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Abstract: Diabetes’ serious complication, diabetic retinopathy (DR), which can potentially be life-
threatening, might result in vision loss in certain situations. Although it has no symptoms in the early
stages, this illness is regarded as one of the “silent diseases” that go unnoticed. The fact that various
datasets have varied retinal features is one of the significant difficulties in this field of study. This
information impacts the models created for this purpose. This study’s method can efficiently learn
and classify DR from three diverse datasets. Four models based on transfer learning Convolution
Neural Network (CNN)—Visual Geometry Group (VGG) 16, Inception version 3 (InceptionV3),
Dense Network (DenseNet) 121, and Mobile Network version 2 (MobileNetV2)—are employed in
this work, with evaluation parameters, including loss, accuracy, recall, precision, and specificity.
The models are also tested by combining the images from the three datasets. The DenseNet121
model performs better with 98.97% accuracy on the combined image set. The study concludes that
combining multiple datasets improves performance compared to individual datasets. The obtained
model can be utilized globally to accommodate more tests that clinics perform for diabetic patients to
prevent DR. It helps health workers refer patients to ophthalmologists before DR becomes serious.

Keywords: convolutional neural network; deep learning; diabetic retinopathy; image classification;
medical imaging; transfer learning

1. Introduction

Diabetes is a severe (can be long-lasting) condition where the body cannot generate
enough insulin or utilize the insulin it produces. The longer a patient has diabetes and has
poor blood sugar management, the greater the chance of complications, some of which
could be fatal. Numerous illnesses, including kidney damage, nerve damage, eye damage,
cardiovascular disease, hearing loss, Alzheimer’s, skin issues, infections, foot damage, and
numerous other complications, can be brought on by diabetes [1].

Globally, 1.5 million deaths were recorded from diabetes in 2019, according to the
World Health Organization (WHO). The organization approved five worldwide coverage
and treatment goals for diabetes in May 2022, which are to be met by 2030 [2]. Diabetes
affected 536.6 million people aged 20 to 79 worldwide in 2021, with a forecast rise to
783.2 million by 2045. Diabetes affected men and women at almost the same proportions,
while people aged 75 to 79 had the highest prevalence. Estimates show that high-income
countries had a greater frequency than low-income ones (11.1% vs. 5.5%) and in urban
regions (12.1%) than in rural ones (8.3%) in 2021. Over a billion people globally, or more than
10.5% of all adults, now have diabetes, which affects a little over half a billion people [3].

To avoid complications from DR, the WHO and the American Academy of Ophthal-
mology advise patients with diabetes to have eye exams at least once a year. This early
evaluation would prevent progression caused by any examination delay [4]. However, for
two critical reasons, this advice is inappropriate in many countries. First, several patients,
particularly in developing countries, cannot afford routine eye tests. Secondly, not enough

Appl. Sci. 2023, 13, 5685. https://doi.org/10.3390/app13095685 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app13095685
https://doi.org/10.3390/app13095685
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0002-5707-2692
https://doi.org/10.3390/app13095685
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app13095685?type=check_update&version=1


Appl. Sci. 2023, 13, 5685 2 of 17

medical professionals to meet the demand for ophthalmologists and not enough screening
equipment due to the rise in diabetes patients [5]. Additionally, patients with early-stage
DR do not show explicit symptoms or have vision problems.

Due to excessive blood sugar levels, DR is a secondary illness or consequence of
diabetes that damages a diabetic person’s eyes. Identification of diabetic patients with
retinopathy helps to avoid vision loss. Retinopathy can be avoided with early identification
and a healthy lifestyle. Through techniques like image processing and deep learning
models, artificial intelligence detects DR [6–8]. Proliferative (PrDR) and non-proliferative
(NPrDR) retinopathy are the two stages of DR grading. The retina is healthy without DR,
and there are three levels of NPrDR: mild, moderate, and severe [6,9].

Transfer learning applies knowledge from one problem to a similar one. It allows
a pre-trained model to apply information from a massive quantity of labeled data to a
similar task and then fine-tune it to the target task using relatively small amounts of
labeled data [10]. Collecting labeled data is both time-consuming and expensive in various
practical applications. Transfer learning can solve this problem by starting with a pre-
trained model that is already familiar with the core patterns and features of the data.
It enables satisfactory results with a substantially smaller amount of labeled data than
traditional methods require [11].

This work aims to detect DR from fundus images. It uses three publicly accessible
datasets. Four pre-trained models based on CNN—MobileNetV2, VGG16, InceptionV3,
and DenseNet121—have been used in this work, with several evaluation parameters,
including loss, accuracy, recall, precision, and specificity. Each dataset is implemented with
the same transfer learning methods, and the results are analyzed. Finally, the three datasets
are combined to form a single data set and are tested on the models. The main objective of
this work is as follows:

• To evaluate the performance of models built using MobileNetV2, DenseNet121,
VGG16, and InceptionV3 on retinal fundus images.

