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Abstract: The excavation-unloading damage effects of western high-geostress slopes on rock were
explored by testing the pre-peak confining pressure unloading sandstone reloading mechanical
properties. The deformation and failure mechanisms were studied from a mesoscopic perspective
using the particle discrete-element method. (1) Approaching the unloading failure, confining pressure
increased the specimen bearing capacity attenuation. (2) The confining pressure unloading promoted
microdefect propagation and development; the specimens increased rapidly to the damage stress
value after reaching the initiation stress value. The penetration fracture zone was more evident and
expansive in the model, and the distribution of the dense crack areas was more concentrated in the
fracture zone and area. (3) The average interval of the tangential contact force was the largest in the
direction of crack expansion and propagation. The strong force chains were shown to primarily bear
external loads, whereas the weak force chains played a key auxiliary role in maintaining stability.
(4) The number of cracks developing in the confining pressure unloading damage process indicated
that the loading process did not cause damage to the specimens. The fracture zones further propa-
gated and formed on the dominant fractures based on the damage caused by the confining pressure
unloading disturbance.

Keywords: excavation unloading; damaged sandstone; confining pressure unloading; particle flow
simulation; mesoscopic mechanism

1. Introduction

Many underground tunnels and slope rock masses were excavated in the processes of
mineral resource exploitation, water resource construction, and hydroelectric and railway
engineering. However, rock masses experience different excavation unloading damages
in certain areas near the slope and tunnel excavation surfaces. During project operation
and maintenance, the mechanical properties of the rock masses in the unloading zones
formed by excavation and the common bearing carrier formed by the supporting structures
determine the stability of the excavation project, which is a core aspect of the development
and utilization of rock masses.

Generally, the rock masses in disturbed excavation unloading zones are no longer
in a simple compression state, with the phenomenon of stress relief occurring along the
direction of the vertical excavation surface [1], which experiences a complex stress environ-
ment. The mechanical properties of rock (masses) will be different depending on the stress
environment. Scholars have conducted indoor mechanical tests on various types of rocks
(masses) under complex stress environments and these can be roughly divided into loading
mechanical, unloading mechanical [2], cyclic loading and unloading mechanical [3–7],
and damage reloading mechanical tests [8–10]. Previous studies [11–13] conducted indoor
loading tests and studied the stress–strain curves, deformation, and failure characteristics of
sandstone and conglomerate specimens under various confining pressures. The unloading
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mechanical tests were based primarily on conventional indoor triaxial unloading tests,
considering the effects of confining pressure, unloading rate, and time on the unloading
mechanical properties of rock [14–19]. Lin et al. [20] conducted triaxial loading and un-
loading tests on salt rock specimens and analyzed the damage characteristics and energy
evolution law. Previous studies [21–23] also conducted uniaxial graded cyclic loading and
unloading tests on metamorphic sandstone to examine the failure mode and the crack
initiation and development process. Meng et al. [24] conducted triaxial cyclic loading and
unloading tests on limestone specimens under different confining pressures and exam-
ined the strength, deformation, and expansion characteristics. Xiao [25] conducted true
triaxial unloading tests on sandstone under cyclic load damage effects and examined the
strength, deformation characteristics, and failure modes of sandstone under cyclic load
damage effects. Meng et al. [26] prepared damaged specimens by removing the axial
confining pressure and then subjected the damaged specimens to triaxial compression
tests to determine the relationship between the peak stress, deformation parameters, and
damage degree. Related studies [27–29] obtained damaged white sandstone and limestone
specimens through triaxial loading-confining pressure unloading and then subjected them
to uniaxial loading mechanical tests to examine the strength weakening mechanism and
macroscopic failure characteristics. Niu et al. [30] obtained specimens with different types
of initial damage by conducting loading and unloading tests on silty mudstone specimens
and examined the triaxial strength characteristics of the damaged specimens under dif-
ferent confining pressures. In some previous studies, uniaxial compression and splitting
tests were conducted on rock specimens that were first damaged before being continuously
loaded and compacted [31–33].

