabjerg, F. Unified Impedance Model of Grid-Connected Voltage-Source Converters. IEEE Trans. Power Electron. 2018, 33, 1775–1787. [Google Scholar] [CrossRef]
- Li, C.; Wang, S.; Colas, F.; Liang, J. Dominant Instability Mechanism of VSI Connecting to a Very Weak Grid. IEEE Trans. Power Systems 2022, 37, 828–831. [Google Scholar] [CrossRef]
- Wu, G.; Sun, H.; Zhang, X.; Egea-Àlvarez, A.; Zhao, B.; Xu, S.; Wang, S.; Zhou, X. Parameter Design Oriented Analysis of the Current Control Stability of the Weak-Grid-Tied VSC. IEEE Trans. Power Deliv. 2021, 36, 1458–1470. [Google Scholar] [CrossRef]
- Wen, B.; Boroyevich, D.; Burgos, R.; Mattavelli, P.; Shen, Z. Analysis of D-Q Small-Signal Impedance of Grid-Tied Inverters. IEEE Trans. Power Electron. 2016, 31, 675–687. [Google Scholar] [CrossRef]
- Zou, Z.X.; Liserre, M. Modeling Phase-Locked Loop-Based Synchronization in Grid-Interfaced Converters. IEEE Trans. Energy Convers. 2020, 35, 394–404. [Google Scholar] [CrossRef]
- Reznik, A.; Simões, M.G.; Al-Durra, A.; Muyeen, S.M. LCL Filter Design and Performance Analysis for Grid-Interconnected Systems. IEEE Trans. Ind. Appl. 2014, 50, 1225–1232. [Google Scholar] [CrossRef]
- Zhou, S.; Zou, X.; Zhu, D.; Tong, L.; Zhao, Y.; Kang, Y.; Yuan, X. An Improved Design of Current Controller for LCL-Type Grid-Connected Converter to Reduce Negative Effect of PLL in Weak Grid. IEEE J. Emerg. Sel. Top. Power Electron. 2018, 6, 648–663. [Google Scholar] [CrossRef]
- Wehmuth, G.R.; Busarello, T.D.C.; Péres, A. Step-by-Step Design Procedure for LCL-Type Single-Phase Grid Connected Inverter Using Digital Proportional-Resonant Controller With Capacitor-Current Feedback. In Proceedings of the 2021 IEEE Green Technologies Conference (GreenTech), Denver, CO, USA, 7–9 April 2021; pp. 448–454. [Google Scholar] [CrossRef]
- Ling, Z.; Xu, J.; Wu, Y.; Hu, Y.; Xie, S. Adaptive Tuning of Phase-Locked Loop Parameters for Grid-Connected Inverters in Weak Grid Cases. In Proceedings of the 2021 IEEE 16th Conference on Industrial Electronics and Applications (ICIEA), Chengdu, China, 1–4 August 2021; pp. 821–826. [Google Scholar] [CrossRef]
- Liao, K.; Pang, B.; Yang, J.; He, Z. Compensation Strategy of Wideband Voltage Harmonics for Doubly-Fed Induction Generator. IEEE Trans. Energy Convers. 2023, 38, 674–684. [Google Scholar] [CrossRef]
- Bohner, M.; Tunç, O.; Tunç, C. Qualitative analysis of Caputo fractional integro-differential equations with constant delays. Comput. Appl. Math. 2021, 40, 214. [Google Scholar] [CrossRef]
- Tunç, C.; Tunç, O. On the stability, integrability and boundedness analyses of systems of integro-differential equations with time-delay retardation. Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. RACSAM 2021, 115, 115. [Google Scholar] [CrossRef]
- Gao, Y. Analysis and Improvement of Control Performance of LCL Three-Phase Grid-Connected Converter. Master’s Thesis, Beijing Jiaotong University, Beijing, China, 2020. [Google Scholar]
- Sang, S.; Gao, N.; Cai, X.; Li, R. A Novel Power-Voltage Control Strategy for the Grid-Tied Inverter to Raise the Rated Power Injection Level in a Weak Grid. IEEE J. Emerg. Sel. Top. Power Electron. 2018, 6, 219–232. [Google Scholar] [CrossRef]
- Wang, X.; Li, Y.W.; Blaabjerg, F.; Loh, P.C. Virtual-Impedance-Based Control for Voltage-Source and Current-Source Con-verters. IEEE Trans. Power Electron. 2015, 30, 7019–7037. [Google Scholar] [CrossRef]
- Peng, C. Investigation on Enhanced Operation of DFIG Wind Power System Using Direct-resonant Approach Without Phase-locked Loop. Ph.D. Dissertation, Zhejiang University, Hangzhou, China, 2016. [Google Scholar]
- Yan, W.; Qin, S.; Lin, F. Control Theory CAI Tutorial; Science Press: Beijing, China, 2011; pp. 71–72, 137–138. [Google Scholar]
Parameters | Symbol | Value |
---|---|---|
DC Voltage | Vdc | 700 V |
Filter Inductance | Lf | 3 mH |
Grid Voltage(line-to-line) | Ug | 380 V |
Grid Impedance | Lg | 12.8 mH |
Grid Frequency | fg | 50 Hz |
Switching Frequency | fsw | 15 kHz |
Sampling Frequency | fs | 15 kHz |
Value of m | THD of ioabc | Oscillation Frequency of ioabc |
---|---|---|
0 | 91.3% | 175 Hz/75 Hz |
0.1 | 90.2% | 175 Hz/75 Hz |
1 | 0.18% | Stable |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jiang, X.; Han, X.; Sun, H.; Liu, L.; Pan, P.; Chen, G.; Si, Q.; Jiang, P. A Quantitative Stability Evaluation Method of VSC for Optimizing Control Parameters and Extending Stability Boundary to Avoid Oscillations. Appl. Sci. 2023, 13, 5663. https://doi.org/10.3390/app13095663
Jiang X, Han X, Sun H, Liu L, Pan P, Chen G, Si Q, Jiang P. A Quantitative Stability Evaluation Method of VSC for Optimizing Control Parameters and Extending Stability Boundary to Avoid Oscillations. Applied Sciences. 2023; 13(9):5663. https://doi.org/10.3390/app13095663
Chicago/Turabian StyleJiang, Xiaofeng, Xiaoyan Han, Huadong Sun, Lei Liu, Pengyu Pan, Gang Chen, Qi Si, and Pan Jiang. 2023. "A Quantitative Stability Evaluation Method of VSC for Optimizing Control Parameters and Extending Stability Boundary to Avoid Oscillations" Applied Sciences 13, no. 9: 5663. https://doi.org/10.3390/app13095663
APA StyleJiang, X., Han, X., Sun, H., Liu, L., Pan, P., Chen, G., Si, Q., & Jiang, P. (2023). A Quantitative Stability Evaluation Method of VSC for Optimizing Control Parameters and Extending Stability Boundary to Avoid Oscillations. Applied Sciences, 13(9), 5663. https://doi.org/10.3390/app13095663