Effect of Varied Nitrogen Sources and Type of Cultivation on the Yield and Physicochemical Parameters of Flowering Chinese Cabbage (Brassica campestris L. ssp. chinensis var. utilis Tsen et Lee)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Harvest and Storage of Flowering Chinese Cabbage
2.2. Analysis of Macro- and Microelements in the Plants
2.3. Colour Measurements
2.4. Colour Pigment Content Measurements (Chlorophylls and Carotenoids)
2.5. TPC and TFC Measurements
2.6. Antioxidant Activity Measurements
2.7. Statistical Analysis
3. Results and Discussion
3.1. Yield
3.2. Nutrient Content
3.3. Colour Measurement
3.4. Chlorophyll and Carotenoid Contents
3.5. Phenolic Content and the Antioxidant Activity
3.6. Cluster Analysis
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Li, G.; Zhang, H.; Huang, H.; Qiao, Y.; Zheng, Y. Research Progress on Flowering Chinese Cabbage Breeding in Guangdong Province. China Veg. 2011, 20, 9–14. [Google Scholar]
- Yuan, Y.; Xianyu, Z.; Guangguang, L.; Yansong, Z.; Ding, J.; Hailong, R.; Jianjun, L.; Hua, Z. Comprehensive Evaluation and Comparison of Nutritional Values of Amino Acids of Chinese Flowering Cabbage and Related Subspecies Vegetables. Food Ferment. Ind. 2019, 45, 102–107. [Google Scholar] [CrossRef]
- Liu, W.; Muzolf-Panek, M.; Kleiber, T. The Effect of Various Foliar Treatments and Nitrogen Nutrition Levels on the Yield and Physicochemical Parameters of Flowering Chinese Cabbage. Agronomy 2022, 12, 737. [Google Scholar] [CrossRef]
- Liu, W.; Muzolf-Panek, M.; Kleiber, T. Effect of Nitrogen Nutrition and Planting Date on the Yield and Physicochemical Parameters of Flowering Chinese Cabbage. Agronomy 2022, 12, 2869. [Google Scholar] [CrossRef]
- Xie, J.; Nie, J.; Liao, Y.; Huang, S.; Tang, J. Effects of Different Nitrogen Fertilizer Rates on Yield and Quality of Brassica compestris L. Var. Purpurea Bailey. Hunan Agric. Sci. 2011, 239, 70–76. [Google Scholar]
- Peng, X.; Liu, H.; Sun, G. The Effects of Different Controlled-Release Nitrogen Fertilizers on Yield and Quality of Flowering Chinese Cabbage. China Veg. 2006, 8, 16–18. [Google Scholar]
- Li, G.; He, Y.; Xu, Y. Study on the Factors of Influencing the Yield and Quality of Purple- Caitai. Hubei Agric. Sci. 2009, 48, 348–351. [Google Scholar]
- Ji, S.; Liu, Z.; Liu, B.; Wang, Y.; Wang, J. The Effect of Trichoderma Biofertilizer on the Quality of Flowering Chinese Cabbage and the Soil Environment. Sci. Hortic. 2020, 262, 109069. [Google Scholar] [CrossRef]
- Boschiero, B.N.; Mariano, E.; Torres-Dorante, L.O.; Sattolo, T.M.S.; Otto, R.; Garcia, P.L.; Dias, C.T.S.; Trivelin, P.C.O. Nitrogen Fertilizer Effects on Sugarcane Growth, Nutritional Status, and Productivity in Tropical Acid Soils. Nutr. Cycl. Agroecosyst. 2020, 117, 367–382. [Google Scholar] [CrossRef]
- Zhu, Y.; Qi, B.; Hao, Y.; Liu, H.; Sun, G.; Chen, R.; Song, S. Appropriate NH4+/NO3− Ratio Triggers Plant Growth and Nutrient Uptake of Flowering Chinese Cabbage by Optimizing the pH Value of Nutrient Solution. Front. Plant Sci. 2021, 12, 656144. [Google Scholar] [CrossRef]
- Elrys, A.S.; Abdo, A.I.E.; Desoky, E.S.M. Potato Tubers Contamination with Nitrate under the Influence of Nitrogen Fertilizers and Spray with Molybdenum and Salicylic Acid. Environ. Sci. Pollut. Res. 2018, 25, 7076–7089. [Google Scholar] [CrossRef]
- Kim, H.N.; Seok, Y.J.; Park, G.M.; Vyavahare, G.; Park, J.H. Monitoring of Plant-Induced Electrical Signal of Pepper Plants (Capsicum annuum L.) According to Urea Fertilizer Application. Sci. Rep. 2023, 13, 291. [Google Scholar] [CrossRef]
- Hariadi, Y.; Shabala, S. Screening broad beans (Vicia faba) for magnesium deficiency. II. Photosynthetic performance and leaf bioelectrical responses. Funct. Plant Biol. 2004, 31, 539–549. [Google Scholar] [CrossRef] [PubMed]