In summary, the mechanical properties of various types of rocks under complex stress
environments have been studied; however, some gaps remain in terms of understanding
the excavation unloading stress environment and subsequent excavation unloading of dam-
aged rock masses. Consequently, this study used western high-geostress rock slopes as the
project background and rock (masses) in the excavation unloading disturbed zones as the
research object to examine the mechanical properties of sandstone after pre-peak confining
pressure unloading damage and the effect of confining pressure unloading damage on
the deformation and failure characteristics of sandstone from a mesoscopic perspective
using the particle discrete element method. This can provide a theoretical reference for the
engineering utilization and disaster prevention of rock mass in the unloading disturbance
area of rock slopes excavated with western high-geostress rock slopes.

2. Loading Test after Confining Pressure Unloading

The changes in the stress environment of rock masses in the excavation unloading
disturbed zones within high-geostress rock slopes can be divided into three stages—triaxial
loading, unloading, and triaxial (uniaxial) reloading. Triaxial loading corresponds to the
loading state of the rock mass before excavation, unloading corresponds to the stress
unloading caused by rock mass excavation, and triaxial (uniaxial) reloading corresponds to
the reloading of the damaged rock mass in the unloading disturbance zone owing to the
increase and transfer of peak stress in the process of graded excavation. The changing stress
environment is essentially either triaxial or uniaxial loading, depending on the different
confining pressures after unloading damage.

2.1. Test Scheme

The rock thermo-hydro-mechanical–chemical (THMC) multi-field coupled triaxial
rheological test system was used to conduct the tests, as shown in Figure 1. We used
sandstone in a west-facing high-geostress rock slope as the test material and prepared
cylindrical specimens (Ø 50 × 100 mm) with the roughness values of the respective ends
maintained within ±0.05 mm. We measured the densities and wave velocities of the
saturated specimens, selecting specimens with relatively close values of these parameters.
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Figure 1. Thermo-hydro-mechanical–chemical multi-field coupled triaxial rheological test system:
(a) Confining pressure room; (b) Axial pressure and confining pressure servo device; (c) Loading
cylinder diagram.

2.1.1. Conventional Uniaxial and Triaxial Loading (Unloading) Tests

1. Triaxial loading test: The stress control mode was adopted, setting the target value
of the confining pressure to 25 MPa. The following specific process was applied.
(a) In the hydrostatic pressure stage, the loading rate of the confining pressure
and axial pressure was maintained at 1.5 MPa/min until the confining pressure
reached the target value. (b) The confining pressure was maintained at a constant
value, and the axial pressure was loaded at 3 MPa/min until the specimen was de-
formed and failed to obtain the triaxial compressive strength under the corresponding
confining pressure.

2. Triaxial unloading test: The stress control mode was adopted, setting the target value
of the axial pressure to 55% of the corresponding triaxial compressive strength. The
following specific process was used. (a) The hydrostatic pressure stage used in the tri-
axial loading test was applied. (b) The confining pressure was maintained at a constant
value of 25 MPa; then, the axial pressure was loaded to 55% of the triaxial compressive
strength at 3 MPa/min. (c) The axial pressure was maintained at a constant value,
and the confining pressure was loaded at 1.5 MPa/min until the specimen deformed
and failed.
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2.1.2. Preparation and Loading Tests of Pre-Peak Confining Pressure Unloaded Specimens

A control group was set up to unload the sample without pre-peak confining pressure.
The following process was used to prepare the pre-peak confining pressure unload-

ing specimens: (a) Under the same loading process as the triaxial loading test, the axial
pressure was maintained at a constant value after the target value was reached; then, the
confining pressure was reduced to 20 MPa at 1.5 MPa/min. (b) The axial pressure was then
unloaded at 1.5 MPa/min to the same value as the confining pressure (20 MPa). (c) The
axial and confining pressures were unloaded simultaneously at 1.5 MPa/min to complete
the preparation of the 5 MPa confining pressure unloading specimens. Specimens with
confining pressures reduced to 15 MPa and 10 MPa could also be obtained in this manner.
Uniaxial and triaxial reloading tests were conducted with 15 MPa confining pressure.

