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Abstract: The focus of this article is to present a novel crypto-accelerator architecture for a resource-
constrained embedded system that utilizes elliptic curve cryptography (ECC). The architecture is
built around Binary Edwards curves (BEC) to provide resistance against simple power analysis (SPA)
attacks. Furthermore, the proposed architecture incorporates several optimizations to achieve efficient
hardware resource utilization for the point multiplication process over GF(2m). This includes the use
of a Montgomery radix-2 multiplier and the projective coordinate hybrid algorithm (combination of
Montgomery ladder and double and add algorithm) for scalar multiplication. A two-stage pipelined
architecture is employed to enhance throughput. The design is modeled in Verilog HDL and verified
using Vivado and ISE design suites from Xilinx. The obtained results demonstrate that the proposed
BEC accelerator offers significant performance improvements compared to existing solutions. The
obtained throughput over area ratio for GF(2233) on Virtex-4, Virtex-5, Virtex-6, and Virtex-7 Xilinx
FPGAs are 9.43, 14.39, 26.14, and 28.79, respectively. The computation time required for a single point
multiplication operation on the Virtex-7 device is 19.61 µs. These findings indicate that the proposed
architecture has the potential to address the challenges posed by resource-constrained embedded
systems that require high throughput and efficient use of available resources.

Keywords: elliptic curve cryptography; binary Edwards curve; scalar multiplication; Montgomery
radix-4 multiplier; FPGA

1. Introduction

The internet is a vast network of interconnected computers that enable communication
between people from all over the world. It provides a cost-effective way to communi-
cate over long distances, making it an ideal medium for businesses and organizations [1].
However, with the convenience of the internet, there is always a risk of cyber-attacks [2].
Cyber-criminals can access sensitive information transmitted over the internet, including
personal data, financial information, and corporate secrets. To mitigate this risk, cryp-
tography is one of the techniques that is used to ensure the confidentiality, integrity, and
authenticity of data. It is the practice of securing data by converting it into an unreadable
format called cipher text [3]. The cipher text can only be read by someone who has the
decryption key to convert it back to its original format.

Cryptography can be either symmetric or asymmetric. Symmetric cryptography
uses the same key for both encryption and decryption. The sender and the receiver both
have access to the same key, making it easier to encrypt and decrypt data. However, the
symmetric approach is less secure as the key needs to be shared between the sender and
receiver, making it more vulnerable to cyber-attacks [4]. Asymmetric cryptography, on the
other hand, uses two different keys for encryption and decryption [5]. The sender encrypts
the data with the receiver’s public key, and the receiver decrypts the data with their private
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key. Asymmetric cryptography is more secure than symmetric cryptography as the private
key is never shared, making it more difficult for cyber-criminals to intercept the data. ECC
is a type of asymmetric cryptography that is gaining popularity due to its security and
efficiency [6,7]. It is more secure than RSA [8], another popular asymmetric cryptography
algorithm, because it requires shorter key sizes to achieve the same level of security [9].
This means that ECC is faster and requires less storage space, making it ideal for mobile
devices with limited processing power and storage capacity [10,11].

ECC implementation can be thought of as a stack of four distinct layers [3]. The
foundation of the stack is the arithmetic operations layer, which includes the fundamental
building blocks of mathematics such as addition, subtraction, multiplication, and division.
These operations form the basis of elliptic curve group operations, which enable ECC’s
security and efficiency. The second layer of the stack is the point addition and point
doubling layer, which enables the construction of new points on the elliptic curve by
performing operations that combine existing points. This layer is a key component in
ECC’s scalability, as it allows for the generation of multiple points from a single base point.
The third layer of the stack is point multiplication, which involves multiplying a point on
the elliptic curve by a scalar. This layer is responsible for generating the final result of ECC
operations, which are new points on the curve. The fourth and final layer is the protocol
layer, which includes the implementation of ECC-based protocols used for key exchange,
digital signatures, and encryption. This layer is responsible for the practical application of
ECC, enabling secure communication and data protection in a wide range of contexts.

One of the important challenges in implementing ECC is the risk of side-channel
attacks [12], where an attacker can extract information from the implementation of the
algorithm rather than trying to break the mathematical problem. One way to mitigate this
risk is to use the hybrid algorithms that combine multiple techniques, such as Montgomery
ladder and double-and-add algorithms. It can potentially increase the resistance to SPA
attacks [13,14]. In this context, Binary Edwards curves [15], which are known for their
ability to resist side-channel attacks, are being increasingly used in various high-security
applications. Compared to Binary Huff curves [16] and Hessian curves [17], Binary Ed-
wards curves are not only faster and more secure, but also have a smaller key size and
require less computational resources, making them ideal for constrained environments [6].
The potential use of these curves can be found in applications such as cloud computing [18],
secure messaging [19], digital signatures [20], and internet of things [21–23], where high se-
curity, high throughput, and efficient resource utilization are critical. Overall, the adoption
of Binary Edwards curves can significantly enhance the security of these applications while
maintaining optimal performance.