• To train and test a model using three publicly available datasets and integrate it into a
new dataset.

Hence the research question for this study is as follows: How do four pre-trained
models (MobileNetV2, VGG16, InceptionV3, and DenseNet121) perform on the combined
dataset compared to three independent datasets in terms of accuracy, recall, specificity, and
precision for DR classification tasks?

The remaining study structure is classified as the review of the previous studies in
Section 2. The materials and methods in Section 3 describe different datasets used, the class
imbalance problem, data augmentation, transfer learning, and the model implementation
procedure. Section 4 presents the experimental results by analyzing four models with three
datasets and an integrated dataset, followed by Section 5′s study discussion. The work is
concluded in Section 6 with future enhancements.

2. Related Works

By creating unique features and designing software that analyses retinal images,
numerous techniques have been investigated to address the problem of DR grading. This
kind of approach is complex and labor-intensive. The ophthalmologist must also use his
knowledge of designing traits and labeling retinal pictures. On the other hand, this necessity
is one of the significant issues that must be addressed [12]. Most of these traditional
approaches are unsuccessful in figuring out the answers and understanding how things fit
together. It retains many irrelevant picture-specific features, such as rotation, brightness,
and size, which impact performance and accuracy rather than learning valuable data [13].
High-performance optic recognition and classification to identify and separate the afflicted
retinal areas have been feasible with the advent of AI approaches such as machine learning
(ML) and deep learning (DL) [14].

The basis of the transfer learning strategy theory is that the approach was previously
trained on a sizable image database and could be adjusted to fit the necessary set of data [15].
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This technique has become popular over the past few years because of the availability of
large pre-trained models and the lack of labeled data for many real-world challenges [16].
The Quadratic Weighted Kappa was employed for analyzing the DR prediction in a study
by Chilukoti [17]. They used EfficientNet b3 pre-trained model for the classification. In a
paper published by Viji [18], different models like VGG, Xception, ResNet, Inception, and
EfficientNet were employed and achieved an accuracy of 99.36% with 0.986 recall.

In [19], from the input dataset, features were extracted using a CNN model, and
the classification was performed using a support vector machine model. Compared to
classifying using the CNN model, this strategy offered faster execution. Medical imaging
is crucial at all fundamental health difficulty levels and various medical diseases. DR
grading from fundus photos has been the subject of much research using a variety of
transfer learning approaches using publicly available datasets. Rahhal et al., [20] employed
Inception [21], VGG16 [22], DenseNet [23], MobileNet [24], and ResNet models [25], and
VGG16 led to a 100% accuracy rate. The learnable parameters are reduced when multiple
layers are stacked without using spatial pooling for CNN models, which are simpler to
train [26]. Kothare and Malpe [27] constructed a support vector machine and Naive Bayes
model with a binary pattern approach. The algorithm was applied to choose pertinent
features. As opposed to this, the models were used to categorize patients as having the
condition. Concerning accuracy, execution time, and memory use, the support vector
machine performs better than the naive Bayes.

Hussain et al. [28] sought to build an accessible predictor and classifier for hard
exudates using artificial neural networks (ANN). Feature extraction and detection were
performed using the Speed Up Robust Features technique. For classification, however,
Feed-Forward Backpropagation ANN was employed. The work’s major flaw is that it only
used a dataset containing 48 photos. Ahmad et al., compare multiple designs, including
Inception-ResNetV2, ResNet50, NASNet, InceptionV3, VGG16, DenseNet121, Xception,
and VGG19 in the article [29]. The models carried out classification and localization tasks,
which were trained on a proprietary dataset and tested on the Messidor-2 dataset. The CNN
and Contrast Limiting Adaptive Histogram Equalization (CLAHE) approaches increased
the area under the curve and the fundus images’ quality (23). The CLAHE technique has
been introduced, amplifying the retinal vessels to enhance the preprocessing stage.

Various ML classifiers have been merged to enhance DR detection and reduce the
error rate [30]. Accurate diagnosis and DR measurement can be performed using fundus
images. An ophthalmologist must have much training and dedication to analyze DR using
fundus images manually. DR was effectively categorized using deep learning techniques
like CNN and transfer learning using models like ResNet, VGG, and GoogleNet [20,31,32].
In a previous article by Fayyaz [33], the authors employed a variety of SVM kernels with
Ant Colony System (ACS) feature selection method. It evaluates a technique for detecting
DR using 250, 550, and 750 features. The cubic SVM classifier significantly outperformed
all other kernels, with an accuracy of 92.6%, 91.8%, and 93%, respectively, for 250, 550,
and 750 attributes. With the APTOS-2019 dataset, a different study by Nahiduzzaman [34]
utilized an extreme learning machine (ELM) model and reached an accuracy of 97.27%.