2.2. Results Analysis

The specimens were subjected to uniaxial compression at σ0 = 86.5 MPa, 25 MPa
confining pressure triaxial compression at σ25 = 167.8 MPa. All failed when the confining
pressure was unloaded to approximately 6.3 MPa and 5 MPa confining pressure triaxial
compression at σ15 = 142.3 MPa.

Evidently, from Figure 2, the loading triaxial stress–strain curves of the specimens
under different confining pressure unloading are similar and can be roughly divided into
four stages: fracture compaction, elastic deformation, plastic deformation (deformation
and failure development), and post-peak. (a) In the fracture compaction stage, the primary
cracks and pores in the specimens were compressed and closed by the deviatoric stress.
(b) In the elastic deformation stage, the stress–strain curve is linear and the properties are
stable. (c) In the plastic deformation (deformation and failure development) stage, the
specimen entered the plastic stage and the stress–strain curve began to deviate from a
straight line, with the slope decreasing gradually as microcracks in the specimen continued
to develop until the peak stress state was reached. (d) In the post-peak stage, the internal
cracks propagated after the specimen reached its peak stress and converged rapidly to form
macroscopic fractures, leading to failure of the specimen.
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Figure 2. Triaxial reloading stress–strain relationship curves of confining pressure unloading specimens.

Figure 3 shows the peak strain–confining stress curve. Evidently, the peak strain
increased with the confining pressure unloading, with the axial peak strain increasing by
5.2, 15.0, and 20.0% and the circumferential peak strain increasing by 20.0, 29.6, and 42.5%,
respectively, compared with the case in which the confining pressure unloading was zero.
The circumferential peak strain was more sensitive to the response of confining pressure
unloading damage effects.
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Figure 3. Peak strain–confining pressure unloading curve.

The crack volume strain model proposed by Martin [34] can be used to analyze the
crack initiation stress (σci) and damage stress (σcd), with the axial stress corresponding
to the starting point of the stable crack propagation stage assumed to be equivalent to
the initiation stress (σci) and the axial stress corresponding to the starting point of the
accelerated crack propagation stage assumed to be equivalent to the damage stress (σcd).

As shown in Figure 4 and Table 1, the initiation stress (σci) decreased by 8.8, 20.6,
and 41.1%, whereas the damage stress (σcd) decreased by 9.6, 19.9, and 37.8%, respectively
compared with the case in which the confining pressure unloading was zero. In contrast, the
initiation stress (σci) decreased more when the confining pressure unloading was larger; it
was more sensitive to confining pressure unloading. The differentials between the initiation
stress (σci) and damage stress (σcd) also decreased. This indicates that microdefects such as
microcracks, grain boundaries, and lattice defects in the rock specimens will propagate and
develop when the stress environment changes. Consequently, the stress of the specimens
increased rapidly to the damage stress value after reaching the initiation stress value; the
stable crack propagation stage was shortened and the bearing capacity was reduced.
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Table 1. Differentials between the initiation stress (σci) and damage stress (σcd).

Differentials
Confining Pressure

Unloading
0 MPa

Confining Pressure
Unloading

5 MPa

Confining Pressure
Unloading

10 MPa

Confining Pressure
Unloading

15 MPa

σcd-σci 43.6 38.7 35.6 30.0

Figure 5 reveals that confining pressure unloading affects the strength, which decreases
as the confining pressure unloading increases. When the confining pressure unloading
was 15 MPa, the decrease was more evident, with the uniaxial and triaxial compressive
strengths decreasing by 18.6% and 13.4%, respectively, compared with the case in which
the confining pressure unloading was zero. This is because the specimens all failed by
the point where the confining pressure was unloaded to 6.3 MPa; when the confining
pressure was unloaded to 10 MPa (with an unloading of 15 MPa), it is close to the failure
value of the confining pressure unloading, and the internal structures of the specimens
were persistently damaged. These damages accumulated, resulting in crack propagation
and development, and leading to a considerable decrease in strength. Additionally, the
confining pressure had an inhibitory effect on the decrease in the strength of the specimen.
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Figure 5. Reloading uniaxial/triaxial compressive strength–confining pressure unloading curve.

