Synergistic Interactions between Linalool and Some Antimycotic Agents against Candida spp. as a Basis for Developing New Antifungal Preparations
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.1.1. The Studied Compounds
2.1.2. Microbial Species
2.2. Methods
2.2.1. In Vitro Antifungal Activity Assay of LIN
2.2.2. Mode of Antifungal Action of LIN
Sorbitol Assay
Ergosterol Assay
2.2.3. Determination of LIN Interaction in Combination with Selected Antifungal Agents
2.2.4. Data Analysis
3. Results
3.1. The Antifungal Activity Assessment of LIN
3.2. Mechanism of Antifungal Action of LIN
3.3. Evaluation of Interaction of LIN with Selected Antifungal Agents
4. Discussion
4.1. The Antifungal Activity of LIN
4.2. Mode of Antifungal Action of LIN
4.3. Investigation of Interaction of LIN with Selected Antifungal Agents
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hsu, C.C.; Lai, W.L.; Chuang, K.C.; Lee, M.H.; Tsai, Y.C. The inhibitory activity of linalool against the filamentous growth and biofilm formation in Candida albicans. Med. Mycol. 2013, 51, 473–482. [Google Scholar] [CrossRef]
- Motamedi, M.; Saharkhiz, M.J.; Pakshir, K.; Amini Akbarabadi, S.; Alikhani Khordshami, M.; Asadian, F.; Zareshahrabadi, Z.; Zomorodian, K. Chemical compositions and antifungal activities of Satureja macrosiphon against Candida and Aspergillus species. Curr. Med. Mycol. 2019, 5, 20–25. [Google Scholar] [CrossRef]
- Sun, L.; Wan, Z.; Li, R.; Yu, J. In vitro activities of nine antifungal agents against rare pathogenic fungi. J. Med. Microbiol. 2019, 68, 1664–1670. [Google Scholar] [CrossRef] [PubMed]
- Biernasiuk, A.; Baj, T.; Malm, A. Clove essential oil and its main constituent, eugenol, as potential natural antifungals against Candida spp. alone or in combination with other antimycotics due to synergistic interactions. Molecules 2022, 28, 215. [Google Scholar] [CrossRef] [PubMed]
- Gucwa, K.; Milewski, S.; Dymerski, T.; Szweda, P. Investigation of the antifungal activity and mode of action of Thymus vulgaris, Citrus limonum, Pelargonium graveolens, Cinnamomum cassia, Ocimum basilicum, and Eugenia caryophyllus essential oils. Molecules 2018, 23, 1116. [Google Scholar] [CrossRef] [PubMed]
- Turecka, K.; Chylewska, A.; Kawiak, A.; Waleron, K.F. Antifungal activity and mechanism of action of the Co(III) coordination complexes with diamine chelate ligands against reference and clinical strains of Candida spp. Front. Microbiol. 2018, 9, 1954. [Google Scholar] [CrossRef]
- Kunduhoglu, B. Anti-yeast activity of cinnamaldehyde, eugenol and linalool. World J. Res. Rev. 2017, 5, 32–34. [Google Scholar]
- Mandras, N.; Roana, J.; Scalas, D.; Del Re, S.; Cavallo, L.; Ghisetti, V.; Tullio, V. The inhibition of non-albicans Candida species and uncommon yeast pathogens by selected essential oils and their major compounds. Molecules 2021, 26, 4937. [Google Scholar] [CrossRef]
- Pandurang, M.S.; Devrao, H.S.; Ganpatrao, B.R.; Mohan, K.S. Lemongrass oil components synergistically activates fluconazole against biofilm forms of Candida albicans. J. Bacteriol. Mycol. 2018, 5, 1069. [Google Scholar]