A CNN architecture employed for image segmentation tasks is called U-Net. In the
work by Jena [35], segmentation was performed utilizing an asymmetric deep learning
architecture for DR screening using U-Net networks. CLAHE is used to analyze and
improve the green channel images. For APTOS and MESSIDOR, the non-DR detection
accuracy was 98.6% and 91.9%, while the PrDR detection accuracy was 96.8% and 95.76%.

Data augmentation is the most popular method for addressing imbalance issues with
image categorization [36]. It is a collection of strategies for producing more data pieces from
existing data to enhance the quantity of data artificially. The images can be improved in
various ways, including cropping the image, inverting it horizontally or vertically, resizing
it, and rotating it [37]. In a paper by Mungloo-Dilmohamud [38], using a data augmentation
strategy enhances the standard of transfer learning in classifying DR images. Table 1 shows
the summary table of the related works in DR.
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Table 1. Summary of the related works in DR.

Reference Datasets Models Metrics Results

[39] Kaggle data CNN with grid search Accuracy 89%

[34] EyePACS, APTOS Extreme learning
machine Accuracy 91.78% (EyePACS),

97.27% (APTOS)

[40] APTOS19, DIARETDB1 Ensemble model-
DenseNet101, ResNext Accuracy 96.98% (binary),

86.08% (multi)

[15] IDRiD VGG16, InceptionV3 Accuracy 77.6% with VGG16

[35] APTOS, MESSIDOR CNN and SVM Accuracy 97.25% (APTOS),
94.8% (MESSIDOR)

[41] ODIR, IDRiD Vision transformer Accuracy 82.35%

[33] APTOS AlexNet, ResNet-101
with ACS Accuracy 93%

[17] EyePACS Efficientnet-b3 Quadratic
Weighted Kappa 0.87

[42] EyePACS, APTOS Source-Free Transfer
Learning Accuracy 91.2%

[43] EyePACS (training),
APTOS (testing)

ResNet, EfficientNet, and
Swin Transformer Accuracy 76.35%

[20] DDR

DenseNet 121,
InceptionV3, ResNet153,
VGG16, MobileNet, and

InceptionResNet

Accuracy 100%

[44] Kaggle multi-class feature
extraction deep forest Accuracy 74%

[45] Own dataset Inception-v4 with
ensemble method AUC 0.994

[46] IDRiD CNN Accuracy 68%

[31] DDR, EyePACS, and IDRiD VGG16 Accuracy
85.4% (DDR),

77.9% (EyePACS),
and 89.8% (IDRiD)

[47] Messidor-2, EyePACS,
and DIARETDB0

CNN + SVD +
Inception-V3,

GoogLeNet, AlexNet,
ResNet

Accuracy
94.59% (Messidor-2),

97.92% (EyePACS), and
93.52% (DIARETDB0)

[48] Messidor-2, EyePACS,
and DIARETDB0 U-net + VGGNet Accuracy

93.95% (Messidor-2),
96.6% (EyePACS), and
92.25% (DIARETDB0)

[49] Kaggle CNN Accuracy 83.5%

[50] Own dataset DenseNet-121 + CNN Accuracy 84.47%

[51] IDRiD VGG16 Accuracy 93.1%

[52] APTOS

ResNet, Inception V3,
InceptionResNet-V2,

DenseNet-169, Xception,
EfficientNet-B4

quadratic weighted
kappa 0.824

[53] APTOS
AlexNet, Res-Net18,

SqueezeNet, GoogleNet,
VGG16, and VGG19

Accuracy 97.9%

[54] EyePACS Inception-V3 Accuracy 90.9%
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3. Materials and Methods

Even though ML first appeared in the healthcare industry several years ago, plenty of
openings must be filled, and advancements should be considered. Most medical datasets
about DR have a few problems. Many datasets only have a few images, which is not enough
for the learning process to work effectively. Additionally, many datasets lack labels, forcing
ophthalmologists to analyze and categorize the images according to their medical knowledge.
Most of the studies have investigated the DR classification on a specific dataset. In this study,
three different publicly accessible datasets are employed for the DR classification task, and
an integrated dataset is generated by combining the three. The methodology of the study is
explained in Figure 1. The study follows a binary classification task.
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3.1. Datasets

Three datasets from India, the United States, and China are used in this study, namely
Asia Pacific Tele-Ophthalmology Society (APTOS) [55], Eye Picture Archive Communi-
cation System (EyePACS) [56], and Ocular Disease Intelligent Recognition (ODIR) [57]
datasets, respectively. For the APTOS and EyePACS datasets, only the normal and PrDr
retinal databases are employed in this study. The PrDR is labeled class 1, and the normal
retina class 0.