- Hauer-Jákli, M.; Tränkner, M. Critical Leaf Magnesium Thresholds and the Impact of Magnesium on Plant Growth and Photo-Oxidative Defense: A Systematic Review and Meta-Analysis from 70 Years of Research. Front. Plant Sci. 2019, 10, 766. [Google Scholar] [CrossRef]
- Liu, X.; Hu, C.; Liu, X.; Riaz, M.; Liu, Y.; Dong, Z.; Tan, Q.; Sun, X.; Wu, S.; Tan, Z. Effect of Magnesium Application on the Fruit Coloration and Sugar Accumulation of Navel Orange (Citrus sinensis Osb.). Sci. Hortic. 2022, 304, 111282. [Google Scholar] [CrossRef]
- Jayawardana, B.C.; Warnasooriya, V.B.; Thotawattage, G.H.; Dharmasena, V.A.K.I.; Liyanage, R. Black and Green Tea (Camellia sinensis L.) Extracts as Natural Antioxidants in Uncured Pork Sausages. J. Food Process. Preserv. 2019, 43, e13870. [Google Scholar] [CrossRef]
- White, P.J.; Broadley, M.R. Calcium in Plants. Ann. Bot. 2003, 92, 487–511. [Google Scholar] [CrossRef]
- IUNG. Analytical Methods in Agricultural Chemistry Stations; IUNG: Puławy, Poland, 1972; pp. 25–83. [Google Scholar]
- Lichtenthaler, H.K.; Buschmann, C.; Knapp, M. How to Correctly Determine the Different Chlorophyll Fluorescence Parameters and the Chlorophyll Fluorescence Decrease Ratio RFd of Leaves with the PAM Fluorometer. Photosynthetica 2005, 43, 379–393. [Google Scholar] [CrossRef]
- Singleton, V.L.; Rossi, J.A. Colorimetry of Total Phenolics with Phosphomolybdic-Phosphotungstic Acid Reagents. Am. J. Enol. Vitic. 1965, 16, 144–158. [Google Scholar] [CrossRef]
- Re, R.; Pellegrini, N.; Proteggente, A.; Pannala, A.; Yang, M.; Rice-Evans, C. Antioxidant Activity Applying an Improved ABTS Radical Cation Decolorization Assay. Free Radic. Biol. Med. 1999, 26, 1231–1237. [Google Scholar] [CrossRef]
- Ozgen, M.; Reese, R.N.; Tulio, A.Z.; Scheerens, J.C.; Miller, A.R. Modified 2,2-Azino-Bis-3-Ethylbenzothiazoline-6-Sulfonic Acid (ABTS) Method to Measure Antioxidant Capacity of Selected Small Fruits and Comparison to Ferric Reducing Antioxidant Power (FRAP) and 2,2′-Diphenyl-1-Picrylhydrazyl (DPPH) Methods. J. Agric. Food Chem. 2006, 54, 1151–1157. [Google Scholar] [CrossRef]
- Sánchez-Moreno, C.; Larrauri, J.A.; Saura-Calixto, F. A Procedure to Measure the Antiradical Efficiency of Polyphenols. J. Sci. Food Agric. 1998, 76, 270–276. [Google Scholar] [CrossRef]
- Benzie, I.F.F.; Strain, J.J. The Ferric Reducing Ability of Plasma (FRAP) as a Measure of “Antioxidant Power”: The FRAP Assay. Anal. Biochem. 1996, 76, 70–76. [Google Scholar] [CrossRef]
- Krężel, J.; Kołota, E. Response of Chinese Cabbage Grown in the Spring Season to Differentiated Forms of Nitrogen Fertilisation. Folia Hortic. 2011, 23, 55–59. [Google Scholar] [CrossRef]
- Yildirim, E.; Cil, B.; Ekinci, M.; Turan, M.; Dursun, A.; Gunes, A.; Kul, R.; Kitir, N. Effects of Intercropping System and Nitrogen Fertilization on Land Equivalent Ratio, Yield and Mineral Content of Broccoli. Acta Sci. Pol. Hortorum Cultus 2020, 19, 101–109. [Google Scholar] [CrossRef]
- Coolong, T.; Cassity-Duffey, K.; da Silva, A.L.B.R. Influence of Nitrogen Rate, Fertilizer Type, and Application Method on Cabbage Yield and Nutrient Concentrations. Horttechnology 2022, 32, 134–139. [Google Scholar] [CrossRef]
- Bassi, D.; Menossi, M.; Mattiello, L. Nitrogen Supply Influences Photosynthesis Establishment along the Sugarcane Leaf. Sci. Rep. 2018, 8, 2327. [Google Scholar] [CrossRef] [PubMed]
- Hikosaka, K.; Osone, Y. A Paradox of Leaf-Trait Convergence: Why Is Leaf Nitrogen Concentration Higher in Species with Higher Photosynthetic Capacity? J. Plant Res. 2009, 122, 245–251. [Google Scholar] [CrossRef]
- Chen, L.S.; Cheng, L. Carbon Assimilation and Carbohydrate Metabolism of “Concord” Grape (Vitis Labrusca L.) Leaves in Response to Nitrogen Supply. J. Am. Soc. Hortic. Sci. 2003, 128, 754–760. [Google Scholar] [CrossRef]