Wang et al. [35] defined the triaxial compressive initiation stress level (K) of rock,
which reflects the discrete characteristics and structural differences. When K decreases, the
heterogeneity of the rock increases, which can be expressed as follows:

K =
σci
σs

(1)

where K denotes the triaxial compressive initiation stress level and (σs) denotes the triaxial
compressive strength under the corresponding confining pressure.

An analysis of Table 2 shows that increasing the unloading induces the internal
particles of the specimens to move and collide as a result of confining pressure unloading
damage. This causes a gradual structural transition to coarse, large particles, which in
turn causes K to decrease. From a macro perspective, excavation unloading is the main
factor for inducing the changing mechanical properties of slope rock masses, aggravating
the propagation and development rate of internal cracks, and weakening their mechanical
properties in the excavation unloading disturbed zones.
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Table 2. K values corresponding to different levels of confining pressure unloading.

Initiation Stress Level
Confining Pressure

Unloading
0 MPa

Confining Pressure
Unloading

5 MPa

Confining Pressure
Unloading

10 MPa

Confining Pressure
Unloading

15 MPa

K 0.61 0.56 0.51 0.41

3. Particle Flow Simulation
3.1. Simulation Scheme

PFC2D particle flow software was used for the simulation via a particle contact model
based on the commonly used linearpbond model, which effectively reflects the failure
characteristics of rock materials. The 100 × 50 mm numerical model is shown in Figure 6.
The stress path set in the simulation was the same as that used in the laboratory test. The
confining pressure loading of 15 MPa was applied to the control group, and triaxial loading
(confining pressure 25 MPa)→ confining pressure unloading (unloading 5, 10, and 15 MPa)
and triaxial reloading (confining pressure 15 MPa) were applied to the test group. The
loading rate in the PFC2D software was not the same as that applied in the laboratory
test because of its high default damping coefficient. A typical quasi-static simulation can
be conducted at high speeds with a loading rate of 0.15 m/s. The stop condition of the
simulation calculation was triggered when the post-peak axial stress was approximately
40% of the triaxial compressive strength.
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3.2. Parameter Calibration

The linearpbond contact model was used to simulate the properties of sandstone
matrix materials. The model is mainly used to simulate the mechanical behavior of particle
cementing materials and has good adaptability to simulate rock. The linearpbond model
contains two contact interfaces. The first is an infinitely small elastic interface, which does
not bear tension and only transmits force. The second is a linear elastic bonding interface,
which can resist torque. When the force of the linear elastic bonding interface exceeds the
strength limit, the bonding interface is destroyed and only the elastic interface remains. At
this time, the model is equivalent to the linear model, as shown in Figure 7.

The contact bonding state of particles in the PFC2D model determines the macroscopic
mechanical response of the material, whereas the contact bonding state is determined by
mesomechanical parameters such as the bonding modulus and strength.

Consequently, the ideal macroscopic deformation and failure in the simulation were
determined through trial and error accompanied by calibration of the mesoparameter
set. The stress–strain relationship curve shown in Figure 3 was used as the basis for the
calibration. The mesomechanical parameters obtained from the final calibration are listed
in Table 3. The stress–strain relationship curves, hotspot and distribution diagram of cracks,
the average contact force and normal statistics, force chain structure diagram, moment
magnitude distribution, and statistics diagram were obtained using FISH programming.
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Figure 7. Linearpbond model diagram and failure envelope line: (a) Linearpbond model schematic
diagram; (b) Linearpbond model failure envelope. ks—Bond tangential stiffness; kn—Bonding
normal stiffness; σc—Tensile strength; τ/τc—Shearing strength; c/ϕ—Cohesion and friction angle;
µ—coefficient of friction; gs—Bond activation gap; kn—Normal stiffness; ks—Tangential stiffness.

Table 3. Main mesomechanical parameters.