- Fernandes, L.; Ribeiro, R.; Costa, R.; Henriques, M.; Rodrigues, M.E. Essential oils as a good weapon against drug-resistant Candida auris. Antibiotics 2022, 11, 977. [Google Scholar] [CrossRef]
- Tran, H.N.H.; Graham, L.; Adukwu, E.C. In vitro antifungal activity of Cinnamomum zeylanicum bark and leaf essential oils against Candida albicans and Candida auris. Appl. Microbiol. Biotechnol. 2020, 104, 8911–8924. [Google Scholar] [CrossRef] [PubMed]
- Khan, A.; Moni, S.S.; Ali, M.; Mohan, S.; Jan, H.; Rasool, S.; Kamal, M.A.; Alshahrani, S.; Halawi, M.; Alhazmi, H.A. Antifungal activity of plant secondary metabolites on Candida albicans: An updated review. Curr. Mol. Pharmacol. 2023, 16, 15–42. [Google Scholar] [CrossRef] [PubMed]
- Zida, A.; Bamba, S.; Yacouba, A.; Ouedraogo-Traore, R.; Guiguemdé, R.T. Anti-Candida albicans natural products, sources of new antifungal drugs: A review. J. Mycol. Med. 2017, 27, 1–19. [Google Scholar] [CrossRef]
- Lu, M.; Li, T.; Wan, J.; Li, X.; Yuan, L.; Sun, S. Antifungal effects of phytocompounds on Candida species alone and in combination with fluconazole. Int. J. Antimicrob. Agents 2017, 49, 125–136. [Google Scholar] [CrossRef]
- Khan, A.; Azam, M.; Allemailem, K.S.; Alrumaihi, F.; Almatroudi, A.; Alhumaydhi, F.A.; Ahmad, H.I.; Khan, M.U.; Khan, M.A. Coadministration of ginger extract and fluconazole shows a synergistic effect in the treatment of drug-resistant vulvovaginal candidiasis. Infect. Drug Resist. 2021, 14, 1585–1599. [Google Scholar] [CrossRef]
- Cardoso, N.N.; Alviano, C.S.; Blank, A.F.; Romanos, M.T.; Fonseca, B.B.; Rozental, S.; Rodrigues, I.A.; Alviano, D.S. Synergism effect of the essential oil from Ocimum basilicum var. Maria Bonita and its major components with fluconazole and its influence on ergosterol biosynthesis. Evid. Based. Complement. Alternat. Med. 2016, 2016, 5647182. [Google Scholar] [CrossRef]
- Lapinska, B.; Szram, A.; Zarzycka, B.; Grzegorczyk, J.; Hardan, L.; Sokolowski, J.; Lukomska-Szymanska, M. An in vitro study on the antimicrobial properties of essential oil modified resin composite against oral pathogens. Materials 2020, 13, 4383. [Google Scholar] [CrossRef]
- Sharifzadeh, A.; Shokri, H. Antifungal activity of essential oils from Iranian plants against fluconazole-resistant and fluconazole-susceptible Candida albicans. Avicenna J. Phytomed. 2016, 6, 215–222. [Google Scholar] [CrossRef]
- Kamatou, G.P.P.; Viljoen, A.M. Linalool—A review of a biologically active compound of commercial importance. Nat. Prod. Commun. 2008, 3, 1183–1192. [Google Scholar] [CrossRef]
- Jabir, M.S.; Taha, A.A.; Sahib, S.I. Antioxidant activity of linalool. Eng. Technol. J. 2018, 36, 64–67. [Google Scholar] [CrossRef]
- Guo, F.; Chen, Q.; Liang, Q.; Zhang, M.; Chen, W.; Chen, H.; Yun, Y.; Zhong, Q.; Chen, W. Antimicrobial activity and proposed action mechanism of linalool against Pseudomonas fluorescens. Front. Microbiol. 2021, 12, 562094. [Google Scholar] [CrossRef]
- Shariati, A.; Didehdar, M.; Razavi, S.; Heidary, M.; Soroush, F.; Chegini, Z. Natural compounds: A hopeful promise as an antibiofilm agent against Candida species. Front. Pharmacol. 2022, 13, 917787. [Google Scholar] [CrossRef] [PubMed]