- Song, S.; Yi, L.; Zhu, Y.; Liu, H.; Sun, G.; Chen, R. Effects of Ammonium and Nitrate Ratios on Plant Growth, Nitrate Concentration and Nutrient Uptake in Flowering Chinese Cabbage. Bangladesh J. Bot. 2017, 46, 1259–1267. [Google Scholar]
- Tester, M.; Davenport, R. Na+ Tolerance and Na+ Transport in Higher Plants. Ann. Bot. 2003, 91, 503–527. [Google Scholar] [CrossRef]
- Maathuis, F.J.M. Sodium in Plants: Perception, Signalling, and Regulation of Sodium Fluxes. J. Exp. Bot. 2014, 65, 849–858. [Google Scholar] [CrossRef]
- Obreza, T.A.; Vavrina, C.S. Production of Chinese Cabbage in Relation to Nitrogen Source, Rate, and Leaf Nutrient Concentration. Commun. Soil Sci. Plant Anal. 1993, 24, 1465–1479. [Google Scholar] [CrossRef]
- Evans, J.R.; Terashima, I. Photosynthetic Characteristics of Spinach Leaves Grown with Different Nitrogen Treatments. Plant Cell Physiol. 1988, 29, 157–165. [Google Scholar]
- Evans, J.R. Photosynthesis and Nitrogen Relationships in Leaves of C 3 Plants. Oecologia 1989, 78, 9–19. [Google Scholar] [CrossRef] [PubMed]
- Poorter, H.; Evans, J.R. Photosynthetic Nitrogen-Use Efficiency of Species That Differ Inherently in Specific Leaf Area. Oecologia 1998, 116, 26–37. [Google Scholar] [CrossRef]
- Dreccer, M.F.; Schapendonk, A.H.C.M.; van Oijen, M.; Pot, C.S.; Rabbinge, R. Radiation and Nitrogen Use at the Leaf and Canopy Level by Wheat and Oilseed Rape during the Critical Period for Grain Number Definition. Funct. Plant Biol. 2000, 27, 899–910. [Google Scholar] [CrossRef]
- Rácz, D.; Radocz, L. Nutrient Deficiency and Effects of Various Nutrition Technologies on Crop Health. Acta Agrar. Debr. 2019, 2, 109–113. [Google Scholar] [CrossRef]
- Smoleń, S.; Sady, W. The Effect of Nitrogen Fertilizer Form on the Content of Sixteen Elements in Red Cabbage. Acta Sci. Pol. Hortorum Cultus 2008, 7, 35–44. [Google Scholar]
- Ai, Z.; Wang, G.; Liang, C.; Liu, H.; Zhang, J.; Xue, S.; Liu, G. The Effects of Nitrogen Addition on the Uptake and Allocation of Macroand Micronutrients in Bothriochloa Ischaemum on Loess Plateau in China. Front. Plant Sci. 2017, 8, 1476. [Google Scholar] [CrossRef] [PubMed]
- Gul, V.; Ozturk, E.; Polat, T.; Coban, F. Effects of Nitrogen Treatments on Macro and Microelement Contents of Oil Sunflower (Helianthus annuus L.) Seeds. Int. J. Res. Stud. Agric. Sci. 2017, 3, 44–51. [Google Scholar] [CrossRef]
- Lošák, T.; Válka, T.; Elbl, J.; Kintl, A.; Keutgen, A.; Keutgen, N.; Demková, L.; Árvay, J.; Varga, L.; Hnátková, H.; et al. Fertilization with Magnesium- and Sulfur-Supplemented Digestate Increases the Yield and Quality of Kohlrabi. Sustainability 2020, 12, 5733. [Google Scholar] [CrossRef]
- Geng, G.; Cakmak, I.; Ren, T.; Lu, Z.; Lu, J. Effect of Magnesium Fertilization on Seed Yield, Seed Quality, Carbon Assimilation and Nutrient Uptake of Rapeseed Plants. Field Crops Res. 2021, 264, 108082. [Google Scholar] [CrossRef]
- Hamilton, E.W.; Giovannini, M.S.; Moses, S.A.; Coleman, J.S.; McNaughton, S.J. Biomass and Mineral Element Responses of a Serengeti Short-Grass Species to Nitrogen Supply and Defoliation: Compensation Requires a Critical [N]. Oecologia 1998, 116, 407–418. [Google Scholar] [CrossRef]
- Tian, Q.; Liu, N.; Bai, W.; Li, L.; Chen, J.; Reich, P.B.; Yu, Q.; Guo, D.; Smith, M.D.; Knapp, A.K.; et al. A Novel Soil Manganese Mechanism Drives Plant Species Loss with Increased Nitrogen Deposition in a Temperate Steppe. Ecology 2016, 97, 65–74. [Google Scholar] [CrossRef]
- Sinkhorn, E.R. Non-Linear Nitrogen Dynamics and Calcium Depletion along a Temperate Forest Soil Nitrogen Gradient. Master’s Thesis, Oregon State University, Corvallis, OR, USA, 2007. [Google Scholar]