Simulation Scheme Contact Modulus/GPa Contact Tensile
Strength/MPa Contact Cohesion/MPa Other Parameters

Control group 2.30 42.75 42.75 Particle modulus 23/GPa
Density 2500 kg/m3

Minimum particle size
0.25/mm

Maximum particle size
0.5/mm

Particle stiffness ratio 3
Contact stiffness ratio 3

Particle friction
coefficient 0.6

Confining pressure
unloading

5 MPa
1.84 40.5 39.9

Confining pressure
unloading

10 MPa
1.29 35.7 37.8

Confining pressure
unloading

15 MPa
0.97 31.92 33.18

The simulated stress–axial strain and error rate curves are shown in Figure 8. The peak
stress error interval is−1.85% to 2.42% and the peak strain error interval is−1.72% to 2.27%,
both of which are maintained within 3%. The simulated results are consistent with the
actual results, indicating that the setting of the mesomechanical parameters was reasonable.
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PFC2D can be used to study the effect of confining pressure and unloading damage on the
deformation and failure characteristics of sandstone from a mesolevel perspective.
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Figure 8. Loading axial stress—axial strain and error rate curves. Error rate = (measured value −
simulated value)/measured value × 100%.

3.3. Result Analysis

The contact between particles will be destroyed as a result of the bond-breaking
failure induced by external loads. By monitoring and analyzing the cracks generated in the
simulation process, the internal fracture gestation, development, and evolution process of
the model can be determined. Figure 9 shows a hot spot map of the cracks occurring in the
case of model failure.
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Figure 9. Hot spot map of cracks in the case of model failure: (a) Control group; (b) Confining
pressure unloading of 5 MPa; (c) Confining pressure unloading of 10 MPa; (d) Confining pressure
unloading of 15 MPa.

Figure 9 reveals that the areas with dense cracks changed with increasing confining
pressure unloading. In the control group model, three fissure zones exhibited penetration
trends. When the confining pressure unloading was 5 MPa, the cracks were concentrated
in the lower right part of the map, a slight fracture zone was sandwiched in the upper
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shoulder right part, and the penetration fissure zone became increasingly apparent as
the dense crack area began to propagate into the model. When the confining pressure
unloading was 10 MPa, the cracks developed inward continuously, with the cracks in the
corner and bottom continuing to densify; the cracks in the upper right corner and lower left
bottom began to interpenetrate the internal cracks, and the main fracture zone exhibited
a diagonal penetration trend. When the confining pressure unloading was 15 MPa, the
cracks gradually propagated from the middle to both sides, with the cracks in the middle,
both sides, and ends being more concentrated and a more apparent fracture zone formed
along the diagonal. Overall, increasing the confining pressure unloading caused dense
crack areas to become more concentrated in the fracture zone and fracture area.

Figure 10 shows the distribution of different types of cracks when the model has failed,
and Figure 11 shows the corresponding statistical curves. It is evident from the figures
that the distribution of cracks is consistent with the hot-spot distribution of cracks, with a
large number of cracks concentrated in certain areas or distribution zones, which can be
macroscopically shown as shear or tensile crack zones. The ratio of shear to tensile cracks
was approximately 1:15–1:10 and the tensile cracks were dominant, with only a few shear
cracks. The number of compression-shear cracks was relatively small (between 20 and 30).
Tension-shear and shear cracking first decreased before increasing, presumably because the
confining pressure unloading value of 5 MPa was small; the unloading confining pressure
ratio was only 26.8%. The model was compacted, resulting in a decrease in tension-shear
cracking. Increasing the confining pressure unloading caused the total number of cracks to
gradually increase, with test-group crack growths of 8.6%, 16.1%, and 30.0% relative to the
control group, indicating that confining pressure unloading promotes fracture deformation
in the specimens. Moreover, there are tension-shear and compression-shear cracks around
the tensile cracks, as the tensile cracking in the early stages of the model is usually followed
by cracking along the shear plane. It can be surmised that the deformation and failure were
caused primarily by pressure-induced tensile fracturing and hence, can be considered to be
brittle shear failure. Overall, the number of compression-shear cracks was small, indicating
that increasing the unloading causes the mode of model failure to gradually transition to
tension-shear and tensile failure.
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Figure 11. Statistical curves of different types of cracks.