The APTOS DR severity scale is a reliable and valid tool for grading the severity of DR.
It has been extensively applied in Asia-Pacific clinical practice and research. It has also been
utilized in creating and assessing computer-aided diagnostic tools for DR that employ retinal
pictures to identify and categorize the condition’s severity automatically. The dataset contains
5990 retinal images, of which 3662 are in the training set and 1928 are in the testing stage. The
test phase data has no specific labels provided; hence, the 3662-training data are downloaded
for this study. There are 1805 class 0 images and 295 class 1 images within it. The statistics
indicate that it is approximately six times as many images in class 0 as in class 1.

A Chinese dataset called ODIR was compiled by Shanggong Medical Technology Co.,
Ltd., Shanghai, China, from data on 5000 patients at various hospitals. Eight labels comprise
this dataset, one normal and the other seven representing various retinal illnesses, including
pathological myopia, hypertension, glaucoma, cataract, age-related macular degeneration,
DR, and other abnormalities. There are 14,400 images in this dataset. DR is only considered
for this study, which consists of 2873 normal retinal images and 1608 with DR.

A free retinopathy screening platform with headquarters in the United States offers
the EyePACS dataset. EyePACS has been extensively utilized in numerous DR screening
programs, making it possible to test sizable populations efficiently and affordably. There
are 35,126 images total for both eyes, divided into five classes, where 73.4% of the images
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in this dataset are healthy and free of DR symptoms, which is a significant imbalance
issue [58]. The work is based on a randomly selected portion of the images. The class
distribution of this dataset is 2010 images for class 0 and 708 images for class 1.

3.2. Data Augmentation

If a binary classification project is used, the dataset is deemed unbalanced if the first
class’s data set is disproportionately more minor than the second [59,60]. The minority
class is the one with the least information. In comparison, most of the class is referred to as
having a lot of information. The performance of the prediction process is greatly hampered
by this disproportion distribution, particularly for the minority class, where it reduces the
model’s capacity for learning and causes it to be biased. Furthermore, if the minor class
makes up less than 5% of the data, there is a severe problem. The accuracy in this situation
will be at least 95%, even if the model incorrectly detects the minor class data. In some
applications, this circumstance can be acceptable. However, this problem can undermine
the model’s validity in real-world applications.

Data augmentation methods come in various forms [38]. Nevertheless, geometric
transformation is the most well-liked strategy [38,61]. It has therefore been applied to the
chosen datasets in this study to tackle the class imbalance challenge. Different transfor-
mations have been employed, such as height shift, width shift, horizontal flip, vertical
flip, and rotation. Table 2 shows the distribution of data before and after applying data
augmentation. The data are combined to make a new dataset. The total count for the
integrated data is 6688 for class 0 and 7110 for class 1.

Table 2. The data distribution in each class for the three datasets before and after applying data
augmentation.

Dataset
Class 0 Class 1

Actual Data Augmented Actual Data Augmented

APTOS 1805 1805 295 1770
EyePACS 2010 2010 708 2124

ODIR 2873 2873 1608 3216

The train-test-split method is chosen with a ratio of 70:30 for model selection. The
training set is employed to fit the model or discover the underlying patterns in the data. The
testing set examines the model’s performance, specifically how effectively it generalizes to
novel, untested data. The total number of training images is 1263, 1407, and 2011 for class 0
and 1242, 1488, and 2250 for class 1 concerning APTOS, EyePACS, and ODIR, respectively.
Similarly, 542, 603, and 862 for class 0 and 528, 636, and 966 for class 1 are the count for the
test set from APTOS, EyePACS, and ODIR, respectively.

3.3. Transfer Learning Models

Transfer learning is frequently employed when training neural networks to produce
the best results [42,62]. It can be explained as training a model from start to finish on a
dataset with the right amount of data from a related field, then using the target dataset’s
insufficient data to fine-tune it. Instead of beginning from scratch, this approach initializes
the model with a strong foundation [63,64].

One of CNN’s main flaws is the requirement for a sizable number of training samples.
Its depth and number of parameters decide the data volume needed for a network; the
more layers and parameters a network has, the more data it needs [65,66]. Otherwise, there
would be a performance-decreasing overfitting issue. However, a significant obstacle in
creating DL models for the medical industry is data scarcity. Consequently, it would be
advantageous to apply the transfer learning principle to medical projects [12,67].

The second iteration of Google’s MobileNet network is known as MobileNetV2. The
main goal in creating this network is to keep costs and complexity low, making it easy to
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use for detection and classification on mobile devices or other devices with constrained
resources like memory and energy. Low energy consumption models can benefit medical
devices and resource-constrained developing nations. It demonstrates potency in extracting
features, segmentation, and object detection [68].