- Wróblewska, A.; Fajdek-Bieda, A.; Markowska-Szczupak, A.; Radkowska, M. Preliminary microbiological tests of s-carvone and geraniol and selected derivatives of these compounds that may be formed in the processes of isomerization and oxidation. Molecules 2022, 27, 7012. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Wang, Q.; Li, H.; Wang, X.; Zhang, R.; Yang, X.; Jiang, Q.; Shi, Q. Revealing the mechanisms for linalool antifungal activity against Fusarium oxysporum and its efficient control of Fusarium Wilt in tomato plants. Int. J. Mol. Sci. 2023, 24, 458. [Google Scholar] [CrossRef] [PubMed]
- Mughal, M.H. Linalool: A mechanistic treatise. J. Nutr. Food Res. Technol. 2019, 2, 1–5. [Google Scholar] [CrossRef]
- Medeiros, C.I.S.; Sousa, M.N.A.; Filho, G.G.A.; Freitas, F.O.R.; Uchoa, D.P.L.; Nobre, M.S.C.; Bezerra, A.L.D.; Rolim, L.A.D.M.M.; Morais, A.M.B.; Nogueira, T.B.S.S.; et al. Antifungal activity of linalool against fluconazole-resistant clinical strains of vulvovaginal Candida albicans and its predictive mechanism of action. Braz. J. Med. Biol. Res. 2022, 55, e11831. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez-López, M.I.; Mercader-Ros, M.T.; Lucas-Abellán, C.; Pellicer, J.A.; Pérez-Garrido, A.; Pérez-Sánchez, H.; Yáñez-Gascón, M.J.; Gabaldón, J.A.; Núñez-Delicado, E. Comprehensive characterization of linalool-HP-β-cyclodextrin inclusion complexes. Molecules 2020, 25, 5069. [Google Scholar] [CrossRef]
- Houshmandzad, M.; Sharifzadeh, A.; Khosravi, A.R.; Shokri, H. Potential antifungal impact of citral and linalool administered individually or combined with fluconazole against clinical isolates of Candida krusei. J. Herbmed. Pharmacol. 2022, 11, 269–277. [Google Scholar] [CrossRef]
- An, Q.; Ren, J.N.; Li, X.; Fan, G.; Qu, S.S.; Song, Y.; Li, Y.; Pan, S.Y. Recent updates on bioactive properties of linalool. Food Funct. 2021, 12, 10370–10389. [Google Scholar] [CrossRef]
- Mączka, W.; Duda-Madej, A.; Grabarczyk, M.; Wińska, K. Natural compounds in the battle against microorganisms—Linalool. Molecules 2022, 27, 6928. [Google Scholar] [CrossRef]
- Marcos-Arias, C.; Eraso, E.; Madariaga, L.; Quindós, G. In vitro activities of natural products against oral Candida isolates from denture wearers. BMC Complement. Altern. Med. 2011, 11, 119–126. [Google Scholar] [CrossRef] [PubMed]
- Blanco, A.R.; Nostro, A.; D’Angelo, V.; D’Arrigo, M.; Mazzone, M.G.; Marino, A. Efficacy of a fixed combination of tetracycline, chloramphenicol, and colistimethate sodium for treatment of Candida albicans keratitis. Investig. Ophthalmol. Vis. Sci. 2017, 58, 4292–4298. [Google Scholar] [CrossRef] [PubMed]
- Rajput, S.B.; Karuppayil, S.M. Small molecules inhibit growth, viability and ergosterol biosynthesis in Candida albicans. SpringerPlus 2013, 2, 26–32. [Google Scholar] [CrossRef] [PubMed]
- European Committee for Antimicrobial Susceptibility Testing (EUCAST). Determination of minimum inhibitory concentrations(MICs) of antibacterial agents by broth dilution. EUCAST discussion document. E. Dis 5.1. Clin. Microbiol. Infect. 2003, 9, 1–7. [Google Scholar]