- Muzolf-Panek, M.; Kleiber, T.; Kaczmarek, A. Effect of Increasing Manganese Concentration in Nutrient Solution on the Antioxidant Activity, Vitamin C, Lycopene and Polyphenol Contents of Tomato Fruit. Food Addit. Contam. Part A 2017, 34, 379–389. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Hu, X.; Jin, G.; Hou, Z.; Ning, J.; Zhang, Z. Rapid Prediction of Chlorophylls and Carotenoids Content in Tea Leaves under Different Levels of Nitrogen Application Based on Hyperspectral Imaging. J. Sci. Food Agric. 2019, 99, 1997–2004. [Google Scholar] [CrossRef]
- Elsayed, S.I.M.; Glala, A.A.; Abdalla, A.M.; El, A.; El-Sayed, G.A.; Darwish, M.A. Effect of Biofertilizer and Organic Fertilization on Growth, Nutrient Contents and Fresh Yield of Dill (Anethum graveolens). Bull. Natl. Res. Cent. 2020, 44, 122. [Google Scholar] [CrossRef]
- Kirova, E.B.; Geneva, M.P.; Kostadinov, K.; Filipov, S. Improving Yield and Quality-Related Physiological Characteristics of Lettuce by Integrated Inorganic and Organic Fertilizers Management. Agric. Conspec. Sci. 2022, 87, 127–134. [Google Scholar]
- Lee, J.S.; Chandra, D.; Son, J. Growth, Physicochemical, Nutritional, and Postharvest Qualities of Leaf Lettuce (Lactuca sativa L.) as Affected by Cultivar and Amount of Applied Nutrient Solution. Horticulturae 2022, 8, 436. [Google Scholar] [CrossRef]
- Hassama, P.; Sirinupong, M.; Ruangrak, E. Comparing Sources of Nitrogen Fertilizer on Growth in Sunflower Microgreens. J. Food Sci. Agric. Technol. 2022, 6, 52–58. [Google Scholar]
- Vinale, F.; Guadalupe Peralta-Sánchez, M.; Gómez-Merino, F.C.; Tejeda-Sartorius, O.; Trejo-Téllez, L.I. Nitrogen Nutrition Differentially Affects Concentrations of Photosynthetic Pigments and Antioxidant Compounds in Mexican Marigold (Tagetes erecta L.). Agriculture 2023, 13, 517. [Google Scholar] [CrossRef]
- Olarewaju, O.A.; Alashi, A.M.; Taiwo, K.A.; Oyedele, D.; Adebooye, O.C.; Aluko, R.E. Influence of Nitrogen Fertilizer Micro-Dosing on Phenolic Content, Antioxidant, and Anticholinesterase Properties of Aqueous Extracts of Three Tropical Leafy Vegetables. J. Food Biochem. 2018, 42, e12566. [Google Scholar] [CrossRef]
- Ochoa-Velasco, C.E.; Valadez-Blanco, R.; Salas-Coronado, R.; Sustaita-Rivera, F.; Hernández-Carlos, B.; García-Ortega, S.; Santos-Sánchez, N.F. Effect of Nitrogen Fertilization and Bacillus Licheniformis Biofertilizer Addition on the Antioxidants Compounds and Antioxidant Activity of Greenhouse Cultivated Tomato Fruits (Solanum lycopersicum L. Var. Sheva). Sci. Hortic. 2016, 201, 338–345. [Google Scholar] [CrossRef]
- Jalloh, M.A.; Chen, J.; Zhen, F.; Zhang, G. Effect of Different N Fertilizer Forms on Antioxidant Capacity and Grain Yield of Rice Growing under Cd Stress. J. Hazard. Mater. 2009, 162, 1081–1085. [Google Scholar] [CrossRef] [PubMed]
- Qadir, O.; Siervo, M.; Seal, C.J.; Brandt, K. Manipulation of Contents of Nitrate, Phenolic Acids, Chlorophylls, and Carotenoids in Lettuce (Lactuca sativa L.) via Contrasting Responses to Nitrogen Fertilizer When Grown in a Controlled Environment. J. Agric. Food Chem. 2017, 65, 10003–10010. [Google Scholar] [CrossRef]
N Source | N Level | |||||||
---|---|---|---|---|---|---|---|---|
N-50 | N-70 | N-90 | Mean | N-50 | N-70 | N-90 | Mean | |
Pot Cultivation | Hydroponic Cultivation | |||||||
NH4NO3 | 78.4 ± 6.4 a* | 94.1 ± 7.2 def | 117.3 ± 9.6 j | 96.6 B | 140.8 ± 11.4 e* | 174.2 ± 10.7 g | 156.2 ± 7.0 f | 157.1 A |
Ca(NO3)2 | 82.7 ± 6.0 ab | 88.6 ± 9.3 bcd | 102.4 ± 5.8 gh | 91.2 A | 128.6 ± 11.4 d | 141.3 ± 11.4 bc | 170.4 ± 7.5 d | 146.8 A |
Mg(NO3)2 | 91.1 ± 7.8 cde | 97.3 ± 6.8 efg | 118.4 ± 9.2 j | 102.3 C | 121.1 ± 6.3 a | 168.6 ± 8.9 d | 154.7 ± 5.0 cd | 148.1 A |
NaNO3 | 84.8 ± 5.0 abc | 98.8 ± 8.1 fg | 114.2 ± 9.2 ij | 99.3 BC | 130.2 ± 6.2 ab | 166.0 ± 9.3 d | 160.4 ± 11.2 d | 152.2 A |
