Bioprospecting of the Telekia speciosa: Uncovering the Composition and Biological Properties of Its Essential Oils
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Collection and Identification
2.2. Isolation of Essential Oils
2.3. GC-MS Analysis of Essential Oils
2.4. Identification of Compounds
2.5. Strains and Cultivation Conditions
Determination of the Minimum Inhibitory Concentration (MIC) of Essential Oils against Bacteria
2.6. Cell Culture and Treatment
2.7. Cell Viability Assay
2.8. Apoptosis Assay
2.9. Western Immunoblot
2.10. Statistical Analysis
3. Results and Discussion
3.1. Composition of Telekia speciosa Essential Oils
3.2. Effects of Telekia speciosa Essential Oils Melanoma Cells
3.3. Telekia speciosa Essential Oil Induces Apoptosis in Melanoma Cells
3.4. Antimicrobial Activities of T. speciosa Essential Oils
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zając, M.; Zając, A. Some regularities in the distribution of kenophytesin the Polish Carpathians and their foreland. Biodiv. Res. Conserv. 2015, 37, 11–20. [Google Scholar]
- Puri, B.; Hall, A. Phytochemical Dictionary: A Handbook of Bioactive Compounds from Plants, 2nd ed.; CRC Press: Boca Raton, FL, USA, 1998. [Google Scholar]
- Pergl, J.; Petřík, P.; Fleischhans, F.; Adámek, M.; Brůna, J. Telekia speciosa (Schreb.) Baumg. in human made environment: Spread and persistence, two sides of the same coin. BioInvasions Rec. 2020, 9, 17–28. [Google Scholar] [CrossRef]
- Gevrenova, R.; Zheleva-Dimitrova, D.; Balabanova, V.; Voynikov, Y.; Sinan, K.I.; Mahomoodally, M.F.; Zengin, G. Integrated phytochemistry, bio-functional potential and multivariate analysis of Tanacetum macrophyllum (Waldst. & Kit.) Sch.Bip. and Telekia speciosa (Schreb.) Baumg. (Asteraceae). Ind. Crops Prod. 2020, 155, 112817. [Google Scholar]
- Radulovic, N.; Blagojevic, P.; Palic, R. Volatiles of Telekia speciosa (Schreb.) Baumg. (Asteraceae) from Serbia. J. Essent. Oil Res. 2010, 22, 250–254. [Google Scholar] [CrossRef]
- Rasul, A.; Di, J.; Millimouno, F.M.; Malhi, M.; Tsuji, I.; Ali, M.; Li, J.; Li, X. Reactive oxygen species mediate isoalantolactone-induced apoptosis in human prostate cancer cells. Molecules 2013, 18, 9382–9396. [Google Scholar] [CrossRef] [PubMed]
- Stojakowska, A.; Galanty, A.; Malarz, J.; Michalik, M. Major terpenoids from Telekia speciosa flowers and their cytotoxic activity in vitro. Nat. Prod. Res. 2019, 33, 1804–1808. [Google Scholar] [CrossRef]
- Réthy, B.; Csupor-Löffler, B.; Zupkó, I.; Hajdú, Z.; Máthé, I.; Hohmann, J.; Rédei, T.; Falkay, G. Antiproliferative activity of Hungarian Asteraceae species against human cancer cell lines. Part I. Phytother. Res. 2007, 21, 1200–1208. [Google Scholar] [CrossRef] [PubMed]