- CLSI. Reference Method for Broth Dilution Antifungal Susceptibility Testing of Yeasts; M27-S4; Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2017. [Google Scholar]
- Wiegand, I.; Hilpert, K.; Hancock, R.E.W. Agar and broth dilution methods to determine the minimal inhibitory concentration (MIC) of antimicrobial substances. Nat. Protoc. 2008, 3, 163–175. [Google Scholar] [CrossRef]
- Schwarz, S.; Silley, P.; Simjee, S.; Woodford, N.; van Duijkeren, E.; Johnson, A.P.; Gaastra, W. Editorial: Assessing the antimicrobial susceptibility of bacteria obtained from animals. J. Antimicrob. Chemother. 2010, 65, 601–604. [Google Scholar] [CrossRef] [PubMed]
- Rajkowska, K.; Nowak, A.; Kunicka-Styczyńska, A.; Siadur, A. Biological effects of various chemically characterized essential oils: Investigation of the mode of action against Candida albicans and HeLa cells. RSC Adv. 2016, 6, 97199–97207. [Google Scholar] [CrossRef]
- de Oliveira Filho, A.A.; de Oliveira, H.M.B.F.; de Sousa, J.P.; Meireles, D.; de Azevedo Maia, G.L.; Filho, J.M.B.; Lima, E.O. In vitro anti-Candida activity and mechanism of action of the flavonoid isolated from Praxelis clematidea against Candida albicans species. J. App. Pharm. Sci. 2016, 6, 66–69. [Google Scholar] [CrossRef]
- Lima, I.O.; de Medeiros Nóbrega, F.; de Oliveira, W.A.; de Oliveira Lima, E.; Albuquerque Menezes, E.; Afrânio Cunha, F.; de Fátima Formiga Melo Diniz, M. Anti-Candida albicans effectiveness of citral and investigation of mode of action. Pharm. Biol. 2012, 50, 1536–1541. [Google Scholar] [CrossRef]
- Castro, R.D.; Lima, E.O. Anti-Candida activity and chemical composition of Cinnamomum zeylanicum blume essential oil. Braz. Arch. Biol. Technol. 2013, 56, 749–755. [Google Scholar] [CrossRef]
- Alfhili, M.A.; Lee, M.H. Triclosan: An update on biochemical and molecular mechanisms. Oxidative Med. Cell. Longev. 2019, 2, 1607304–1607332. [Google Scholar] [CrossRef]
- Martorano-Fernandes, L.; Lacerda, M.C.; Cavalcanti, Y.W.; de Almeida, L.d.F.D. Cinnamaldehyde and α-terpineol inhibit the growth of planktonic cultures of Candida albicans and non albicans. Res. Soc. Develop. 2021, 10, e554101019027. [Google Scholar] [CrossRef]
- Dias, I.J.; Trajano, E.R.I.S.; Castro, R.D.; Ferreira, G.L.S.; Medeiros, H.C.M.; Gomes, D.Q.C. Antifungal activity of linalool in cases of Candida spp. isolated from individuals with oral candidiasis. Braz. J. Biol. 2018, 78, 368–374. [Google Scholar] [CrossRef]
- Serra, E.; Hidalgo-Bastida, L.A.; Verran, J.; Williams, D.; Malic, S. Antifungal activity of commercial essential oils and biocides against Candida albicans. Pathogens 2018, 7, 15. [Google Scholar] [CrossRef] [PubMed]
- Inouye, S.; Takahashi, M.; Abe, S. Inhibitory activity of hydrosols, herbal teas and related essential oils against filament formation and the growth of Candida albicans. Nihon Ishinkin Gakkai Zasshi 2009, 50, 243–251. [Google Scholar] [CrossRef] [PubMed]
- Sabiu, S. Therapeutic Use of Plant Secondary Metabolites; Bentham Books: Sharjah, United Arab Emirates, 2022; pp. 1–20. [Google Scholar] [CrossRef]