The changes in the geometric (contact force network shape) and mechanical structures
(force chain structure shape) of the particles in mesostructures are closely related to the
macroscopic mechanical properties of the model. To reflect this, the distributions of the
normal, average normal, and average tangential contact forces between the model particles
are plotted in Figures 12 and 13.
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Figure 12. Normal statistical curve of contact force.

Evidently, the normal statistical curve of the contact force is approximately “spindle-
shaped”, and the anisotropic mechanical behavior is apparent, with a rigid rotation between
particles that was relatively strong under loading. The fluctuation was relatively strong in
the 150–210◦ range and more pronounced in the vertical axial direction (near 90◦ and 270◦)
than in the horizontal direction (near 0◦ and 180◦), indicating that the model primarily
bears vertical loading, which is consistent with the actual test results.

The total number of normal contact forces decreased gradually from 19,451→19,438
→19,397→19,165 as the contact fracturing of particles increased and the damage degree
intensified. The average tangential contact forces in the 45–75◦, 105–135◦, 225–250◦, and
270–300◦ intervals increased but diminished in the horizontal direction to within 10 N.
There is a correlation between the average tangential contact force and the crack distribution,
particularly in the 15 MPa confining pressure unloading case where the average tangential
contact force was larger in the 45–60◦, 225–240◦, and 285–300◦ intervals corresponding to
the directions of concentrated crack propagation. The average normal contact force was
larger in the 105–120◦ and 270–285◦ intervals, which is consistent with the loading direction
of the model.
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Figure 13. Statistical diagram of the average contact force: (a) Average of normal contact force;
(b) Average of tangential contact force.

Overall, the normal contact force was greater than the average tangential contact
force; however, with increasing confining pressure unloading, the average normal contact
force decreased, indicating that the normal contacts between particles weakened and the
particles were gradually stretched. Meanwhile, the mean tangential contact force increased
and began to exhibit shear dislocation deformation primarily in the 30–60◦, 210–240◦, and
270–300◦ intervals, with the average value increasing to 100–120 N, which is consistent
with the distribution of the fracture zone. This is possibly related to the decrease in the
unloading path of σ3 in the process of confining the pressure unloading damage.

The standardized normal contact force can be used to analyze the relationship between
the force chain network shape and the deformation and failure of a model. When the
standardized normal contact force of a contact is greater than the average normal contact
force in the region, it can be considered a strong force chain; otherwise, it can be considered
a weak force chain. The standardized normal contact force can be defined as

f =
fn

fn
(2)

where f denotes the standardized normal contact force, fn denotes a single normal contact
force, and fn denotes the average normal contact force of the model.

Figure 14 shows the standardized force chain shape diagram of the model. Evidently,
the distributional shape of the force chains in a specimen characterizes the conduction
process of the force, with the shapes of the force chains under different scheme failures
being clearly different. Increasing the unloading caused strong force chains (thicker lines)
to run through the model and the bearing capacity of the specimen to weaken gradually.
Although the pressure and tension chains were distributed throughout the overall particle
system, the performance of the pressure chains is more apparent, indicating that the state
of the pressure-induced tensile fracturing constitutes the basic form of deformation and
failure. However, the strong force chains, which primarily bear external loads, accounted
for approximately 40% of the total number of force chains. The weaker force chains are
distributed around and connect with the strong force chains, which can bear less tangential
force and only part of the load but play a key auxiliary role in the stability of the strong
force chains.
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Figure 14. Standardized force chain shape diagram: (a) Control group; (b) Confining pressure
unloading of 5 MPa; (c) Confining pressure unloading of 10 MPa; (d) Confining pressure unloading
of 15 MPa; (e) Enlarged diagram of the force chain structure.