CH4N2O | 81.3 ± 5.7 ab | 99.6 ± 4.5 fg | 107.4 ± 10.1 hi | 96.1 B | ||||
Mean | 83.7 A** | 95.7 B | 112.0 C | 130.19 A | 162.5 B | 160.41B |
N Source | N Level | N | P | K | Ca | Mg | |
---|---|---|---|---|---|---|---|
Pot cultivation | NH4NO3 | N-50 | 2.82 ± 0.09 bc* | 0.44 ± 0.03 ab | 5.32 ± 0.16 bc | 2.31 ± 0.19 bc | 0.35 ± 0.02 b–d |
N-70 | 3.24 ± 0.09 d | 0.51 ± 0.05 b–d | 5.53 ± 0.20 b–e | 2.31 ± 0.12 bc | 0.38 ± 0.01 d–f | ||
N-90 | 3.87 ± 0.03 e | 0.47 ± 0.07 ac | 6.25 ± 0.29 f | 2.83 ± 0.20 ef | 0.38 ± 0.02 ef | ||
Mean | 3.31 ± 0.44 B** | 0.47 ± 0.06 AB | 5.70 ± 0.46 BC | 2.48 ± 0.30 AB | 0.37 ± 0.02 B | ||
Ca(NO3)2 | N-50 | 2.89 ± 0.09 bc | 0.47 ± 0.01 a–c | 5.44 ± 0.05 b–d | 1.73 ± 0.02 a | 0.33 ± 0.02 a–c | |
N-70 | 3.34 ± 0.16 d | 0.51 ± 0.01 b–d | 4.68 ± 0.11 a | 2.50 ± 0.05 b–d | 0.36 ± 0.02 c–e | ||
N-90 | 3.73 ± 0.20 e | 0.54 ± 0.02 cd | 5.99 ± 0.26 ef | 3.66 ± 0.07 i | 0.41 ± 0.02 f | ||
Mean | 3.32 ± 0.38 B | 0.51 ± 0.03 BC | 5.37 ± 0.56 A | 2.63 ± 0.79 B | 0.37 ± 0.04 B | ||
Mg(NO3)2 | N-50 | 2.87 ± 0.25 bc | 0.62 ± 0.03 e | 5.78 ± 0.40 c–f | 3.45 ± 0.18 hi | 0.38 ± 0.01 ef | |
N-70 | 3.64 ± 0.10 e | 0.49 ± 0.02 b–d | 5.85 ± 0.27 c–f | 2.62 ± 0.16 de | 0.46 ± 0.02 g | ||
N-90 | 3.83 ± 0.12 e | 0.50 ± 0.01 a–d | 5.95 ± 0.12 d–f | 3.18 ± 0.09 gh | 0.53 ± 0.01 h | ||
Mean | 3.45 ± 0.45 B | 0.54 ± 0.06 C | 5.86 ± 0.30 C | 3.08 ± 0.37 D | 0.46 ± 0.06 C | ||
NaNO3 | N-50 | 2.78 ± 0.12 b | 0.55 ± 0.02 d | 5.22 ± 0.29 b | 3.10 ± 0.01 fg | 0.32 ± 0.01 ab | |
N-70 | 3.35 ± 0.12 d | 0.46 ± 0.02 ab | 5.36 ± 0.36 bc | 2.76 ± 0.20 de | 0.29 ± 0.02 a | ||
N-90 | 3.75 ± 0.07 e | 0.46 ± 0.03 ab | 5.37 ± 0.09 bc | 2.56 ± 0.19 c–e | 0.30 ± 0.01 a | ||
Mean | 3.29 ± 0.41 B | 0.49 ± 0.05 AB | 5.31 ± 0.28 A | 2.81 ± 0.27 C | 0.30 ± 0.02 A | ||
Urea, CH4N2O | N-50 | 2.49 ± 0.03 a | 0.48 ± 0.01 abc | 5.39 ± 0.15 bc | 2.63 ± 0.03 de | 0.29 ± 0.01 a | |
N-70 | 3.10 ± 0.03 cd | 0.48 ± 0.03 abc | 5.72 ± 0.16 b–e | 2.28 ± 0.17 bc | 0.31 ± 0.01 ab | ||
N-90 | 3.32 ± 0.20 d | 0.43 ± 0.03 a | 5.51 ± 0.15 b–e | 2.25 ± 0.06 b | 0.31 ± 0.02 a | ||
Mean | 2.97 ± 0.37 A | 0.46 ± 0.03 A | 5.54 ± 0.21 AB | 2.39 ± 0.20 A | 0.31 ± 0.02 A | ||
Mean | N-50 | 2.77 ± 0.20 A | 0.51 ± 0.07 A | 5.43 ± 0.31 A | 2.64 ± 0.61 B | 0.33 ± 0.04 A | |
N-70 | 3.34 ± 0.21 B | 0.49 ± 0.03 A | 5.43 ± 0.48 A | 2.50 ± 0.24 A | 0.36 ± 0.06 B | ||
N-90 | 3.70 ± 0.24 C | 0.48 ± 0.05 A | 5.81 ± 0.38 B | 2.90 ± 0.51 C | 0.39 ± 0.08 C | ||
Hydroponic cultivation | NH4NO3 | N-50 | 4.71 ± 0.09 bc | 0.40 ± 0.01 e | 6.21 ± 0.04 b–d | 2.13 ± 0.27 b | 0.74 ± 0.04 cd |
N-70 | 4.69 ± 0.11 b | 0.42 ± 0.0 ef | 6.91 ± 0.24 f | 1.03 ± 0.06 a | 0.75 ± 0.03 cd | ||
N-90 | 5.03 ± 0.13 c–e | 0.45 ± 0.02 f | 6.68 ± 0.10 ef | 0.90 ± 0.03 a | 0.79 ± 0.03 d | ||
Mean | 4.81 ± 0.18 B | 0.43 ± 0.03 D | 6.60 ± 0.33 C | 1.36 ± 0.58 A | 0.76 ± 0.04 B | ||
Ca(NO3)2 | N-50 | 4.76 ± 0.26 b–d | 0.26 ± 0.02 b | 6.59 ± 0.21 d–f | 2.50 ± 0.12 cd | 0.86 ± 0.03 e | |
N-70 | 5.11 ± 0.20 e | 0.21 ± 0.02 a | 6.19 ± 0.25 bc | 3.17 ± 0.08 f | 0.64 ± 0.02 b | ||
N-90 | 5.06 ± 0.09 de | 0.19 ± 0.01 a | 5.88 ± 0.06 ab | 3.15 ± 0.11 f | 0.53 ± 0.02 a | ||
Mean | 4.98 ± 0.25 BC | 0.22 ± 0.03 A | 6.22 ± 0.35 B | 2.94 ± 0.33 D | 0.68 ± 0.14 A | ||
Mg(NO3)2 | N-50 | 4.83 ± 0.20 b–e | 0.32 ± 0.03 cd | 6.14 ± 0.14 bc | 2.10 ± 0.11 b | 0.90 ± 0.03 e | |
N-70 | 4.34 ± 0.11 a | 0.33 ± 0.02 d | 6.62 ± 0.03 ef | 2.38 ± 0.02 bc | 1.16 ± 0.03 f | ||
N-90 | 4.32 ± 0.12 a | 0.35 ± 0.02 d | 6.83 ± 0.16 f | 2.84 ± 0.04 e | 1.29 ± 0.02 g | ||
Mean | 4.49 ± 0.28 A | 0.33 ± 0.03 C | 6.53 ± 0.32 C | 2.44 ± 0.31 B | 1.12 ± 0.17 C | ||
NaNO3 | N-50 | 5.13 ± 0.12 e | 0.32 ± 0.01 cd | 6.37 ± 0.26 c–e | 2.84 ± 0.16 e | 0.77 ± 0.04 cd | |
N-70 | 5.13 ± 0.12 e | 0.26 ± 0.01 b | 6.08 ± 0.10 bc | 2.74 ± 0.18 de | 0.79 ± 0.02 d | ||