The Visual Geometry Group (VGG) at Oxford University created the model known as
VGG16 in 2014. The primary framework VGGNet has given rise to several modifications,
including VGG1, VGG13, VGG16, and VGG19. Among those models, the last two versions,
VGG16 and VGG19, are considered more common. Medical applications frequently employ
the VGG16 architecture to recognize and categorize diverse clinical images [31]. The
model’s learnable parameter layers are represented by the model’s weighted layers, which
total 16. Despite having a modest kernel size, it has a very long processing time [19].

Google created InceptionV3 in 2015 as a third iteration of the InceptionV1 network,
also known as GoogLeNet, based on the CNN model [69]. The goal of this version is to use
less computational power than earlier versions. It has been demonstrated that Inception
models are more efficient than VGG regarding memory usage, calculations, and several
noticeably reduced parameters [62].

Strong gradient flow, efficient computing, smooth error signal propagation, and re-
duced feature complexity are benefits of the DenseNet121 model. The vanishing gradient
problem is the primary goal of this network’s construction for the first time [19]. As the
number of layers rises, this issue arises. The more information is lost or deleted, the deeper
the network is. DenseNet121 resolves this issue by interconnecting the network’s layers [52].
The overview of the transfer learning model is depicted in Figure 2.
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3.4. Evaluation Metrics

Each data instance—in this case, an image—has four potential outcomes that are
categorized, which are true positive (TrPos), true negative (TrNeg), false positive (FaPos),
and false negative (FaNeg). A TrPos indicates that the model accurately predicted an
optimistic class and a TrNeg suggests that the model accurately predicted a negative class.
A FaPos denotes that the model produced an overly optimistic class forecast. Like the
FaPos, a FaNeg implies that the model, in error, made a negative class prediction [70].

TrPos and TrNeg are the perfect examples in the medical industry since they involve a
patient classification for the ill person and a patient classification for the healthy person.
The FaNeg example, however, is the most severe instance where a sick person may be
mistakenly labeled as healthy rather than unwell. This misclassification in some disorders
can be fatal. In the DR, misdiagnosis can result in significant disease progressions that
could eventually result in blindness.

The most widely used statistic for assessing a model’s effectiveness at making predic-
tions is its accuracy score (Equation (1)). A loss metric measures the model performance,
the sum of mistakes on each occurrence in a training or testing dataset. The precision
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metric concerns how many positive cases are labeled as positive or how many patients
with DR are indeed DR predictions. This score reflects how accurately the model identified
the disease from the data. Precision (Equation (2)) is typically utilized when it is necessary
to ensure that good forecasts come true.

Accuracy = (TrPos + TrNeg)/(TrPos + TrNeg + FaPos + FaNeg), (1)

Precision = TrPos/(TrPos + FaPos), (2)

On the other hand, the specificity (Equation (3)) meter, or TrNeg rate, displays the
number of negative classes accurately identified as such, or in our case, the number of
healthy people correctly identified as such. A false alarm with a moderate cost would be
to label a healthy person as ill. However, if the condition is serious, telling the person
about it could set off a panic attack that could be harmful depending on his physical and
mental health. Therefore, in some circumstances, having certainty about the diagnosis is
advantageous before making it public, which is what the specificity metric offers.

Specificity = (TrNeg)/(TrNeg + FaPos), (3)

Among all the real positive cases, recall (also known as sensitivity or TrPos rate)
(Equation (4)) determines the positive points that were correctly anticipated. The recall
measure is significant and necessary in medical applications where the cost of the incorrect
prediction, particularly the false negative instance, is quite expensive, especially when the
disease has considerable side effects or is contagious and rapidly spreading.

Recall or Sensitivity = TrPos/(TrPos + FaNeg), (4)

4. Results

The python libraries such as TensorFlow [71] and Scikit-learn [72] are used to imple-
ment the models in this study. NVidia Titan V GPU is used for DL purposes. VGG16,
MobileNetV2, InceptionV3, and DenseNet121 are the four CNN models employed in this
work with transfer learning. With a batch size of 32, the total epochs were fixed to 30. In
medical image classification, recall measurement is usually regarded as a better perfor-
mance indicator than accuracy, precision, or specificity because it more accurately depicts
the clinical value of classification outcomes [73].

The top, dense, fully connected layers are removed in charge of classifying data to
build the final classification layer according to the proposed method. Sigmoid activation
is used for binary classification. To solve the overfitting problem, the EarlyStopping
and ReduceLRonPlateau methods are utilized in this study as regularisation approaches.
Depending on the supplied settings, the model will terminate training once it obtains the
best outcome before it starts to overfit. EarlyStopping parameter examines the validation
loss, and if it is stable or increasing for five epochs, then the model stops iterating and saves
the best model. Similarly, if the loss value stays the same for two successive epochs, the
ReduceLRonPlateau method modifies the learning rate by a factor of 0.1. Table 3 depicts
the parameters employed in the study.