1.1. Related Work

Recent years have seen the development of several FPGA-based implementations
for point multiplication on Binary Edwards curves (BECs) with a focus on optimizing
speed and resources. One study, published in [24], presents two different architectures
for general and special formulations of BECs. These architectures utilize optimized finite
field multiplication techniques and multiple finite field multipliers to improve efficiency
and accelerate high-speed applications. The general BEC architecture used 2272, 5919,
and 4581 slices for different curve parameters, with latencies of 74.55, 26.24, and 51.46,
respectively, on a Virtex-5 platform.

For special formulations of BECs, two different structures were presented based on
three and two parallel multipliers. The three parallel multiplier implementations achieved
high speed, but required high hardware resources, with 4454 hardware resources and
a latency of 34.61 microseconds for curve parameters d1 and d2 equal to 59. The two
multiplier implementation achieved a low hardware resource of 3521 slices, but with a high
latency of 57.43 microseconds for curve parameters d1 and d2 equal to 59. These results
highlight the trade-off between hardware resources and latency in the implementation of
BEC architectures for high-speed applications.
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In [25], a reconfigurable processor architecture has been proposed for implementing
Binary Edwards curves (BECs) in cryptographic algorithms. The architecture was imple-
mented on the Virtex-4 platform and achieved a maximum clock frequency of 48 MHz. The
study demonstrated that the architecture required 21,816 slices for BECs and 22,373 slices
for BECs with halving, indicating a minimal increase in hardware resources needed for
the halving operation. The presented architecture is flexible and can be reconfigured for
various curve parameters, making it suitable for implementing BEC-based cryptographic
algorithms. In [26], the focus is on optimizing the area for embedded devices with limited
resources, and the authors have proposed a digit-serial multiplier and m-bit XOR layer for
this purpose. The area figures for Virtex 6 and Virtex 5 are reported as 2138 and 2153 slices,
respectively.

To optimize both the throughput and area, the authors in [27] have employed a pipelined
digit-serial multiplier to perform successive PA and PD computations, which reduces
the critical path, conserves clock cycles, and optimizes the clock frequency. For a curve
parameter of d = 59, the implemented hardware has used 8875 slices on the Virtex-5
platform for GHC, with a latency of 11.03 microseconds, and 11,494 slices for BEC with
a latency of 11.01 microseconds.

Other recent studies, such as [28,29], have proposed architectures to optimize different
design factors such as latency, area, and throughput. In [28], a comb PM technique is
employed to create low-complexity (LC) and low-latency (LL) architectures. The LC
design offers significant improvements of 62%, 46%, and 152% for GF(2233), GF(2163), and
GF(2283), respectively. Additionally, the LL architecture enables faster computation of one
PM operation.

The authors in [30] have introduced a modular radix-2 interleaved multiplier that
can improve low-latency architecture by reducing computing time, clock cycles, and area.
This multiplier uses the Montgomery ladder algorithm to perform PM. Similarly, the work
in [15] has presented a low-complexity architecture for PM that uses a digital parallel least
significant multiplier and instruction scheduling to optimize hardware resources. The
architecture has been tested on Virtex 4, Virtex 5, Virtex 6, and Virtex 7 platforms.

1.2. Research Gap

Some potential research gaps in the field of FPGA-based implementations for point
multiplication on Binary Edwards curves (BECs) include:

• Limited focus on optimizing multiple design factors: While many of the studies dis-
cussed in Section 1.1 focus on optimizing either area, latency, or throughput, there may
be a need for further research that can balance these factors in a more holistic manner.
For example, an architecture that achieves high throughput and low latency but also
minimizes hardware resources could be useful in many high-speed applications.

• Investigating novel multipliers: Many of the existing implementations use pipelined
digit-serial multipliers to optimize throughput, but there may be other novel modular
multipliers that could further improve performance.

• Limited evaluation of security and robustness: While the studies discussed in
Section 1.1 focus on optimizing speed and resources for BEC architectures, there
is limited discussion on the security and robustness of these architectures. Further
research could evaluate the effectiveness of these architectures in resisting attacks and
ensuring data integrity, which is crucial for many cryptographic applications.

1.3. Contributions

The article targets to increase the speed of the architecture while using less hardware
resources, and it presents various contributions towards achieving this goal.

• The proposed hybrid algorithm combines two different approaches, Montgomery
ladder and Double and Add algorithm, to achieve unprecedented performance im-
provements. The Montgomery ladder algorithm is a commonly used method for scalar
multiplication in elliptic curve cryptography, while the Double and Add algorithm is
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a simple and efficient method for point addition and doubling. By combining these
two algorithms, the proposed hybrid algorithm is able to leverage the strengths of
each approach and achieves better performance than either algorithm used alone.

• The proposed multiplication technique, based on radix-2 arithmetic, is a method for
performing modular multiplication in a more efficient way. This technique splits the
multiplication process into smaller subproblems and performs them using radix-2
arithmetic. By using this approach, the proposed algorithm is able to perform modular
multiplication more efficiently and accurately, which is a critical operation in many
cryptographic algorithms.