- Yuan, C.-B.; Tian, L.; Yang, B.; Zhou, H.-Y. Isoalantolactone protects LPS-induced acute lung injury through Nrf2 activation. Microb. Pathog. 2018, 123, 213–218. [Google Scholar] [CrossRef] [PubMed]
- Wajs-Bonikowska, A.; Stojakowska, A.; Kalemba, D. Chemical composition of essential oils from a multiple shoot culture of Telekia speciosa and different plant organs. Nat. Prod. Commun. 2012, 7, 625–628. [Google Scholar] [CrossRef] [PubMed]
- Čilović-Kozarević, E.; Šarić-Kundalić, B.; Ibišević, M.; Horozić, E.; Glamočlija, J.; Soković, M.; Arsenijević, J.; Maksimović, Z. GC/MS analysis and antimicrobial activity of essential oils of Telekia speciosa (Schreb.) Baumg. Lek. Sirovine 2021, 41, 35–40. [Google Scholar] [CrossRef]
- Maggio, A.; Riccobono, L.; Spadaro, V.; Campisi, P.; Bruno, M.; Senatore, F. Volatile constituents of the aerial parts of Pulicaria sicula (L.) Moris growing wild in Sicily: Chemotaxonomic volatile markers of the genus Pulicaria Gaertn. Chem. Biodiv. 2015, 12, 781–798. [Google Scholar] [CrossRef] [PubMed]
- Liang, H.; Bao, F.; Dong, X.; Tan, R.; Zhang, C.; Lu, Q.; Cheng, Y. Antibacterial thymol derivatives isolated from Centipeda minima. Molecules 2007, 12, 1606–1613. [Google Scholar] [CrossRef] [PubMed]
- Kenny, C.-R.; Stojakowska, A.; Furey, A.; Lucey, B. From monographs to chromatograms: The antimicrobial potential of Inula helenium L. (Elecampane) naturalised in Ireland. Molecules 2022, 27, 1406. [Google Scholar] [CrossRef] [PubMed]
- Marković, M.; Pljevljakušić, D.; Matejić, J.; Nikolić, B.; Smiljić, M.; Ðelić, G.; Papović, O.; Ðokić, M.; Stankov-Jovanović, V. The plants traditionally used for the treatment of respiratory infections in the Balkan Peninsula (Southeast Europe). Lekovitesirovine 2022, 42, 68–88. [Google Scholar] [CrossRef]
- Zhou, Y.; Guo, Y.; Wen, Z.; Ci, X.; Xia, L.; Wang, Y.; Deng, X.; Wang, J. Isoalantolactone enhances the antimicrobial activity of penicillin G against Staphylococcus aureus by inactivating β-lactamase during protein translation. Pathogens 2020, 9, 161. [Google Scholar] [CrossRef] [PubMed]
- M07-A9; Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria that Grow Aerobically. 9th ed. Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2012.
- Kwiatkowski, P.; Mnichowska-Polanowska, M.; Pruss, A.; Dzięcioł, M.; Masiuk, H. Activity of essential oils against Staphylococcus aureus strains isolated from skin lesions in the course of staphylococcal skin infections. Herba Pol. 2017, 63, 43–52. [Google Scholar] [CrossRef]
No. | Compounds | Leaf | Flower | Root | RI Exp. 1 | RI Lit. 2 |
---|---|---|---|---|---|---|
[%] | [%] | [%] | ||||
1 | Isobutyric acid | tr | 752 | 752 | ||