Table 3. Parameters utilized in this study.

Parameters Value

Batch size 32
Epochs 30

learning rate 0.001
Optimizer Adam
Activation Sigmoid

Loss binary_crossentropy
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Table 4 displays the APTOS’s performance with four models. The table shows that
the MobileNetV2 and DenseNet121 models have identical recall, precision, and accuracy
scores of 0.9850, indicating that they perform equally well on this task. The InceptionV3
model also has a better recall value of 0.9830 but a precision of 0.9683, suggesting a higher
true positive rate. The VGG16 model has a much lower recall score of 0.3902 but a high
precision score of 0.9952, indicating that it misses more true positive cases. The specificity
value of all models is also high, meaning the model correctly identifies negative cases
and has fewer false positives. Overall, the APTOS model performs very well, with all
models achieving high accuracy scores of at least 0.6981. However, the DenseNet121 and
MobileNetV2 models perform best on this task.

Table 4. APTOS model evaluation metrics results.

Model Recall Precision Specificity Accuracy Train Loss Valid Loss

MobileNetV2 0.9850 0.9850 0.9850 0.9850 0.0735 0.0949
DenseNet121 0.9850 0.9850 0.9850 0.9850 0.1927 0.1169
InceptionV3 0.9830 0.9683 0.9686 0.9757 0.0941 1.0060

VGG16 0.3902 0.9952 0.9982 0.6981 0.1231 1.6910

The following dataset, EyePACS, underwent the same process, and the results are
illustrated in Table 5. The DenseNet121 model produced the best results with a minor loss
and the highest accuracy. During 30 epochs with 64 batch sizes, DenseNet121 achieved
scores of 0.1412 in training loss, 0.2933 in validation loss, and 0.8910 in accuracy, recall,
precision, and specificity. The MobileNetV2 and InceptionV3 models also have relatively
high recall, precision, and accuracy scores, with recall and precision scores of over 0.87 and
accuracy scores of above 0.8773. The VGG16 model, on the other hand, has a lower recall
score of 0.7154 but a high precision score of 0.9420, indicating that it accurately identifies
true positive cases but misses many cases. The accuracy score for the VGG16 model is
0.8313, which is lower than the other models evaluated. The specificity value of all models
is also high, meaning the model correctly identifies negative cases and has fewer false
positives. Overall, the EyePACS model performs well, with all models achieving high
accuracy scores of at least 0.8313. However, the DenseNet121 model is the best performer
on this task.

Table 5. EyePACS model evaluation metrics results.

Model Recall Precision Specificity Accuracy Train Loss Valid Loss

MobileNetV2 0.8781 0.8781 0.8781 0.8781 1.6679 2.1374
DenseNet121 0.8910 0.8910 0.8910 0.8910 0.1412 0.2933
InceptionV3 0.8821 0.8793 0.8723 0.8773 0.2352 0.3494

VGG16 0.7154 0.9420 0.9536 0.8313 0.2617 0.5014

Looking at Table 6, the DenseNet121 model has the highest recall, precision, and
accuracy scores, all of which are 0.7582. The MobileNetV2 model also has relatively high
recall, precision, and accuracy scores, with 0.75. The VGG16 model has a recall score
of 0.7743, which is higher than the other models, but a lower precision score of 0.7151,
indicating that it identifies false positive cases. The accuracy score for the VGG16 model
is 0.7177, the lowest among the models evaluated. The InceptionV3 model has the lowest
recall score of 0.6739, indicating that it misses more true positive cases. The specificity
values are reasonably high, with a score above 0.65 for all models. Overall, the ODIR model
performs reasonably well, with all models achieving accuracy scores of at least 0.6723.
However, the DenseNet121 and MobileNetV2 models perform best on this task.



Appl. Sci. 2023, 13, 5685 10 of 17

Table 6. ODIR model evaluation metrics results.

Model Recall Precision Specificity Accuracy Train Loss Valid Loss

MobileNetV2 0.7500 0.7500 0.7500 0.7500 0.5072 0.5938
DenseNet121 0.7582 0.7582 0.7582 0.7582 0.4888 0.5601
InceptionV3 0.6739 0.6963 0.6705 0.6723 0.5453 0.6193

VGG16 0.7743 0.7151 0.6543 0.7177 0.5843 0.5480

Table 7 shows the evaluation metrics results for the model trained on a combined dataset,
which includes data from the APTOS, ODIR, and EyePACS datasets. The DenseNet121 and
VGG16 models have the highest recall, precision, and accuracy scores, all of which are 0.9897
and 0.9879, respectively. The MobileNetV2 model also has high recall, precision, and accuracy
scores, with 0.9851. The InceptionV3 model has lower recall and precision scores than the
other models, with scores of 0.9715 and 0.9727, respectively. However, its accuracy score of
0.9721 is still high. The specificity value of all models is also high, meaning the model correctly
identifies negative cases and has fewer false positives. Overall, the model trained on the
combined dataset performs very well, with all models achieving high accuracy scores of at
least 0.9721.