In the fissure or macroscopic fracture zone, the strong force chains were more concen-
trated, and the contact force chains were more densely distributed, exhibiting a circular
and crisscross network distribution and forming a dense network force chain structure.
The number of strong force chains changed from 7787→7825→7807→7272; that is, they
first increased and then decreased, which is consistent with changes in the number of shear
cracks, a decrease in the maximum pressure of particle contact, a gradual increase in the
number of buckling of force chains, and the tendency of the strong force chains to shift
toward the direction of confining pressure. This pattern, combined with the information in
the crack distribution and test failure images, indicated that macroscopic fractures occur in
the vacuum areas of the force chains where the deformation differences are large.
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4. Discussion

When preparing pre-peak confining pressure unloading specimens, triaxial loading of
the specified confining pressure and axial pressure should be performed first. If the set axial
pressure is significantly high, it will cause loading damage to the specimen, interfering
with the subsequent confining pressure unloading damage process. Therefore, appropriate
selection of the specified axial pressure value is particularly important to ensure that the
damage to the specimen is solely caused by confining pressure unloading.

Table 4 presents a comparison of the number of cracks that occurred in the specimens
under different unloading pressure conditions. No cracks were observed on loading to
55% of the triaxial compressive strength. When the confining pressure unloading was
15 MPa, the number of cracks was 381, indicating an apparent increase of 34.6 and 6.7 times
occurring under confining pressure unloadings of 5 MPa (11) and 10 MPa (57), respectively.
These results indicate that under a triaxial loading process with a set confining pressure and
axial compression, the loading did not cause damage; instead, the damage was induced by
the confining pressure loading.

Table 4. Number of confining pressure unloading cracks under different confining pressure unloading
conditions.

Confining Pressure
Unloading Conditions

Loaded to 55% of
Triaxial Compressive

Strength

Confining Pressure
Unloading

5 MPa

Confining Pressure
Unloading

10 MPa

Confining Pressure
Unloading

15 MPa

Number of cracks/nos 0 11 57 381

The confining pressure unloading is closely related to the final deformation and failure
of the model. To describe and analyze the relationship between them as quantitatively as
possible, we used simulated acoustic emission for the analysis. The moment magnitude
of the acoustic emission event caused by the breaking of a bond can be calculated by
monitoring the changes in the contact force around the fault source particles. The moment
magnitude reflects the failure intensity of the fracture event, characterizing the dislocation
of the fault surface caused by each event and the energy released as a result. The moment
magnitude calculation formula is expressed as follows [36]:

M =
2
3

lgM0 − 6 (3)

where M0 denotes the scalar moment, M0 =

(
1
2

3
∑

j=1
m2

j

)1/2

, and mj denotes the characteris-

tic value of the moment tensor matrix.
It is evident from the distribution of moment magnitudes in Figure 15 that increasing

the confining pressure unloading causes the moment magnitude distribution to change
from a random scattered distribution to a regular accumulation. In this process, the degree
of damage is continuously strengthened in a manner closely related to the final fracture
shape. In the case of bond fracture failure, the particles on both sides of the fracture produce
a larger energy release—the damage is intensified as the moment magnitude decreases—
which leads to surrounding dislocation deformation and causes the adjacent bonds to
break, resulting in the initiation of microcracks, with a number of similar microcracks
accelerating and converging to form crack clusters. When the number of microcracks
increased to a certain level, the adjacent microcrack clusters propagated and connected to
form dominant fractures, and the moment magnitude decreased gradually. For instance,
the dominant fracture moment magnitude shown in Figure 15c is approximately −3.8,
whereas the potential fracture moment magnitude shown in Figure 15e is approximately
−4.2, with the moment magnitude concentration in the potential fracture area being more
evident and the total microcrack initiation increasing rapidly. In the subsequent triaxial
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loading process, the dominant fractures evolved into a relatively well-defined macroscopic
fracture zone. Finally, the fracture zone was further propagated, forming the basis for the
damage caused by confining pressure unloading disturbance.
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Figure 15. Moment magnitude distribution diagram of the model: (a) Confining pressure unloading
of 5 MPa; (b) Confining pressure unloading of 5 MPa causing loading damage; (c) Confining pres-
sure unloading of 10 MPa; (d) Confining pressure unloading of 10 MPa causing loading damage;
(e) Confining pressure unloading of 15 MPa; (f) Confining pressure unloading of 15 MPa causing
loading damage.