2 | Hexanal | tr | 0.4 | 773 | 771 | |
3 | (E)-Hex-2-en-1-al | tr | 0.1 | 828 | 822 | |
4 | (E)-Hex-3-en-1-ol | tr | 0.1 | 838 | 838 | |
5 | Hexan-1-ol | tr | 852 | 852 | ||
6 | α-Pinene | 0.2 | 0.7 | 926 | 935 | |
7 | Benzaldehyde | tr | 0.2 | 957 | 941 | |
8 | Oct-1-en-3-ol | 0.3 | 0.2 | 962 | 962 | |
9 | 2-Pentylfuran | 0.2 | 0.9 | 0.1 | 977 | 981 |
10 + 11 | Octanal + β-Myrcene (1:1) | 0.2 | 0.2 | 980 | 982 | |
12 | (E)-2-(2-Pentenyl)furan | 0.1 | 984 | 984 | ||
13 | β-Pinene | 0.1 | tr | tr | 993 | 990 |
14 | δ-Car-3-ene | tr | 1006 | 1005 | ||
15 | m-Cymene | tr | 0.1 | tr | 1009 | 1013 |
16 | p-Cymene | 0.1 | 0.1 | tr | 1010 | 1016 |
17 | Limonene | 0.5 | 1018 | 1025 | ||
18 | (E,E)-Hepta-2,4-dien-1-ol | 0.4 | 1027 | _ | ||
19 | 2,4,4-trimethyl-Cyclohex-2-en-1-ol | tr | 0.1 | 1034 | _ | |
20 | cis-Linalool oxide (furanoid) | 1.1 | 0.2 | tr | 1064 | 1064 |
21 | Nonanal | 0.0 | 1075 | 1076 | ||
22 | Terpinolene | 0.2 | tr | tr | 1080 | 1082 |
23 | Linalool | 6.4 | 6.9 | 1.1 | 1086 | 1087 |
24 | cis-p-Menth-2-en-1-ol | tr | tr | tr | 1104 | 1106 |
25 | Camphor | tr | 0.1 | tr | 1114 | 1123 |
26 | 2-hydroxy-3-methylBenzaldehyde | tr | 0.4 | 1129 | 1125 | |
27 | (E)-Non-2-enal | 0.2 | 1134 | 1133 | ||
28 | Nerol oxide | 1.4 | 1.7 | 1137 | 1137 | |
29 | Borneol | 0.4 | 4.5 | 1147 | 1150 | |
30 | Albene | 0.2 | 1160 | 1154 | ||
31 | p-Cymen-8-ol | 0.1 | 0.1 | 1162 | 1159 | |
32 | Methyl salicylate | tr | 0.1 | 1169 | 1171 | |
33 | α-Terpineol | 2.2 | 1.9 | 0.3 | 1172 | 1176 |
34 | Myrtenol | 0.2 | 1179 | 1178 | ||
35 | Decanal | 1.6 | 0.7 | 1185 | 1187 | |
36 | β-Cyclocitral | 0.3 | 1196 | 1196 | ||
37 | Cumic aldehyde | tr | 0.1 | 1198 | 1215 | |
38 | Nerol | 2.3 | 11.9 | 1.4 | 1213 | 1213 |
39 | Thymol methyl ether | tr | 0.4 | 1220 | 1215 | |
40 | Geraniol | 0.9 | 0.5 | tr | 1236 | 1238 |
41 | cis-Edulan (Edulan II) | 0.1 | 1246 | 1247 | ||
42 | Thymol | 0.1 | 1251 | 1267 | ||
43 | p-tert-Butylphenol | 0.1 | tr | 1252 | 1266 | |
44 | Bornyl acetate | 0.6 | 1.1 | 0.7 | 1267 | 1270 |
45 | Carvacrol | 0.1 | 0.3 | tr | 1272 | 1278 |
46 | Dihydroedulan I | 0.1 | 0.1 | 1277 | _ | |
47 | Dihydroedulan II | 6.2 | 0.5 | 1284 | 1290 | |
48 | Theaspirane isomer1 | 0.2 | 1288 | 1299 | ||
49 | trans-Edulan (Edulan I) | 0.1 | 1294 | 1313 | ||
50 | Theaspirane isomer 2 | 0.2 | tr | 1301 | 1313 | |
51 | 7αH-Silphiperfol-5-ene | 0.5 | 0.3 | 1.6 | 1322 | 1329 |
52 | Presilphiperfol-7-ene | 0.4 | 0.2 | 0.2 | 1330 | 1342 |
53 | Silphiphin-1-ene | 0.5 | 1340 | 1350 | ||
54 | α-Longipinene | tr | tr | 0.1 | 1347 | 1358 |
55 | 3-Hydroxy-2,4,4-trimethylpentyl 2-methylpropanoate | 0.1 | tr | 1355 | 1360 | |
56 | (E)-β-Damascenone | 0.1 | tr | 1358 | 1361 | |