Table 7. The model evaluation metrics results for the combined dataset.

Model Recall Precision Specificity Accuracy Train Loss Valid Loss

MobileNetV2 0.9851 0.9851 0.9926 0.9851 0.0109 0.0518
DenseNet121 0.9897 0.9897 0.9948 0.9897 0.0051 0.0368
InceptionV3 0.9715 0.9727 0.9864 0.9721 0.0523 0.0989

VGG16 0.9879 0.9879 0.9939 0.9879 0.0490 0.0465

5. Discussions

The data type plays a crucial role and significantly influences the outcomes. In this
study, different datasets are combined regardless of the patient’s origin and are trained
on four different pre-trained models, namely VGG16, InceptionV3, MobilenetV2, and
DenseNet121. The system had undergone proof-of-concept development on a relatively
limited scale. It may be expanded (as a future enhancement) to incorporate more datasets
and models from many new ethnic groups and nations.

Many researchers have used pretrained transfer learning models to predict and clas-
sify DR retinal images. Almost all works are trained on a single dataset. The VGG16,
Densenet121, InceptionV3, and MobileNetV2 models are recognized for effective use as a
CNN model for DR classification. Rahhal et al. [20] show an accuracy of 100% in classifying
DR with the VGG16 model. With five classes in DR, Rocha et al. [31] attained an accuracy of
89.8% and 90.2% for six categories. Bilal et al. [47] trained InceptionV3 with three different
datasets and achieved an accuracy of 97.92% with EyePACS, 94.59% in Messidor-2, and
93.52% with the DIARETDB0 dataset. Hagos and Kant [54] showed an accuracy of 90.9%
with a binary classification of DR with the InceptionV3 model. Bagadi et al. [74] achieved
an accuracy of 95% with the DenseNet121 model for the APTOS dataset in classifying the
DR images. Sarki et al. investigated the subject of grading DR [75] using MobileNetV1 and
MobileNetV2 as well as other transfer learning techniques. Using MobileNetV2, they could
classify with 78.1% accuracy, and using MobileNetV1, only 58.3% accuracy. Sheikh S.O. [76]
generated a model with the MobileNetV2 employing a dataset combined by EyePACS,
APTOS, and Messidor2 and achieved an accuracy of 91.68%.

Figure 3 depicts the training and validation loss of this study. The APTOS model
performs very well, with the DenseNet121 and MobileNetV2 models, with an accuracy
of 98.5% and recall of 0.985. There is no massive difference in the loss value of these two
models. For the EyePACS dataset, all the models perform better regarding loss value. The
evaluation metrics show the DenseNet121 model with an accuracy and recall of 0.891.
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Similar is the loss value results for the ODIR dataset. However, VGG16 offers a recall value
of 0.7743 and the DenseNet121 with an accuracy of 75.82%.
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The combined dataset has all models with better training and validation loss. The
DenseNet121 model has the highest recall, precision, and accuracy scores, all of which are
0.9897, which is high compared to Sheikh S.O. [76].

The paired t-test compares each model’s performance on the combined dataset with
their performance on three independent datasets. The alpha or the significant value is set
to 0.05. There is a statistically significant difference between the evaluation metrics of the
two datasets if the assessed p-value is less than 0.05. Hence, the null hypothesis is rejected.
The significance is described in Table 8. The combined dataset’s performance is compared
with three individual datasets (APTOS, EyePACS, and ODIR) using four evaluation metrics
(recall, precision, specificity, and accuracy) for DR classification tasks.

Table 8. The p-value of the combined dataset with an individual dataset based on a paired t-test. The
significant value (alpha value) is set to 0.05.

Dataset Recall Precision Specificity Accuracy

APTOS-Combined 0.397 0.876 0.189 0.389
EyePACS-Combined 0.048 0.008 0.014 0.004

ODIR-combined 0.001 0.000 0.002 0.001

The results show no significant difference in performance for any matrices between
the combined and APTOS datasets. However, there is a significant difference between the
combined dataset and the EyePACS or ODIR datasets. Overall, these results suggest that
the combined dataset performs differently than the EyePACS and ODIR datasets but is like
the APTOS dataset. The study also concludes that combining multiple datasets improves
performance compared to individual datasets alone.