• The proposed two-stage pipelining technique is a method for increasing the through-
put of the entire architecture by splitting the computation into smaller stages and
processing them in parallel. This approach reduces the overall latency of the algorithm
and allows for higher clock frequencies, resulting in faster computation times. By
using this technique, the proposed algorithm is able to process more data in a shorter
amount of time, making it more efficient and effective for real-world applications.

• A Finite State Machine (FSM) has been created to control the data path of a proposed
architecture. This control path efficiently manages the operations of the data path.

The structure of the article is described as follows: Section 2 provides the theoretical
background pertaining to BEC. Section 3 describes the proposed hybrid algorithm that
has been implemented in this article. Section 4 describes the proposed optimizations for
performance improvement. Section 5 provides information on the proposed hardware
architecture. The main findings of the article are discussed in Section 6. Finally, the
conclusions are made in Section 7.

2. Mathematical Background

Section 2.1 contains the BEC equations for both prime and binary fields. In Section 2.2,
there is a description of the unified mathematical formulation. Section 3 provides informa-
tion about the point multiplication computations and the hybrid algorithm.

2.1. BEC Equations over GF(2m)

Harold Edwards developed a comprehensive model for Binary Edwards curves (BECs)
in 2007, which includes a complete group law. The mathematical representation of BECs
over a prime field with coefficient d is given by Equation (1)

x2 + y2 = 1 + dx2y2 (1)

In Equation (1), x and y represent the initial points, and d represents the curve param-
eter. However, working with large prime fields can be challenging, so Bernstein proposed
a binary version of Edwards curves to overcome this issue.

EB,d1,d2 : d1(x + y) + d2(x2 + y2) = xy + xy(x + y) + x2y2 (2)

Equation (2) shows the binary form of Edwards curves, where x and y denote the
initial points, and d1 and d2 represent the curve parameters. Equation (2) holds true when
d1 is not equal to 0 and d2 is not equal to d2

1 + d1.

2.2. Unified Mathematical Formulation

The table presented as Table 1 outlines the differential PA and PD instructions for BEC
over GF(2m). These instructions are comprised of 7 complex steps and require a memory
unit capable of storing initial, intermediate, and final results, with a total memory require-
ment of 11×m, where 11 represents the number of memory locations and m represents the
width of each location. The BEC curve parameters in the table, denoted as e1, e2, and w,
are computed based on a rational function for an elliptic curve E over GF and the values
of d1 and d2. The initial projective points are represented by W1, Z1, W2, and Z2, while the
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final points are represented by Za, Zd, Wa, and Wd. Intermediate values are stored in A, B,
and C.

Table 1. PA and PD instructions.

Instructions Original Formulas

Instr1 A←W1 × Z1

Instr2 B←W1 ×W2

Instr3 C← Z1 × Z2

Instr4 Wd ← A× A

Instr5 Zd ← ((e1 ×W1 + Z1)
4)

Instr6 Za ← (e2 × B + C)2)

Instr7 Wa ← (B× C+ w ×Za)2

3. Proposed Hybrid Algorithm

This article has performed the computation of point multiplication (PM) over Binary
Edwards curves (BEC) using the Hybrid algorithm. The algorithmic details are provided
in Section 3.1. Subsequently, the significance of the hybrid algorithm is highlighted in
Section 3.2.

3.1. Algorithmic Details

Given a scalar multiplier k and a starting point P, the PM operation computes the
point Q, which is equal to k times P. This can be expressed as Q = K(P + P + . . . + P),
where there are K terms in the sum.

To convert a point P from affine coordinates to ω coordinates as shown in Algorithm 1,
we calculate the values of W2 and Z2 using the formula W2 = x(P) · Z−1

2 and Z2 = 1. We
set W1 and Z1 to 0. For point multiplication, we iterate over the binary digits of scalar
k from the most significant bit to the least significant bit. For each bit i, we perform the
following steps:

• If the i-th bit of k is 0, we perform a point addition operation P = P + Q and update
the ω coordinates of the points using the dADD function. We set (W1 : Z1), (W2 :
Z2) = dADD((W0 : Z0), (W1 : Z1), (W2 : Z2)), where (W0 : Z0) is the ω coordinates
of P.

• If the i-th bit of k is 1 and the (i− 1)-th bit is 0 or i = m− 1, we perform a double-and-
add operation. We double the current value of the result using the double function,
and update the ω coordinates of the points as (W1 : Z1), (W2 : Z2) = double((W1 :
Z1), (W2 : Z2)).

• If the i-th bit of k is 1 and the (i − 1)-th bit is also 1, we perform a point addition
operation Q = P + Q using the current value of P, and update the ω coordinates of
the points as (W2 : Z2), (W1 : Z1) = dADD((W0 : Z0), (W2 : Z2), (W1 : Z1)).