N-90 | 5.09 ± 0.14 de | 0.29 ± 0.01 bc | 5.53 ± 0.24 a | 2.66 ± 0.14 de | 0.71 ± 0.02 c | ||
Mean | 5.12 ± 0.13 C | 0.29 ± 0.03 B | 5.99 ± 0.41 A | 2.75 ± 0.18 C | 0.75 ± 0.04 B | ||
Mean | N-50 | 4.86 ± 0.24 A** | 0.33 ± 0.06 A | 6.33 ± 0.25 AB | 2.39 ± 0.35 A | 0.82 ± 0.07 A | |
N-70 | 4.82 ± 0.36 A | 0.31 ± 0.08 A | 6.45 ± 0.38 B | 2.33 ± 0.81 A | 0.84 ± 0.20 A | ||
N-90 | 4.87 ± 0.34 A | 0.32 ± 0.09 A | 6.23 ± 0.57 A | 2.39 ± 0.88 A | 0.83 ± 0.28 A |
N Source | N Level | Fe | Mn | Zn | Cu | Na | |
---|---|---|---|---|---|---|---|
Pot cultivation | NH4NO3 | N-50 | 116.3 ± 10.6 de* | 32.4 ± 2.80 b | 76.4 ± 0.80 b–d | 7.64 ± 0.30 a | 0.073 ± 0.01 ab |
N-70 | 109.1 ± 3.08 b–d | 32.4 ± 4.59 b | 79.8 ± 1.80 b–d | 7.88 ± 0.66 a | 0.090 ± 0.01 bc | ||
N-90 | 125.1 ± 7.10 e | 36.3 ± 3.11 c–e | 81.9 ± 0.86 c–e | 5.74 ± 0.24 a | 0.127 ± 0.01 d | ||
Mean | 116.9 ± 10.01 BC** | 33.7 ± 2.22 A | 79.4 ± 4.24 C | 7.09 ± 1.05 A | 0.097 ± 0.02 B | ||
Ca(NO3)2 | N-50 | 93.7 ± 4.20 a | 32.9 ± 5.60 bc | 72.6 ± 2.74 b | 5.30 ± 0.68 a | 0.057 ± 0.01 a | |
N-70 | 101.6 ± 7.78 ab | 33.7 ± 1.68 bc | 62.4 ± 1.90 a | 5.45 ± 0.20 a | 0.077 ± 0.01 ab | ||
N-90 | 106.5 ± 4.74 b–d | 39.3 ± 4.43 e | 77.3 ± 0.27 b–d | 6.34 ± 0.34 a | 0.097 ± 0.01 bc | ||
Mean | 100.6 ± 7.82 A | 35.3 ± 3.45 A | 70.8 ± 7.50 A | 5.70 ± 0.99 A | 0.077 ± 0.02 A | ||
Mg(NO3)2 | N-50 | 94.1 ± 0.78 a | 32.6 ± 4.67 bc | 90.1 ± 1.76 e | 8.30 ± 0.80 a | 0.080 ± 0.01 ab | |
N-70 | 103.1 ± 1.29 a–c | 34.2 ± 3.66 bc | 84.8 ± 2.30 de | 13.96 ± 0.97 b | 0.093 ± 0.01 bc | ||
N-90 | 139.4 ± 0.26 f | 39.1 ± 1.35 de | 84.3 ± 0.74 de | 17.99 ± 2.85 cd | 0.117 ± 0.01 cd | ||
Mean | 112.2 ± 19.61 B | 35.3 ± 3.26 A | 86.4 ± 4.37 D | 13.42 ± 4.36 B | 0.097 ± 0.02 B | ||
NaNO3 | N-50 | 114.6 ± 9.09 c–e | 35.6 ± 0.44 b–d | 78.8 ± 2.47 b–d | 8.09 ± 0.98 a | 0.200 ± 0.03 e | |
N-70 | 116.9 ± 5.79 de | 33.4 ± 3.13 bc | 76.1 ± 0.74 b–d | 5.73 ± 0.34 a | 0.340 ± 0.03 f | ||
N-90 | 137.9 ± 6.27 f | 34.5 ± 1.62 bc | 77.2 ± 0.37 b–d | 7.26 ± 0.36 a | 0.733 ± 0.01 g | ||
Mean | 123.1 ± 12.71 C | 34.5 ± 1.76 A | 77.4 ± 2.33 BC | 7.03 ± 1.16 A | 0.424 ± 0.23 C | ||
Urea, CH4N2O | N-50 | 104.8 ± 0.90 a–d | 27.0 ± 3.47 a | 71.6 ± 2.09 b | 19.12 ± 2.64 d | 0.077 ± 0.01 ab | |
N-70 | 114.9 ± 0.93 c–e | 33.6 ± 7.55 bc | 79.0 ± 0.38 b–d | 15.47 ± 1.61 bc | 0.100 ± 0.01 b–d | ||
N-90 | 111.3 ± 3.09 b–d | 39.4 ± 1.56 e | 73.0 ± 1.72 bc | 7.07 ± 0.91 a | 0.117 ± 0.01 cd | ||
Mean | 110.3 ± 4.60 B | 33.3 ± 5.32 A | 74.5 ± 5.83 AB | 13.89 ± 5.38 B | 0.098 ± 0.02 B | ||
Mean | N-50 | 104.7 ± 11.65 A | 32.1 ± 3.52 A | 77.9 ± 7.64 A | 9.69 ± 5.02 A | 0.097 ± 0.05 A | |
N-70 | 109.1 ± 7.65 A | 33.4 ± 1.71 A | 76.4 ± 8.82 A | 9.70 ± 4.31 A | 0.140 ± 0.10 B | ||
N-90 | 124.0 ± 14.31 B | 37.7 ± 2.20 B | 78.7 ± 4.78 A | 8.88 ± 4.82 A | 0.238 ± 0.25 C | ||
Hydroponic cultivation | NH4NO3 | N-50 | 80.5 ± 1.43 a–c | 89.3 ± 3.46 b–d | 73.9 ± 3.21 bc | 3.35 ± 0.29 b | 0.110 ± 0.01 a |
N-70 | 87.7 ± 2.86 cd | 94.2 ± 5.86 c–e | 66.3 ± 2.66 b | 3.52 ± 0.18 bc | 0.197 ± 0.01 b | ||
N-90 | 92.9 ± 2.13 d | 102.3 ± 1.96 e | 82.7 ± 4.50 c–e | 3.35 ± 0.12 b | 0.177 ± 0.01 b | ||
Mean | 87.0 ± 5.57 B | 95.3 ± 6.42 B | 74.3 ± 7.83 B | 3.41 ± 0.22 A | 0.161 ± 0.04 B | ||
Ca(NO3)2 | N-50 | 103.6 ± 2.57 e | 100.8 ± 3.25 e | 78.9 ± 4.71 cd | 4.16 ± 0.12 de | 0.110 ± 0.01 a | |
N-70 | 88.1 ± 5.32 cd | 97.6 ± 4.80 de | 81.7 ± 2.27 c–e | 4.11 ± 0.20 c–e | 0.097 ± 0.01 a | ||
N-90 | 84.8 ± 4.46 b–d | 67.3 ± 2.03 a | 41.2 ± 2.32 a | 2.53 ± 0.21 a | 0.073 ± 0.01 a | ||
Mean | 92.1 ± 9.24 C | 88.6 ± 15.46 A | 67.3 ± 18.82 A | 3.60 ± 0.78 A | 0.093 ± 0.02 A | ||
Mg(NO3)2 | N-50 | 84.0 ± 4.65 bc | 85.6 ± 5.18 bc | 90.2 ± 2.75 ef | 3.59 ± 0.33 b–d | 0.180 ± 0.02 b | |
N-70 | 77.8 ± 2.22 ab | 81.0 ± 5.04 b | 97.1 ± 7.37 f | 4.04 ± 0.07 c–e | 0.207 ± 0.01 b | ||