Figure 16 shows the statistical frequencies and proportional distributions of the mo-
ment magnitude values. It can be observed that the moment magnitude of confining
pressure unloading damage is concentrated primarily in the −5.0 to −4.0 range, corre-
sponding to a change in the number of acoustic emissions from 8→51→322, which accounts
for approximately 90–95% of the total number of acoustic emissions and a change in the
average moment magnitude from −4.42→−4.49→−4.53. In the final deformation and frac-
ture process, the moment magnitude is concentrated primarily in the −5.5 to −3.5 range,
corresponding to a change in the number of acoustic emissions from 2158→2377→2690,
accounting for approximately 95% of the total number of acoustic emissions and a change in
the average moment magnitude from −4.28→−4.31→−4.35. It is evident that the number
of acoustic emissions increases with the magnitude of confining pressure unloading as
well as an expansion of the distribution range of the moment magnitude and a decrease
in the average moment magnitude, indicating that the overall damage degree of bonding
fracturing in the model gradually intensifies.
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Figure 16. Statistical frequency and proportional distribution of moment magnitude values. (a) Confin-
ing pressure unloading damage, (b) Loading after confining pressure unloading damage.

5. Conclusions

The deformation and failure law of sandstone after confining pressure unloading
damage was studied using laboratory tests and numerical simulation. This can be used to
effectively analyze the structural damage changes of sandstone in the process of reloading
after confining pressure unloading from a microscopic perspective such as the crack hot
spot, force chain structure, and moment magnitude. The main conclusions drawn based on
the findings of the study are summarized below.

1. There was a positive correlation between the confining pressure unloading and the
peak strain, with the circumferential peak strain proving to be more sensitive to
confining pressure unloading damage effects. A negative correlation was observed
between the strength of a specimen and its confining pressure unloading. The decrease
in strength was more apparent as the unloading failure confining pressure approached.
Confining pressure had a certain inhibitory effect on the attenuation of the bearing
capacity of the specimens.

2. The initiation stress (σci) decreased more than the damage stress (σcd) with increasing
confining pressure unloading. The microdefects in the specimens further propagated
and developed under confining pressure unloading conditions, shortening the stable
crack propagation stage; the differences between the initiation stress (σci), damage
stress (σcd), and triaxial compressive initiation stress level (K) also decreased.

3. With a gradual increase in the confining pressure unloading, the penetration fracture
zone was more evident and expansive in the model, and the distribution of dense
crack areas was more concentrated in the fracture zone and fracture area. The total
number of cracks increased, with tensile cracks being dominant and accompanied
by tension-shear and compression-shear cracks as a result of deformation and failure
caused by pressure-induced tensile fractures.

4. The anisotropic mechanical behavior of the model was evident under deformation
and failure, with increases in bond breaking, weakening of the normal contact force,
and enhancement of the tangential contact force, all of which led to serious damage.
The average interval of the tangential contact force was the largest in the direction of
crack expansion and propagation. The strong force chains were shown to primarily
bear external loads, whereas the weak force chains played a key auxiliary role in
maintaining stability. Macroscopic fractures occurred easily in the vacuum areas of
the force chains.

5. The number of cracks developing in the confining pressure unloading damage pro-
cess indicated that the loading process did not cause damage to the specimens. The
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moment magnitude distributions changed from randomly scattered distributions
to regular accumulations, with dominant fractures accumulating to form potential
fractures. Finally, fracture zones further propagated and formed on the dominant
fractures based on the damage caused by confining pressure unloading disturbance.
Increasing levels of acoustic emissions caused the distributional range of the mo-
ment magnitude to expand and the average moment magnitude to decrease, indi-
cating that the overall degree of damage caused by bonding fractures in the model
gradually intensified.
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