After iterating over all the bits of k, we return the ω coordinates of the resulting point
Q as (W1 : Z1), (W2 : Z2).
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Algorithm 1: Hybrid Montgomery and double-and-add algorithm

Input: EB,d1,d2 /GF(2m) : d1(x + y) + d2(x + y)2 = xy(x + 1)(y + 1), P ∈ EB,d1,d2 and k = (km−1, . . . , k1, k0)
Output: Q = w(k.P)
W1 = 0, Z1 = 1, W2 = w(P), Z2 = w(P) . Step-1: —Conversions from Affine to ω Coordinates.

for (i from m− 1 down to 0) do
. Step-2: —Point Multiplication.

if ki = 0 then
PointAddition→ P = P + Q
((W1 : Z1), (W2 : Z2)) := dADD((W0 : Z0), (W1 : Z1), (W2 : Z2))

else
if ki 6= ki−1 then

Q = P + Q
((W2 : Z2), (W1 : Z1)) := dADD((W0 : Z0), (W2 : Z2), (W1 : Z1))

else
((W1 : Z1), (W2 : Z2)) := double((W1 : Z1), (W2 : Z2))

End If
End If

End For
Return : (W1 : Z1), (W2 : Z2)

3.2. Benefits of the Hybrid Algorithm

The hybrid algorithm aims to efficiently perform point multiplication on BEC in ω
coordinates. The benefits of a hybrid approach are as follows:

• Efficient point multiplication: The algorithm uses a combination of Montgomery lad-
der and double-and-add methods to perform point multiplication on BEC efficiently.

• Reduced number of point additions: The algorithm performs point addition only when
the current bit of the scalar is 0. This reduces the number of point additions required
as compared to the standard double-and-add algorithm, where point additions are
performed at every iteration.

• Reduced number of point doublings: The algorithm performs point doubling only
when two consecutive bits of the scalar are 1. This further reduces the number of point-
doubling operations compared to the standard double-and-add algorithm, where
point-doubling is performed at every iteration.

Overall, the hybrid algorithm provides an efficient way to perform point multiplication
on BEC. The Montgomery ladder algorithm provides efficient scalar multiplication without
revealing any intermediate values, while the double-and-add algorithm improves the
performance of the scalar multiplication by avoiding unnecessary additions and doublings.

4. Proposed Optimizations

To enhance the throughput/area ratio, this article utilizes two-stage pipelining and
modular multiplier technique. The former breaks down computation into smaller stages,
reducing the critical path delay and improving throughput. The latter technique reduces
clock cycles needed for multiplication, optimizing clock frequency and performance.

4.1. Optimizing Hardware Designs with Pipelining: Three Approaches for Division and
Register Placement

Pipelining is a widely used method to enhance the processing speed of hardware
designs. To optimize the pipelining process, the circuit is divided into three sections:
pre-calculated data and output data from the memory unit for the read operation, arith-
metic logical unit (ALU) operations for the execute operation, and the routing network
associated with the memory unit for the write-back operation. This division leads to three
possible outcomes.
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The first outcome is non-pipelined, where the read, execute, and write-back operations
occur in a single cycle. The second outcome is a 2-stage pipelined design, with a register
placed at the input of the ALU. This design allows us to read in the first cycle and execute
and write-back in the second cycle. The third outcome is a 3-stage pipelined design where
registers are used for both the input and output of the ALU. This design allows for read,
execute, and write-back operations to occur in three different cycles.

Comparing the first two outcomes, the 2-stage pipelined design offers a better through-
put/area ratio than the non-pipelined architecture. However, adding a third pipeline stage
for write-back is not necessary as it can increase the number of clock cycles due to po-
tential RAW hazards. Additionally, increasing the number of registers at the output of
the ALU can reduce the overall throughput/area ratio. Therefore, it is concluded that the
2-stage pipelined design with pipeline registers at the input of the ALU is the most efficient
architecture for this processor design.

4.2. Instructions and Scheduling for Differential Addition Law in Two-Stage Pipelined Architecture

Table 2 outlines the instructions required to implement the differential addition law of
Algorithm 1 in a two-stage pipelined architecture. The table provides details on the number
of clock cycles required for each instruction, the instructions themselves, and the merging
of multiple operations to reduce the complexity of the instructions. Furthermore, the table
includes information on the status of the two-stage pipelining, as well as the potential RAW
hazard that may occur due to the pipelining. The proposed scheduling for the instructions
of the unified differential law formulas is also presented in columns six through eight.

Table 2. Proposed optimized version of BEC instructions.