57 | (E)-Jasmone | 0.1 | 0.1 | tr | 1362 | 1362 |
58 | (Z)-Jasmone | 0.7 | 0.1 | 0.2 | 1365 | 1371 |
59 | Longicyclene | 0.2 | 0.1 | 1369 | 1378 | |
60 | Silphiperfol-6-ene | 0.7 | 0.3 | 0.5 | 1369 | 1378 |
61 | Cyclosativene | 0.6 | 1372 | 1378 | ||
62 | Modheph-2-ene | 0.1 | 0.6 | 1374 | 1382 | |
63 | β-Panasinsene | 0.2 | tr | 1376 | 1385 | |
64 | β-Bourbonene | 0.2 | 0.2 | 1379 | 1386 | |
65 | Dihydro-α-ionone | 1.9 | tr | 0.7 | 1387 | 1437 |
66 | (3Z)-3-(6,6-Dimethyl-2-methylene-3-cyclohexen-1-ylidene)-1-methylbutyl acetate | 0.3 | 0.2 | 0.5 | 1389 | _ |
67 | Helifolenol A | 1.7 | tr | 0.4 | 1395 | _ |
68 | 2,5-Dimethoxycymene | 0.6 | 1399 | 1399 | ||
69 | 2,6-Dimethoxycymene | 0.1 | 1.3 | 1399 | 1402 | |
70 | Isobornyl isobutyrate | 0.1 | 0.1 | 1.4 | 1402 | 1402 |
71 | Petasitene | 0.1 | 0.7 | 1404 | 1402 | |
72 | α-Ionone | 0.1 | 0.3 | 1407 | 1405 | |
73 | 7,8-Dihydro-β-ionone | 0.3 | tr | 1412 | 1421 | |
74 | (E)-β-Caryophyllene | 1.6 | 2.8 | 1.3 | 1415 | 1421 |
75 | Pacifigorgia-2,10-diene | 0.8 | 2.4 | 1417 | 1426 | |
76 | Geranylacetone | 1.5 | 0.7 | 1.2 | 1428 | 1428 |
77 | Thujopsene | 0.4 | 1.7 | tr | 1437 | 1430 |
78 | (E)-β-Farnesene | 0.2 | tr | 0.5 | 1444 | 1444 |
79 | α-Humulene | 0.3 | 0.6 | 0.2 | 1448 | 1445 |
80 | epi-β-Santalene | 0.1 | 0.1 | 1452 | 1446 | |
81 | 8,9-Didehydrothymol isobutyrate | 0.2 | 0.1 | 0.1 | 1455 | 1458 |
82 | Thymol isobutyrate | 0.4 | 0.7 | 0.2 | 1459 | 1462 |
83 | (E)-β-Ionone | 0.6 | 0.2 | tr | 1463 | 1468 |
84 | Nerylisobutyrate | 2.2 | 2.5 | 2.1 | 1471 | 1468 |
85 | 123/94/67 M204 n.i. 3 | tr | 0.1 | 0.2 | 1475 | _ |
86 | Selinena-4,11-diene | 0.6 | 0.3 | 1.4 | 1481 | 1473 |
87 | Germacrene D | 0.2 | tr | 1484 | 1479 | |
88 | γ-Humulene | 0.7 | 0.5 | 0.8 | 1490 | 1483 |
89 | β-Selinene | 0.3 | 1492 | 1486 | ||
90 | (E,E)-α-Farnesene | 0.3 | 1495 | 1498 | ||
91 | β-Bisabolene | 0.3 | 0.1 | 1500 | 1503 | |
92 | Cameroonan-7α-ol | 0.7 | 0.5 | tr | 1504 | 1510 |
93 | 10-epi Italicen ether | 0.4 | 1506 | 1511 | ||
94 | Isoshyobunone | tr | 0.4 | 2.1 | 1509 | 1518 |
95 | δ-Cadinene | 1.9 | 0.7 | 0.1 | 1516 | 1520 |
96 | cis/trans-Calamenene | tr | 0.2 | 1520 | 1521 | |
97 | Nopsan-4-ol | 0.2 | 0.1 | 1520 | 1523 | |
98 | 177/121/91/161/148 n.i. 3 | tr | 0.1 | 0.1 | 1524 | _ |
99 | α-Calacorene | 0.6 | 0.2 | 1530 | 1527 | |
100 | (E)-α-Bisabolene | 0.1 | 0.6 | 0.2 | 1533 | 1530 |
101 | Cadina-1(10),7(11)-diene | 2.4 | 0.6 | tr | 1539 | 1538 |
102 | β-Caryophyllene epoxide | 0.4 | 0.2 | 0.2 | 1540 | 1544 |
103 | β-Calacorene | 0.1 | 0.1 | 1544 | 1545 | |
104 | (Z)-Nerolidol | 0.2 | 6.1 | 0.3 | 1545 | 1546 |
105 | (E)-Neroliol | 10.1 | 2.5 | 1.2 | 1560 | 1555 |
106 | Neryl 2-methylbutyrate | 1.0 | 0.4 | 1564 | 1560 | |