- Souza, C.M.; Pereira Junior, S.A.; Moraes Tda, S.; Damasceno, J.L.; Amorim Mendes, S.; Dias, H.J.; Stefani, R.; Tavares, D.C.; Martins, C.H.; Crotti, A.E.; et al. Antifungal activity of plant-derived essential oils on Candida tropicalis planktonic and biofilms cells. Med. Mycol. 2016, 54, 515–523. [Google Scholar] [CrossRef]
- El-Sakhawy, M.A.; Soliman, G.A.; El-Sheikh, H.H.; Ganaie, M.A. Anticandidal effect of Eucalyptus oil and three isolated compounds on cutaneous wound healing in rats. Eur. Rev. Med. Pharmacol. Sci. 2023, 27, 26–37. [Google Scholar] [CrossRef]
- Zore, G.B.; Thakre, A.D.; Jadhav, S.; Karuppayil, S.M. Terpenoids inhibit Candida albicans growth by affecting membrane integrity and arrest of cell cycle. Phytomedicine 2011, 18, 1181–1190. [Google Scholar] [CrossRef]
- D’Auria, F.D.; Tecca, M.; Strippoli, V.; Salvatore, G.; Battinelli, L.; Mazzanti, G. Antifungal activity of Lavandula angustifolia essential oil against Candida albicans yeast and mycelial form. Med. Mycol. 2005, 43, 391–396. [Google Scholar] [CrossRef]
- D’agostino, M.; Tesse, N.; Frippiat, J.P.; Machouart, M.; Debourgogne, A. Essential oils and their natural active compounds presenting antifungal properties. Molecules 2019, 24, 3713. [Google Scholar] [CrossRef]
- Leite, M.C.; Bezerra, A.P.; de Sousa, J.P.; Guerra, F.Q.; Lima, E.O. Evaluation of antifungal activity and mechanism of action of citral against Candida albicans. Evid. Based Complement. Altern. Med. 2014, 2014, 378280. [Google Scholar] [CrossRef]
- Gao, S.S.; Zhao, I.S.; Duffin, S.; Duangthip, D.; Lo, E.C.M.; Chu, C.H. Revitalising silver nitrate for caries management. Int. J. Environ. Res. Public Health 2018, 15, 80. [Google Scholar] [CrossRef] [PubMed]
- Alviano, W.S.; Mendonça-Filho, R.R.; Alviano, D.S.; Bizzo, H.R.; Souto-Padrón, T.; Rodrigues, M.L.; Bolognese, A.M.; Alviano, C.S.; Souza, M.M. Antimicrobial activity of Croton cajucara Benth linalool-rich essential oil on artificial biofilms and planktonic microorganisms. Oral Microbiol. Immunol. 2005, 20, 101–105. [Google Scholar] [CrossRef] [PubMed]
- Máté, G.; Kovács, D.; Gazdag, Z.; Pesti, M.; Szántó, Á. Linalool-induced oxidative stress processes in the human pathogen Candida albicans. Acta Biol. Hung. 2017, 68, 220–231. [Google Scholar] [CrossRef]
- Raut, J.S.; Shinde, R.B.; Chauhan, N.M.; Karuppayil, S.M. Terpenoids of plant origin inhibit morphogenesis, adhesion, and biofilm formation by Candida albicans. Biofouling 2013, 29, 87–96. [Google Scholar] [CrossRef]
- Taff, H.T.; Mitchell, K.F.; Edward, J.A.; Andes, D.R. Mechanisms of Candida biofilm drug resistance. Future Microbiol. 2013, 8, 1325–1337. [Google Scholar] [CrossRef]
- Ngo-Mback, M.N.L.; Babii, C.; Jazet Dongmo, P.M.; Kouipou Toghueo, M.R.; Stefan, M.; Fekam Boyom, F. Anticandidal and synergistic effect of essential oil fractions from three aromatic plants used in Cameroon. J. Mycol. Med. 2020, 30, 100940. [Google Scholar] [CrossRef]
- Singulani, J.L.; Pedroso, R.S.; Ribeiro, A.B.; Nicolella, H.D.; Freitas, K.S.; Damasceno, J.L.; Vieira, T.M.; Crotti, A.E.; Tavares, D.C.; Martins, C.H.; et al. Geraniol and linalool anticandidal activity, genotoxic potential and embryotoxic effect on zebrafish. Future Microbiol. 2018, 13, 1637–1646. [Google Scholar] [CrossRef] [PubMed]