Two Stage Pipelining with Original Formulas Two Stage Pipelining with Proposed Formulas

CCs Instructions Without Scheduling With Scheduling

− − Instructions Pipeline Status RAW Instructions RAW Pipeline Status

1 Instr1 A = W1 × Z1 R[I1] − T1 = W1 × Z1 − R[I1]

2 Instr2 B = W1 ×W2 R[I2], E[I1], WB[I1] − T2 = W1 ×W2 − R[I2], E[I1], WB[I1]

3 Instr3 C = Z1 × Z2 R[I3], E[I2], WB[I2] − T3 = Z1 × Z2 − R[I3], E[I2], WBI2

4 Instr4 Wd = A× A R[I4], E[I3], WB[I3] − T4 = T1 × T1 − R[I4], E[I3], WB[I3]

5 Instr5 T1 = e1 ×W1 R[I5], E[I4], WB[I4] − W0 = e1 ×W1 − R[I5], E[I4], WB[I4]

6 Instr6 T2 = T1 + Z1 E[I5], WB[I5] T1 Z0 = W0 + Z1 − R[I6], E[I5], WB[I5]

7 Instr7 T3 = T2 × T2 R[I6] T2 merged − R[I7], E[I6], WB[I6]

8 Instr8 Zd = T3 × T3 E[I6], WB[I6] T3 T1 = (Z0Z0)
2 − R[I8], E[I7], WB[I7]

9 Instr9 T1 = e2 × B R[I7] − W0 = e2 × T2 − R[I9], E[I8], WB[I8]

10 Instr10 T2 = T1 + C R[I8], E[I7], WB[I7] T1 Z0 = W0 + T3 − R[I10], E[I9], WB[I9]

11 Instr11 Za = T2 × T2 R[I9], E[I8], WB[I8] T2 W0 = Z0 × Z0 − R[I11], E[I10], WB[I10]

12 Instr12 T2 = B× C E[I9], WB[I9] − Z0 = T2 × T3 − R[I12], E[I11], WB[I11]

13 Instr13 T3 = w× Za R[I10] T3 T2 = w×W0 − R[I13], E[I12], WB[I12]

14 Instr14 Wa = T3 + T2 E[I10], WB[I10] − T3 = Z0 + T2 T2 E[I13], WB[I13]

15 − − R[I11] − − − R[I14]

16 − − R[I12], E[I11], WB[I11] − − − E[I14], WB[I14]

17 − − R[I13], E[I12], WB[I12] − − − −

18 − − E[I13], WB[I13] − − − −

19 − − R[I14] − − − −

20 − − E[I14], WB[I14] − − − −
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4.3. Storage Elements and RAW Hazard Description

The proposed architecture employs a total of 14×m storage elements, which serve
various purposes. These elements include A, B, C, Wd, Zd, Wa, Za, W1, W2, Z1, Z2, T1, T2,
and T3. The initial projective points are stored in W1, Z1, W2, and Z2, while the updated
values of the final projective point are saved in Wa, Za, Wd, and Zd, as indicated in column
3 of Table 2. Meanwhile, intermediate results are stored in the remaining storage elements,
namely A, B, C, and T1 to T3.

When executing R, E, and WB in a single clock cycle, each operation requires 14 cycles
(refer to column 3 of Table 2). However, when employing 2-stage pipelining, certain
instructions, including Instr6, Instr7, Instr8, Instr10, Instr11, and Instr13, are vulnerable to
RAW hazards, as specified in column seven of Table 2. For instance, there is a RAW hazard
when writing to Instr6, which results in a one-cycle delay because it necessitates two cycles
to compute the new value of T1. Hence, accounting for the RAW hazard, a total of 20 cycles
are necessary for each unified PA and PD.

4.4. Optimizing Instruction Scheduling to Reduce Hazards and Hardware Resources

In order to optimize hardware resources and reduce hazards, it is common practice
to perform instruction scheduling. As seen in Column three of Table 2, Instr7 and Instr8
are executed in two separate clock cycles, where T3 is first computed as the result of
T2 × T2, and then used as an input for the subsequent multiplication in Instr8 to compute
Zd. However, an alternative approach is described in column six of Table 2, where the
squarer unit is used immediately after the multiplier unit. This allows Instr7 and Instr8
to be executed in a single clock cycle, resulting in several benefits. Firstly, it reduces the
total number of instructions required, leading to better performance. Secondly, it reduces
the number of required storage elements from 14×m to 10×m, thereby saving valuable
hardware resources. Lastly, it also reduces the clock cycles required when computing PM
for m bit (233).

The scheduling approach outlined in column six of Table 2 has the advantage of
resulting in only a single RAW hazard in the context of pipelining, as noted in column
seven. When computing the PA and PD formulations using a 2-stage pipelined architecture,
this approach requires a total of 16 clock cycles, which is fewer than the number of clock
cycles required when executing Instr7 and Instr8 in separate cycles. Overall, the reduction
in the number of clock cycles required, coupled with the reduction in the number of
storage elements needed, makes this approach a more efficient use of hardware resources.
Additionally, by reducing the total number of instructions required, this approach can also
improve performance.

5. Proposed Hardware Architecture

The proposed accelerator architecture is motivated by the need to improve the perfor-
mance of ECC curve (BEC) operations in resource-constrained devices. ECC is a popular
choice for cryptography, but it can be computationally expensive. The proposed accel-
erator architecture can improve the performance of ECC operations, making them more
suitable for use in resource-constrained devices. The proposed accelerator architecture is
designed to improve the performance of BEC operations in resource-constrained devices.
The architecture is based on a number of design principles, including:

1. Data parallelism: The architecture exploits data parallelism by performing multiple
BEC operations at the same time. This can significantly improve the performance of
BEC operations.