107 | Neryl isovalerate | 0.9 | 1566 | 1560 | ||
108 | Prenopsan-8-ol | 3.5 | 2.8 | 1569 | 1569 | |
109 | β-caryophyllene oxide | 5.1 | 6.7 | 3.2 | 1579 | 1578 |
110 | di-epi-Cedrenoxide | tr | 0.1 | 0.8 | 1582 | 1630 (HP5) |
111 | 162/147/M206 n.i. 3 | 0.1 | tr | 1584 | _ | |
112 | Thujopsan-2α-ol | 0.1 | 0.1 | 1587 | 1589 | |
113 | 162/147 M206 n.i. 3 | 0.2 | 0.6 | 0.1 | 1592 | _ |
114 | Isoaromadendrene epoxide | tr | 0.8 | 1594 | 1590 | |
115 | 162/147/M206/120/173 n.i. 3 | 1.3 | 3.9 | 1600 | _ | |
116 | 162/147/M206/120/173 n.i. 3 | 0.5 | 1.0 | 0.2 | 1601 | _ |
117 | 162/147/M206/120/91 n.i. 3 | 0.7 | tr | 0.2 | 1603 | _ |
118 | b-Himachalene epoxide | 0.2 | 0.3 | 1606 | 1594 | |
119 | Eudesm-4-en-7-ol | 0.1 | 1606 | 1604 | ||
120 | 160/145/91/131/M182 n.i. 3 | 0.1 | 0.3 | 1609 | _ | |
121 | Isospathulenol | 0.1 | 0.4 | 0.4 | 1611 | 1619 |
122 | allo-Aromadendrene epoxide | 0.2 | 0.1 | 1616 | 1623 | |
123 | Cubenol | 0.1 | 0.6 | 0.4 | 1620 | 1630 |
124 | Caryophylla-3(15),7(14)-dien-6-ol | 0.3 | 1.3 | 0.5 | 1623 | 1630 |
125 | Caryophylla-4(12),8(13)-dien-5-α-ol | 1.2 | tr | tr | 1627 | 1631 |
126 | T-Muurolol | 0.2 | tr | 1631 | 1633 | |
127 | α-Cadinol | 0.2 | 1635 | 1641 | ||
128 | β-Eudesmol | 0.8 | 1.1 | 1635 | 1644 | |
129 | 162/161/133/105 M232 n.i. 3 | 0.2 | 0.1 | 0.2 | 1638 | _ |
130 | Intermedeol | 0.1 | 0.3 | 1.2 | 1642 | 1645 |
131 | δ-Cadinol | 0.9 | 0.6 | 0.4 | 1646 | 1645 |
132 | Isorotundenol | 0.1 | 1.4 | 0.1 | 1655 | 1659 |
133 | 6-Methoxythymol isobutyrate | 1.0 | 0.5 | 1.6 | 1659 | 1659 |
134 | 6-Methoxy-8,9-didehydrothymol isobutyrate | 0.1 | 0.4 | 0.4 | 1664 | 1676 |
135 | 3-Hydroxy-β-ionone | tr | 0.2 | 0.3 | 1667 | 1678 |
136 | Farnesal (isomer 2) | 0.3 | tr | 0.3 | 1682 | 1683 |
137 | 10-Isobutyryloxy-8,9-didehydro thymol methyl ether | 0.1 | 0.4 | 0.2 | 1686 | 1684 |
138 | (Z,Z)-Farnesol | 0.9 | 0.1 | 0.9 | 1693 | 1694 |
139 | Farnesal (isomer 3) | 0.1 | 0.4 | tr | 1696 | 1707 |
140 | (E,E)-Farnesol | 6.7 | 1.4 | 0.4 | 1710 | 1716 |
141 | cis-Z-α-Bisabolene epoxide | tr | 0.9 | 1718 | 1717 | |
142 | (E,E)-Farnesal | 1.3 | tr | tr | 1721 | 1717 |
143 | 6-Isopropenyl-4,8α-dimethyl-3,5,6,7,8,8α-hexahydro-2(1H)-naphthalenone | 0.5 | 0.1 | 0.3 | 1731 | 1772 (semi-polar column) |
144 | Hexahydrofarnesylacetone | 1.3 | 3.8 | 0.3 | 1832 | 1834 |
145 | Alantolactone | 0.1 | 0.3 | 1.5 | 1866 | 1873 |
146 | 9-Isobutyryloxythymol isobutyrate | 0.7 | 1.0 | 0.4 | 1882 | 1884 |
147 | 10-Isobutyryloxy-8,9-dehydrothymol isobutyrate | 0.4 | 0.6 | 0.6 | 1885 | 1887 |
148 | Isoalantolactone | 0.9 | 3.1 | 46.2 | 1907 | 1912 |
149 | Methyl palmitate | 0.1 | 0.6 | 1910 | 1915 | |
150 | 7-Isobutyryloxythymol isobutyrate | 0.3 | 0.4 | 1920 | 1922 | |