N-90 | 81.8 ± 3.28 bc | 92.6 ± 5.31 c–e | 85.4 ± 2.67 de | 4.49 ± 0.31 ef | 0.203 ± 0.01 b | ||
Mean | 81.2 ± 4.37 A | 86.4 ± 6.75 A | 90.9 ± 7.06 C | 4.04 ± 0.45 B | 0.197 ± 0.02 C | ||
NaNO3 | N-50 | 86.0 ± 2.68 b–d | 90.1 ± 3.73 b–d | 100.0 ± 6.88 f | 4.79 ± 0.31 f | 0.483 ± 0.03 c | |
N-70 | 101.0 ± 1.90 e | 85.2 ± 7.46 bc | 111.4 ± 2.95 g | 5.49 ± 0.46 g | 0.603 ± 0.02 d | ||
N-90 | 72.6 ± 7.33 a | 87.7 ± 3.91 b–d | 111.4 ± 5.47 g | 4.99 ± 0.41 fg | 0.720 ± 0.07 e | ||
Mean | 86.5 ± 12.49 B | 87.7 ± 5.71 A | 107.6 ± 7.67 D | 5.09 ± 0.49 C | 0.602 ± 0.11 D | ||
Mean | N-50 | 88.5 ± 9.41 B** | 91.4 ± 7.34 A | 85.8 ± 10.88 B | 3.97 ± 0.62 A | 0.221 ± 0.15 A | |
N-70 | 88.6 ± 8.89 B | 89.5 ± 7.96 A | 89.1 ± 17.86 B | 4.29 ± 0.78 B | 0.276 ± 0.20 B | ||
N-90 | 83.0 ± 8.68 A | 87.5 ± 13.37 A | 80.2 ± 25.40 A | 3.84 ± 1.00 A | 0.293 ± 0.25 B |
N Source | N Level | Chl a, mg/g DW | Chl b, mg/g DW | Carotenoids (x + c), mg/g DW | Chl a + Chl b, mg/g DW | Chl a/Chl b | (Chl a + Chl b)/(x + c) | |
---|---|---|---|---|---|---|---|---|
Pot cultivation | NH4NO3 | N-50 | 5.20 ± 0.03 bc* | 1.91 ± 0.05 ab | 0.96 ± 0.05 cde | 7.11 ± 0.01 bc | 2.72 ± 0.08 c | 7.42 ± 0.44 ab |
N-70 | 5.17 ± 0.05 bc | 1.94 ± 0.01 ab | 0.97 ± 0.01 cde | 7.11 ± 0.06 bc | 2.67 ± 0.01 c | 7.31 ± 0.17 abc | ||
N-90 | 4.99 ± 1.90 bcd | 1.96 ± 0.72 ab | 0.89 ± 0.33 de | 6.95 ± 2.62 bc | 2.55 ± 0.04 c | 7.83 ± 0.07 a | ||
Mean | 5.12 ± 0.86 | 1.94 ± 0.32 | 0.94 ± 0.15 | 7.06 ± 1.18 | 2.64 ± 0.09 | 7.52 ± 0.33 | ||
Ca(NO3)2 | N-50 | 4.17 ± 0.76 cd | 1.53 ± 0.31 bc | 0.86 ± 0.13 de | 5.70 ± 1.07 bcd | 2.73 ± 0.06 c | 6.63 ± 0.27 bcd | |
N-70 | 4.83 ± 0.58 bcd | 1.54 ± 0.19 bc | 1.03 ± 0.11 cde | 6.38 ± 0.77 bcd | 3.13 ± 0.01 bc | 6.16 ± 0.06 def | ||
N-90 | 5.04 ± 0.19 bcd | 1.65 ± 0.10 bc | 1.34 ± 0.03 b | 6.69 ± 0.29 bcd | 3.05 ± 0.07 bc | 4.98 ± 0.12 g | ||
Mean | 4.68 ± 0.59 | 1.58 ± 0.18 | 1.08 ± 0.23 | 6.26 ± 0.75 | 2.97 ± 0.19 | 5.92 ± 0.77 | ||
Mg(NO3)2 | N-50 | 4.89 ± 0.20 bcd | 1.62 ± 0.09 bc | 1.25 ± 0.04 bc | 6.50 ± 0.29 bcd | 3.02 ± 0.05 bc | 5.22 ± 0.06 fg | |
N-70 | 4.73 ± 0.12 bcd | 1.50 ± 0.03 bc | 0.93 ± 0.02 de | 6.23 ± 0.14 bcd | 3.16 ± 0.02 bc | 6.72 ± 0.02 bcd | ||
N-90 | 5.66 ± 0.19 bcd | 1.52 ± 0.50 bc | 1.13 ± 0.17 bcd | 7.19 ± 0.69 b | 3.91 ± 1.15 a | 6.49 ± 1.61 b–e | ||
Mean | 5.09 ± 0.47 | 1.55 ± 0.23 | 1.10 ± 0.17 | 6.64 ± 0.56 | 3.36 ± 0.69 | 6.14 ± 1.02 | ||
NaNO3 | N-50 | 4.60 ± 0.19 bcd | 1.48 ± 0.07 bc | 0.98 ± 0.01 cde | 6.08 ± 0.26 bcd | 3.12 ± 0.03 bc | 6.20 ± 0.18 cef | |
N-70 | 4.79 ± 0.26 bcd | 1.49 ± 0.04 bc | 1.02 ± 0.14 cde | 6.27 ± 0.30 bcd | 3.22 ± 0.09 abc | 6.18 ± 0.54 cef | ||
N-90 | 5.25 ± 0.02 bc | 1.75 ± 0.02 bc | 1.07 ± 0.02 bcd | 7.00 ± 0.04 bc | 2.99 ± 0.02 bc | 6.52 ± 0.14 b–e | ||
Mean | 4.88 ± 0.33 | 1.57 ± 0.15 | 1.03 ± 0.08 | 6.45 ± 0.47 | 3.11 ± 0.11 | 6.30 ± 0.31 | ||
Urea, CH4N2O | N-50 | 3.69 ± 0.11 cd | 1.23 ± 0.07 c | 0.78 ± 0.01 e | 4.92 ± 0.18 d | 3.00 ± 0.09 bc | 6.32 ± 0.27 b–f | |
N-70 | 3.90 ± 0.08 d | 1.24 ± 0.02 c | 0.85 ± 0.01 de | 5.14 ± 0.10 cd | 3.14 ± 0.00 bc | 6.07 ± 0.06 def | ||
N-90 | 8.48 ± 0.72 a | 2.39 ± 0.11 a | 2.01 ± 0.14 a | 10.87 ± 0.61 a | 3.56 ± 0.46 ab | 5.40 ± 0.07 efg | ||
Mean | 5.36 ± 2.45 | 1.62 ± 0.60 | 1.21 ± 0.62 | 6.98 ± 3.03 | 3.23 ± 0.34 | 5.93 ± 0.44 | ||
Mean | N-50 | 4.51 ± 0.62 | 1.55 ± 0.26 | 0.96 ± 0.17 | 6.06 ± 0.87 | 2.92 ± 0.18 | 6.36 ± 0.78 | |
N-70 | 4.69 ± 0.49 | 1.54 ± 0.25 | 0.96 ± 0.09 | 6.23 ± 0.72 | 3.06 ± 0.21 | 6.49 ± 0.53 | ||
N-90 | 5.88 ± 1.55 | 1.85 ± 0.43 | 1.29 ± 0.43 | 7.74 ± 1.90 | 3.21 ± 0.65 | 6.25 ± 1.18 | ||
Hydroponic cultivation | NH4NO3 | N-50 | 4.92 ± 0.01 bc | 1.68 ± 0.02 a | 0.84 ± 0.02 cd | 6.60 ± 0.03 bc | 2.93 ± 0.04 e | 7.82 ± 0.15 a |
N-70 | 5.02 ± 0.26 bc | 1.57 ± 0.08 ab | 0.99 ± 0.03 b | 6.58 ± 0.34 bc | 3.2 ± 0.01 d | 6.65 ± 0.12 b | ||