2. Pipelining: The architecture uses pipelining to overlap the execution of different BEC
operations. This can further improve the performance of BEC operations.

3. Modular multiplication: The architecture uses modular multiplication to reduce
the number of arithmetic operations required to perform BEC operations. This can
improve the performance and energy efficiency of BEC operations.
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5.1. Overview of the Architecture

The proposed architecture is composed of several components, including a memory
unit (MU) for storing intermediate and final results, routing networks (RN) for transferring
data, a read-only memory (ROM) for reading BEC parameters, an arithmetic logic unit
(ALU) for performing computations, and a finite state machine (FSM) for generating
control signals. To achieve pipelining, registers are placed at the input of the ALU. The
design is based on the parameters recommended by the National Institute of Standards
and Technology (NIST). Detailed descriptions of each component are provided in their
respective Sections 5.2–5.6.

5.2. Memory Unit

The proposed architecture utilizes a memory unit with a size of 10 × m to store
intermediate and final results, as illustrated in Figure 1. Here, the value 10 refers to the
number of memory locations, while m represents the width of each memory location.
The initial projective points are stored in storage elements W1, Z1, W2, and Z2, while the
updated projective points are stored in T4, T1, W0, and T3. Additionally, the intermediate
results, as presented in Table 2, are stored in Z0 and T2.

Figure 1. Proposed BEC architecture.

To store these storage elements in memory locations, a 1× 10 demultiplexer (DEMUX)
with control signal WRITE_ADDR is employed. Two multiplexers, RF1 and RF2, are
utilized to retrieve storage elements from the memory unit for further processing, with
control signals RF1_ADDR and RF2_ADDR. The size of RF1 and RF2 is 10×m. The output
of RF1 is RF1, while the output of RF2 is RF2.

5.3. Routing Networks

The proposed architecture, shown in Figure 1, utilizes three routing networks (RN2,
RN3 and RN4) to transfer data between different modules. The input data, including base
coordinates x and y, the output of RN1, and the output of RF1 and RF2, are fed into RN2
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and RN3. Control signals RN_OP1_ADDR and RN_OP2_ADDR are used to select the
appropriate data for processing. The sizes of RN2 and RN3 are 5× 1. RN4, with a size of
3× 1, is utilized to select the output of the ALU as its input. This architecture efficiently
transfers data between the different modules, ensuring smooth operation and minimizing
processing delays.

5.4. Read Only Memory

The proposed architecture employs a read-only memory (ROM) to access pre-calculated
curve constant values. The RN1 has a size of 3× 1 and is depicted in Figure 1. It uses
a single multiplexer to select one of the three constant values (e1, e2, and w).

5.5. Arithmetic Logic Unit

The proposed two-stage pipelined architecture includes adder, multiplier, and squarer
units, as shown in Figure 1. To implement the adder unit, m bitwise exclusive OR gates
are used, where m represents the key length. Multiplication is a crucial operation in
cryptographic applications, and there are several techniques available in the literature. In
this work, we utilize the Montgomery radix-2 multiplier, which is discussed in detail in
Section 5.5.1. The squarer unit is placed after the multiplier unit, as seen in Figure 1. By
adding a “0” after each input data value, the squarer unit is implemented, as described
in [31]. The squarer unit’s purpose is to minimize the total number of clock cycles (CCs)
required for PM calculation, as instructions such as (A× B)2 can be computed using the
squarer unit. After each polynomial multiplication and squaring unit, an inverse operation
is necessary. The quad block Itoh–Tsujii method [15] is employed using the multiplier and
squarer units to execute the inversion operation.

5.5.1. Montgomery Radix-2 Multiplier

The Montgomery multiplication method is a technique that replaces expensive division
operations with simpler shift and addition operations, resulting in faster modular arithmetic
computations. The radix-2 Montgomery method is a basic implementation of this method,
as shown in Algorithm 2. The loop in the algorithm iterates over each element in the input
vectors Xp and Yp, and computes a partial product Xpi ×Yp for each element. The partial
product is added to the accumulator A in step 1.

A[0] refers to the least significant bit of the accumulator A. In step 2 of the algorithm,
the value of A[0] is used to determine whether to add the modulus p or not. If A[0] is
1 (i.e., the result of the addition operation in step 1 is odd), then p is added to A in step
3 to make it even. If A[0] is 0 (i.e., the result of the addition operation in step 1 is even),
then adding p to A in step 3 has no effect on the value of A, and the algorithm proceeds to
step 4 to shift A right by one bit. The result Zp is then returned. By replacing the division
operation with shift and addition operations, the radix-2 Montgomery method results in
a faster modular multiplication algorithm.

Note that the input parameters p, Xp, and Yp are preprocessed to satisfy certain
conditions, which are necessary for the correctness of the algorithm. Specifically, p is
expressed in the form ∑n−1

i=0 p2
i , where pi are binary digits, Xp and Yp are less than p, and R

is equal to 2n. These preprocessing steps are not explicitly shown in Algorithm 2.
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Algorithm 2: Montgomery radix-2 multiplier.