- Orchard, A.; van Vuuren, S. Commercial essential oils as potential antimicrobials to treat skin diseases. Evid. Based Complement. Altern. Med. 2017, 2017, 4517971–4518063. [Google Scholar] [CrossRef]
- Rosato, A.; Altini, E.; Sblano, S.; Salvagno, L.; Maggi, F.; de Michele, G.; Carocci, A.; Clodoveo, M.L.; Corbo, F.; Fracchiolla, G. Synergistic activity of new diclofenac and essential oils combinations against different Candida spp. Antibiotics 2021, 10, 688. [Google Scholar] [CrossRef]
- El-Baky, R.M.A.; Hashem, Z.S. Eugenol and linalool: Comparison of their antibacterial and antifungal activities. Afr. J. Microbiol. Res. 2016, 10, 1860–1872. [Google Scholar] [CrossRef]
- da Silva, I.C.G.; Santos, H.B.P.; Cavalcanti, Y.W.; Nonaka, C.F.W.; de Sousa, S.A.; de Castro, R.D. Antifungal activity of eugenol and its association with nystatin on Candida albicans. Pesqui. Bras. Odontopediatria Clin. Integr. 2017, 17, e3235. [Google Scholar] [CrossRef]
- Satthanakul, P.; Taweechaisupapong, S.; Luengpailin, S.; Khunkitti, W. The antifungal efficacy of essential oils in combination with chlorhexidine against Candida spp. Songklanakarin J. Sci. Technol. 2019, 41, 144–150. [Google Scholar] [CrossRef]
- Mao, X.; Auer, D.L.; Buchalla, W.; Hiller, K.A.; Maisch, T.; Hellwig, E.; Al-Ahmad, A.; Cieplik, F. Cetylpyridinium chloride: Mechanism of action, antimicrobial efficacy in biofilms, and potential risks of resistance. Antimicrob. Agents Chemother. 2020, 64, e00576-20. [Google Scholar] [CrossRef] [PubMed]
- Thilakan, A.; Sabu, N.; Ramankutty, R.; Vidya, K.C.; Thomas, N.A.; Jobe, J. Antimicrobial activity of 0.05 N and 0.1 N silver nitrate mouthwash against Streptococcus mutans and Candida albicans: An in vitro study. J. Int. Oral Health 2022, 14, 101–105. [Google Scholar] [CrossRef]
- Bortolin, M.; Bidossi, A.; De Vecchi, E.; Avveniente, M.; Drago, L. In vitro antimicrobial activity of chlorquinaldol against microorganisms responsible for skin and soft tissue infections: Comparative evaluation with gentamicin and fusidic acid. Front. Microbiol. 2017, 8, 1039–1049. [Google Scholar] [CrossRef] [PubMed]
- Carrillo-Muñoz, A.J.; Giusiano, G.; Ezkurra, P.A.; Quindós, G. Antifungal agents: Mode of action in yeast cells. Rev. Esp. Quimioter. 2006, 19, 130–139. [Google Scholar]
- Manoharan, R.K.; Lee, J.H.; Kim, Y.G.; Kim, S.I.; Lee, J. Inhibitory effects of the essential oils α-longipinene and linalool on biofilm formation and hyphal growth of Candida albicans. Biofouling 2017, 33, 143–155. [Google Scholar] [CrossRef]
- Horváth, G.; Jenei, J.T.; Vágvölgyi, C.; Böszörményi, A.; Krisch, J. Effects of essential oil combinations on pathogenic yeasts and moulds. Acta Biol. Hung. 2016, 67, 205–214. [Google Scholar] [CrossRef]
Reference Strains | LIN (mg/mL) | NYS (µg/mL) | ||||
---|---|---|---|---|---|---|
Range of MIC | Range of MFC | MFC/MIC Ratio | MIC | MFC | MFC/MIC Ratio | |
Candida albicans ATCC 10231 | 2–8 | 4–8 | 1–2 | 0.48 | 0.48 | 1 |