Plotting the ROC (Receiver Operating Characteristic) Curve is a reliable method of
assessing the classification accuracy of a classifier. By charting the True Positive Rate (TPR)
and the False Positive Rate (FPR), we can see how the classifier behaves for each threshold.
The better the model does in categorizing the data, the closer the ROC curve touches the
upper left corner of the figure. To determine how much of the plot lies beneath the curve,
we may compute the AUC (area under the curve). The model is better the closer AUC
gets to 1 [77]. The AUC score and the ROC curve of the combined dataset evaluated on
four models are illustrated in Figure 4. The black diagonal dashed line represent the 50%
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area. From the plot, the combined model shows a better classification of DR and normal
retinal images with the DenseNet121 model with an AUC score of 0.9947. The AUC score
of MobileNetV2 is 0.9897, VGG16 is 0.9608, and InceptionV3 is 0.9781.
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The AUC score of the other three datasets is depicted in Figure 5, the diagonal black
dashed line represents the 50% area. The ODIR shows the least performance, and the AP-
TOS has a similar performance to that of the combined (also concluded from the statistical
analysis in Table 8). When using DenseNet121, the APTOS has a higher AUC score of
0.9902, and EyePACS has a higher AUC score of 0.9320. With the MobileNetV2 model,
ODIR has a score of 0.7278 for AUC.
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The comparison with previous works is depicted in Table 9. The transfer learning
methods used in this study achieved better performance when compared to related works
with binary and multi-classification.

Table 9. Comparison with other works related to deep learning models in terms of accuracy.

Reference Dataset Model Label Count Result

[39] Kaggle Grid search CNN 5 89%
[41] ODIR, IDRiD Vision transformer 6 82.35%
[40] DIARETDB1 ResNext + DenseNet 2 96.98%
[33] APTOS AlexNet, ResNet-101 with ACS 2 93%
[15] IDRiD VGG16 5 77.6%
[17] EyePACS Efficientnet-b3 5 92%
[42] Train EyePACS, Test APTOS Source-Free Transfer Learning 5 91.2%
[9] APTOS CNN 2 95.3%
[20] DDR VGG16 5 100%
[78] APTOS Few-Shot Learning 2 99.73%
[79] EyePACS VGGNet 5 96.6%

[31] DDR, EyePACS, and IDRiD VGG16 5 85.4% (DDR)
77.9% (EyePACS) 89.8% (IDRiD)

[47] Messidor-2, EyePACS,
DIARETDB0 CNN + SVD + Inception-V3 5 94.59% (Messidor-2) 97.92% (EyePACS)

93.52% (DIARETDB0)
[50] Own dataset DenseNet-121 + CNN 2 84.47%
[80] EyePACS VGG16 2 75.7%
[81] Own dataset VGG16 3 87.28%

[76] APTOS + EyePACS +
Messidor MobileNetV2 5 91.68%

[82] EyePACS VGGNet-s 5 95.68%
Our study EyePACS + APTOS + ODIR DenseNet121 2 98.97%

Evaluating models on multiple datasets can provide insight into how well they gen-
eralize to new and diverse data. Each dataset may have biases that might influence the
overall findings. Consequently, merging the datasets that were publicly available from
people of varying ethnicities is a potential solution to the issue of producing biased results.
This information may be used to decide which model is appropriate for a particular task or
to pinpoint areas that want development.

6. Conclusions

This study investigated the performance of four distinct transfer learning models with
each of the four separate data sets. Using the datasets (APTOS, EyePACS, ODIR, and the
combined) with preprocessing and data augmentation approaches, we got encouraging
findings on our DR classification model in this study. Pretrained models for classifying DR
classes include VGG16, InceptionV3, DenseNet121, and MobileNetV2. The APTOS data
has the highest accuracy and recall (98.50%) with MobileNetV2 and DenseNet121 models.
The test results of EyePACS showed that DenseNet121 has the highest accuracy and recall
of 89.10%, while ODIR shows 75.82% accuracy with DenseNet121 and 0.7743 recall value
with VGG16. In the combined dataset the DenseNet121 model outperforms other models
with high accuracy, recall, specificity, and precision (98.97%). The statistical results suggest
that the combined dataset performs differently than the EyePACS and ODIR datasets
(p-value less than 0.05) but is like the APTOS dataset (p-value greater than 0.05). Using
pre-trained models and transfer learning can increase the effectiveness and accuracy of DL
models while requiring less training data and resources. It can be particularly beneficial in
applications such as medical diagnosis. The established approach can be widely adopted
to accommodate additional screenings for diabetic patients performed by clinics to identify
DR and refer them to an ophthalmologist to begin the right course of treatment before it
progresses into blindness.

Even though the transfer learning strategy described in this work for the categorization
of DR has shown some encouraging findings, there are limitations to the work that needs
to be taken into consideration. The study used only a small dataset size and evaluated
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balanced data. Also, it is not clinically validated. The study may be expanded (as a future
enhancement) to incorporate more datasets and models from many new ethnic groups and
nations. Also, the model can be deployed into a mobile application as a future enhancement
to test with actual patient data.
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