Input: p = ∑n−1
i=0 p2

i , Xp = (∑n−1
i=0 X2

pi
) < p, Yp = (∑n−1

i=0 Y2
pi
) < p, R = 2n

Output: Zp = (Xp×Yp) mod p
A = 0
for i = 0 to n − 1 do

1. A = A + Xpi ×Yp
2. qi = A[0] mod 2
3. A = (A + qi × p)
4. A = A >> 1

end
return Zp = A;

5.5.2. Montgomery Radix-2 Architecture

The proposed hardware architecture for the radix-2 Montgomery multiplier is illus-
trated in Figure 2. The architecture comprises two multiplexers: MUX_A and MUX_B.
MUX_A and MUX_B both have a size of 2× 1. MUX_A is responsible for selecting the
partial product PPi, which is either Yp or 0, depending on the value of Xpi. Once the
appropriate PPi is selected, it is added to the output Zp. The least significant bit (LSB) of
Adder_A is input into MUX_B, where it selects either 0 or the prime number. The remaining
bits of Adder_A are then added to the output of MUX_B and shifted right by 1. The final
output is computed by performing n iterations of this process.

Figure 2. Montgomery radix-2 multiplier.
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5.6. Control Unit

The control unit design for the BEC model of ECC consists of FSMs. In the case of the
pipelined architecture, the control unit requires 101 states to execute all its functionalities.
Here is a detailed description of the 2-stage pipelined architecture.

The first state (State 0) is the idle state. When the reset and start signals are activated,
the execution process begins. As shown in Figure 3, the start signal triggers the transition
from State 0 to State 1. State 1 to State 6 produces control signals for affine to omega
conversions of Algorithm 1. State 7 to State 72 produces control signals for Quad block
Itoh–Tusuji inversion operation. State 73 in the FSM counts the number of points on the
provided BEC curve and verifies the examined key bit (k).

If the value of k is 1, State 73 transitions to State 88; otherwise, it transitions to State 74.
States 88 to 100 generate control signals for computing the “if” part of Algorithm 1, while
States 74 to 87 produce control signals for the “else” part of Algorithm 1.

States 87 and 100 are crucial since they check the number of points on the BEC curve
(using m in Figure 3) for each value of k (either 0 or 1). The next state is State 101, which is
reached when the value for m (initially set to 1) reaches 233. If m has not reached 233, the
next state is State 73.

Figure 3. Control unit of proposed architecture.

5.7. Clock Cycles Information

Equation (3) describes the mathematical formula used for calculating the clock cycle
information. The term “Initial” corresponds to the initialization phase of the architecture.
The computation of point multiplication in the case of two-stage pipelining is determined
by 16× (m− 1), while the quad block Itoh–Tusuji computation is represented by the term
“inversion”. The same equation can be used to calculate the number of clock cycles in
the case of a non-pipelined architecture, but the number 16 is replaced with 13 in the
Equation (3).

clockcycles = Initial + 16× (m− 1) + Inversion (3)

The results are summarized in Table 3. The first row of Table 3 specifies the parameters,
while the second row determines the key length information. The third and fourth rows
provide the results for the no-pipelined and two-stage pipelined architectures. The initial
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states for Algorithm 1 with and without pipelined architectures are 12 and 6, respectively.
The key length is 233. The third and fourth rows specify the clock cycle for the PM
computation. Similarly, the cost of inversion is determined in row five. Finally, the last row
provides the total number of required clock cycles for Algorithm 1.

Table 3. Timing information.

Parameters Without-Pipeline Two Stage Pipeline

Initial 6 12
Key Length 233 233
13× (m− 1) 3016 −
16× (m− 1) − 3712
Inversion 1276 2563
Total Cycles 4298 6287

6. Results and Comparison

The next section of this article is divided into three subsections. In the first subsection,
Section 6.1, we describe the hardware and software used to implement the BEC model of
ECC. In Section 6.2, we discuss the different performance metrics that were considered
during the analysis of our design. Finally, in Section 6.3, we present a comparison between
our design and existing state-of-the-art implementations.

6.1. Hardware and Software Requirements

The Verilog (HDL) language was utilized to implement the two-stage pipelined archi-
tecture. The implementation was carried out on various Xilinx devices, which included
Virtex 4, Virtex 5, Virtex 6, and Virtex 7. To synthesize the design, we selected the Xilinx ISE
(14.7) design suite as our platform of choice.