Candida albicans ATCC 2091 | 2–4 | 4–8 | 2 | 0.24 | 0.24 | 1 |
Candida albicans ATCC 64124 | 2 | 4 | 2 | 0.98 | 1.95 | 2 |
Candida glabrata ATCC 90030 | 2–8 | 4–8 | 1–2 | 0.24 | 0.48 | 2 |
Candida glabrata ATCC 15126 | 2 | 2 | 1 | 0.24 | 0.24 | 1 |
Candida parapsilosis ATCC 22019 | 1–2 | 2–4 | 2 | 0.24 | 0.48 | 2 |
Candida krusei ATCC 14243 | 1–4 | 4–8 | 2–4 | 0.24 | 0.24 | 1 |
Candida kefyr ATCC 66028 | 4 | 4 | 1 | 0.24 | 0.48 | 2 |
Candida lusitaniae ATCC 34449 | 2 | 4 | 2 | 0.48 | 0.98 | 2 |
Candida tropicalis ATCC 1369 | 1–2 | 2 | 1–2 | 0.24 | 0.48 | 2 |
Candida auris CDC B11903 | 2–4 | 4 | 1–2 | 0.98 | 0.98 | 2 |
Cryptococcus neoformans ATCC 90112 | 0.5 | 0.5 | 1 | 0.12 | 0.24 | 2 |
Cryptococcus neoformans ATCC 32045 | 0.5 | 0.5 | 1 | 0.24 | 0.24 | 1 |
Cryptococcus gatti ATCC 56992 | 0.5 | 0.5 | 1 | 0.24 | 0.24 | 1 |
Geotichum candidum ATCC 34614 | 0.5–1 | 1–2 | 1–2 | 0.98 | 0.98 | 1 |
Saccharomyces cerevisiae ATCC 9763 | 2 | 4 | 2 | 0.24 | 0.24 | 1 |
Clinical Isolates | MIC and MFC Values (mg/mL) | Number (%) of Isolates with MFC/MIC Ratio | |||||
---|---|---|---|---|---|---|---|
Range of MIC | Range of MFC | MIC50/MIC90 | MFC50/MFC90 | 1 | 2 | 4 | |
C. albicans | 0.5–8 | 1–16 | 2/8 | 4/8 | 8 (40) | 9 (45) | 3 (15) |
non-albicans Candida spp. | 2 (10) | 11 (55) | 7 (35) |
Antifungal Agent | MIC of Antifungal Agent (µg/mL) | p * | FIC | Ʃ FIC (FICI) | Interpretation | |
---|---|---|---|---|---|---|
Alone | Combination | |||||
LIN | 8000 | 500 | 0.012 | 0.0625 | 1.0625 | indifference |
nystatin | 0.48 | 0.48 | 0.917 | 1 | ||
LIN | 8000 | 1000 | 0.016 | 0.125 | 0.375 | synergism |
cetylpyridinium | 3.91 | 0.98 | 0.012 | 0.25 | ||
LIN | 8000 | 500 | 0.012 | 0.0625 | 0.3125 | synergism |
chlorhexidine | 7.81 | 1.95 | 0.012 | 0.25 | ||
LIN | 8000 | 4000 | 0.175 | 0.5 | 1 | addition |
chlorquinaldol | 0.98 | 0.48 | 0.060 | 0.5 | ||
LIN | 8000 | 1000 | 0.016 | 0.125 | 0.625 | addition |
silver nitrate | 7.81 | 3.91 | 0.060 | 0.5 | ||
LIN | 8000 | 1000 | 0.012 | 0.125 | 0.375 | synergism |
triclosan | 7.81 | 1.95 | 0.012 | 0.25 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Biernasiuk, A.; Malm, A. Synergistic Interactions between Linalool and Some Antimycotic Agents against Candida spp. as a Basis for Developing New Antifungal Preparations. Appl. Sci. 2023, 13, 5686. https://doi.org/10.3390/app13095686
Biernasiuk A, Malm A. Synergistic Interactions between Linalool and Some Antimycotic Agents against Candida spp. as a Basis for Developing New Antifungal Preparations. Applied Sciences. 2023; 13(9):5686. https://doi.org/10.3390/app13095686
Chicago/Turabian StyleBiernasiuk, Anna, and Anna Malm. 2023. "Synergistic Interactions between Linalool and Some Antimycotic Agents against Candida spp. as a Basis for Developing New Antifungal Preparations" Applied Sciences 13, no. 9: 5686. https://doi.org/10.3390/app13095686
APA StyleBiernasiuk, A., & Malm, A. (2023). Synergistic Interactions between Linalool and Some Antimycotic Agents against Candida spp. as a Basis for Developing New Antifungal Preparations. Applied Sciences, 13(9), 5686. https://doi.org/10.3390/app13095686