151 | n-Hexadecoic acid | 0.4 | 0.3 | 0.4 | 1954 | 1956 |
152 | 9-(2-Methybutyryloxy) thymol isobutyrate | 0.1 | 0.2 | 0.4 | 1969 | 1964 |
153 | 10-(2-Methybutyryloxy)-8,9-didehydrothymol | tr | 0.1 | 1972 | 1967 | |
154 | 10-Isobutyryloxy-8,9-epoxythymol isobutyrate | 0.5 | 1.7 | 2.6 | 1989 | 1972 |
155 | 18-Norabieta-8,11,13-triene | tr | 0.2 | 1998 | _ | |
156 | 177/150/71/135 M290 n.i. 3 | 0.1 | 0.2 | 2069 | _ | |
157 | 10-(2-Methybutyryloxy)-8,9-epoxythymol isobutyrate | 0.1 | 0.3 | 0.2 | 2076 | 2084 |
158 | (E)-phytol | 1.0 | 0.4 | tr | 2102 | 2114 |
159 | Tricosane | tr | 0.1 | 0.1 | 2299 | 2300 |
160 | Tetracosane | tr | tr | 2400 | 2400 | |
161 | Pentacosane | 0.1 | 1.0 | 2500 | 2500 | |
162 | Heptacosane | tr | 0.2 | 2695 | 2700 | |
Total | 98.1 | 97.1 | 97.1 |
Time of Treatment | Cell Line | IC50 (μg/mL) | |
---|---|---|---|
Flower Essential Oil | Cisplatin | ||
24 h | A375 | 7.2 ± 1.6 | 7.4 ± 1.9 |
C32 | 14.2 ± 2.8 | 10.6 ± 1.6 | |
HaCaT | 10.2 ± 1.9 | 13.8 ± 1.5 | |
Fibroblasts | >25 | >25 | |
48 h | A375 | 5.1 ± 1.4 | 3.7 ± 1.2 |
C32 | 11.3 ± 1.7 | 2.9 ± 0.8 | |
HaCaT | 8.1 ± 1.2 | 2.8 ± 1.0 | |
Fibroblasts | 17.1 ± 1.5 | >25 | |
72 h | A375 | 3.4 ± 1.1 | 2.0 ± 0.8 |
C32 | 6.3 ± 1.5 | 1.7 ± 0.6 | |
HaCaT | 4.3 ± 1.1 | 1.4 ± 0.5 | |
Fibroblasts | 11.8 ± 1.6 | 14.5 ± 1.4 |
Essential Oils from: | MIC (µL/mL) | |
---|---|---|
Staphylococcus aureus ATCC 29213 | Escherichia coli ATCC 25922 | |
flowers | 7.8 ± 0.0 | 7.8 ± 0.0 |
roots | 31.3 ± 0.0 | 62.5 ± 0.0 |
leaves | 5.9 ± 2.8 | 11.7 ± 5.5 |
thymol (control) 1 | 0.9 ± 0.0 | 7.5 ± 0.0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wajs-Bonikowska, A.; Szoka, Ł.; Kwiatkowski, P.; Meena, S.N.; Stojakowska, A. Bioprospecting of the Telekia speciosa: Uncovering the Composition and Biological Properties of Its Essential Oils. Appl. Sci. 2023, 13, 5674. https://doi.org/10.3390/app13095674
Wajs-Bonikowska A, Szoka Ł, Kwiatkowski P, Meena SN, Stojakowska A. Bioprospecting of the Telekia speciosa: Uncovering the Composition and Biological Properties of Its Essential Oils. Applied Sciences. 2023; 13(9):5674. https://doi.org/10.3390/app13095674
Chicago/Turabian StyleWajs-Bonikowska, Anna, Łukasz Szoka, Paweł Kwiatkowski, Surya Nandan Meena, and Anna Stojakowska. 2023. "Bioprospecting of the Telekia speciosa: Uncovering the Composition and Biological Properties of Its Essential Oils" Applied Sciences 13, no. 9: 5674. https://doi.org/10.3390/app13095674
APA StyleWajs-Bonikowska, A., Szoka, Ł., Kwiatkowski, P., Meena, S. N., & Stojakowska, A. (2023). Bioprospecting of the Telekia speciosa: Uncovering the Composition and Biological Properties of Its Essential Oils. Applied Sciences, 13(9), 5674. https://doi.org/10.3390/app13095674