N-90 | 5.39 ± 0.02 b | 1.69 ± 0.02 a | 0.93 ± 0.04 bc | 7.08 ± 0.00 b | 3.18 ± 0.05 d | 7.59 ± 0.33 a | ||
Mean | 5.11 ± 0.25 | 1.65 ± 0.07 | 0.92 ± 0.07 | 6.75 ± 0.30 | 3.11 ± 0.14 | 7.35 ± 0.58 | ||
Ca(NO3)2 | N-50 | 3.89 ± 0.02 efg | 1.08 ± 0.08 de | 0.81 ± 0.02 d | 4.97 ± 0.10 fgh | 3.6 ± 0.23 bc | 6.12 ± 0.02 cd | |
N-70 | 3.80 ± 0.08 efg | 1.03 ± 0.01 e | 0.88 ± 0.01 cd | 4.83 ± 0.09 fgh | 3.68 ± 0.06 b | 5.51 ± 0.05 ef | ||
N-90 | 4.31 ± 0.24 de | 1.24 ± 0.08 d | 0.91 ± 0.06 bcd | 5.55 ± 0.32 ef | 3.49 ± 0.04 bc | 6.08 ± 0.04 cd | ||
Mean | 4.00 ± 0.27 | 1.12 ± 0.11 | 0.87 ± 0.05 | 5.12 ± 0.37 | 3.59 ± 0.14 | 5.90 ± 0.31 | ||
Mg(NO3)2 | N-50 | 4.88 ± 0.12 bc | 1.45 ± 0.02 bc | 0.99 ± 0.02 b | 6.32 ± 0.15 cd | 3.37 ± 0.03 cd | 6.39 ± 0.26 bc | |
N-70 | 8.24 ± 0.13 a | 1.67 ± 0.06 a | 2.29 ± 0.07 a | 9.91 ± 0.19 a | 4.94 ± 0.09 a | 4.33 ± 0.05 g | ||
N-90 | 3.62 ± 0.08 fg | 0.97 ± 0.07 e | 0.85 ± 0.01 cd | 4.59 ± 0.15 gh | 3.73 ± 0.18 b | 5.38 ± 0.14 f | ||
Mean | 5.58 ± 2.14 | 1.36 ± 0.32 | 1.38 ± 0.71 | 6.94 ± 2.43 | 4.01 ± 0.73 | 5.37 ± 0.93 | ||
NaNO3 | N-50 | 4.56 ± 0.6 cd | 1.27 ± 0.24 cd | 0.99 ± 0.09 b | 5.83 ± 0.90 de | 3.60 ± 0.16 bc | 5.87 ± 0.36 de | |
N-70 | 4.10 ± 0.10 def | 1.11 ± 0.03 de | 0.99 ± 0.00 b | 5.21 ± 0.13 efg | 3.69 ± 0.00 b | 5.26 ± 0.12 f | ||
N-90 | 3.42 ± 0.10 g | 0.92 ± 0.04 e | 0.84 ± 0.03 cd | 4.34 ± 0.14 h | 3.71 ± 0.05 b | 5.19 ± 0.04 f | ||
Mean | 4.06 ± 0.60 | 1.10 ± 0.19 | 0.94 ± 0.09 | 5.13 ± 0.79 | 3.67 ± 0.09 | 5.44 ± 0.48 | ||
Mean | N-50 | 4.56 ± 0.51 | 1.37 ± 0.25 | 0.91 ± 0.10 | 5.93 ± 0.75 | 3.37 ± 0.31 | 6.55 ± 0.83 | |
N-70 | 5.29 ± 1.89 | 1.34 ± 0.30 | 1.29 ± 0.65 | 6.63 ± 2.14 | 3.88 ± 0.69 | 5.44 ± 0.89 | ||
N-90 | 4.18 ± 0.83 | 1.20 ± 0.33 | 0.88 ± 0.05 | 5.39 ± 1.16 | 3.53 ± 0.25 | 6.06 ± 1.02 |
System | Samples | Cluster No. |
---|---|---|
Pot cultivation | Urea N-90 | 1 |
Mg(NO3)2 N-70 | 2 | |
Mg(NO3)2 N-90 | 2 | |
Ca(NO3)2 N-90 | 3 | |
Mg(NO3)2 N-50 | 3 | |
Urea N-50 | 4 | |
Urea N-70 | 4 | |
NH4NO3 N-90 | 5 | |
NaNO3 N-90 | 5 | |
NH4NO3 N-50 | 6 | |
NH4NO3 N-70 | 6 | |
Ca(NO3)2 N-50 | 6 | |
Ca(NO3)2 N-70 | 6 | |
NaNO3 N-50 | 6 | |
NaNO3 N-70 | 6 | |
Hydroponic cultivation | NH4NO3 N-50 | 1 |
NH4NO3 N-70 | 1 | |
NH4NO3 N-90 | 1 | |
Mg(NO3)2 N-50 | 1 | |
Ca(NO3)2 N-50 | 2 | |
Ca(NO3)2 N-70 | 2 | |
Ca(NO3)2 N-90 | 2 | |
Mg(NO3)2 N-90 | 2 | |
NaNO3 N-70 | 2 | |
NaNO3 N-90 | 2 | |
Mg(NO3)2 N-70 | 3 | |
NaNO3 N-50 | 3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, W.; Muzolf-Panek, M.; Kleiber, T. Effect of Varied Nitrogen Sources and Type of Cultivation on the Yield and Physicochemical Parameters of Flowering Chinese Cabbage (Brassica campestris L. ssp. chinensis var. utilis Tsen et Lee). Appl. Sci. 2023, 13, 5691. https://doi.org/10.3390/app13095691
Liu W, Muzolf-Panek M, Kleiber T. Effect of Varied Nitrogen Sources and Type of Cultivation on the Yield and Physicochemical Parameters of Flowering Chinese Cabbage (Brassica campestris L. ssp. chinensis var. utilis Tsen et Lee). Applied Sciences. 2023; 13(9):5691. https://doi.org/10.3390/app13095691
Chicago/Turabian StyleLiu, Wenping, Małgorzata Muzolf-Panek, and Tomasz Kleiber. 2023. "Effect of Varied Nitrogen Sources and Type of Cultivation on the Yield and Physicochemical Parameters of Flowering Chinese Cabbage (Brassica campestris L. ssp. chinensis var. utilis Tsen et Lee)" Applied Sciences 13, no. 9: 5691. https://doi.org/10.3390/app13095691
APA StyleLiu, W., Muzolf-Panek, M., & Kleiber, T. (2023). Effect of Varied Nitrogen Sources and Type of Cultivation on the Yield and Physicochemical Parameters of Flowering Chinese Cabbage (Brassica campestris L. ssp. chinensis var. utilis Tsen et Lee). Applied Sciences, 13(9), 5691. https://doi.org/10.3390/app13095691