6.2. Performance Metrics

To create more efficient systems, it is essential to evaluate performance metrics, in-
cluding slices, LUTs, throughput/area, and time. These metrics enable us to measure the
effectiveness and efficiency of a design in terms of the utilized hardware resources and the
speed of computation. Throughput/area, a valuable metric, is determined by Equation (4)
and indicates the number of computations that can be executed per slice. This enables us
to evaluate the area efficiency of a design and its capacity to perform computations per
unit of hardware. The number of slices and LUTs utilized are crucial metrics in evaluating
the hardware resources required for a design. By minimizing these metrics, we can lower
the cost of the system and enhance its efficiency. Moreover, time is a critical metric in
measuring the speed of computation, typically measured in microseconds. Enhancing the
time required for a single PM computation can boost the system’s overall efficiency and
decrease the time needed to execute complex computations.

throughput
area

=
throughput (Q = k · p in µs)

slices
(4)

The simplified form of Equation (4) is represented in Equation (5):

throughput
area

=

106

time (or) latency (Q= k·p in s)

slices
(5)

The throughput formula, described in Equation (5), calculates the speed of computing
one PM (Q = k · p in s) by taking the reciprocal of the time taken. Slices refer to the area
utilized on the FPGA device. The BEC curve has two points: P and Q, representing its
start and end points, respectively. The scalar multiplier is k. The term 106 in Equation (5)
converts the time (measured in microseconds) to seconds. To compute the time required
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for one PM, use Equation (6), and the values are presented in column 6 of Table 4. By
optimizing these values, the system’s efficiency can be improved, and the computation
time can be reduced.

time (or) latency =
required (CCs)

operational clock f requency
(6)

Equation (6) specifies the computation of the required clock cycles (CCs) necessary to
perform one PM operation. The values for the required clock cycles are presented in Table 3,
while the corresponding operational clock frequency (measured in MHz) is provided in
column 3 of Table 4.

Overall, by considering all of these metrics, we can design more efficient and effective
systems that use the available hardware resources in the best possible way, and complete
computations more quickly. This can result in significant improvements in performance and
efficiency, making our designs more competitive and effective in their respective domains.

Table 4. Comparison of implemented results with state-of-the-art implementations.

References# Platform Frequency Slices LUTS Time T/Slices
(in MHz) (in µs)

Virtex 4 Results

BEC [25] Virtex-4 48 21,816 35,003 − −
BEC halving [25] Virtex-4 48 22,373 42,596 −
GBEC: d = 59 − 3M [26] Virtex-4 255.570 29,255 − 14.83 2.38
GBEC: d = 59 − 1M [26] Virtex-4 257.535 12,403 − 32.81 2.45
BEC: d = 59 [32] Virtex-4 277.681 31,702 − 13.39 2.35
GBEC: d = 59 [15] Virtex-4 127.261 17,158 2663 25.5 2.28

Virtex 5 Results

GBEC: d = 59 − 3M [33] Virtex-5 337.603 9233 − 11.22 9.67
GBEC: d = 59 − 1M [33] Virtex-5 333.603 4019 − 25.03 9.94
GBEC: d1 = d2 = 59− 3M [24] Virtex-5 − 4581 − 51.46 4.24
BEC: d1 = d2 = 1 [26] Virtex-5 205.1 1397 4340 4560 0.1569

Virtex 6 Results

BEC: d1 = d2 = 1 [26] Virtex-6 107 1245 3878 6720 0.119
GBEC: d = 59 [15] Virtex-6 186.506 2664 22,256 17.39 21.5

Virtex 7 Results

GBEC: d = 26 [15] Virtex-7 179.81 2662 24,533 18.04 20.82

BEC architectures over GF(p) field

ED25519 [29] Virtex-6 93 6600 − 2130 0.071
CURVE25519 [34] Zynq7000 137 − 7380 511.78 0.26

Without Pipeline

GBEC: d = 59 Virtex-4 89.2 3192 2525 48.18 6.5
GBEC: d = 59 Virtex-5 130.119 2532 2432 33.03 11.95
GBEC: d = 59 Virtex-6 178.223 1660 3087 24.11 24.98
GBEC: d = 59 Virtex-7 198.244 1662 3470 21.6 27.85

Two Stage Pipelined Architecture

GBEC: d = 59 Virtex-4 195.508 3302 2723 32.1 9.43
GBEC: d = 59 Virtex-5 245.669 2714 2502 25.59 14.39
GBEC: d = 59 Virtex-6 290.92 1770 3597 21.61 26.14
GBEC: d = 59 Virtex-7 320.584 1771 4470 19.61 28.79

The amount of multipliers that are effectively used in the architecture is determined by M. T/slices—is
throughput/slices.
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6.3. Performance Comparison

For a fair comparison with existing solutions, we synthesized the proposed design
using the same Xilinx FPGA devices. The synthesized results are presented in Table 4.
The first column of Table 4 lists the specifications of both the reference and proposed
solutions, while the second column indicates the platform used. The third column displays
the frequency in MHz, and the hardware resources are shown in columns 4 and 5. The time
required to perform a single PM operation is listed in column 6 of Table 4, expressed in
microseconds (µs). The last column of the table (column 7) presents the throughput/ratio.

6.3.1. Virtex 4 Comparison

The proposed cryptographic accelerator design has demonstrated superior perfor-
mance in terms of throughput/area and resource efficiency, particularly in low-resource
environments such as IoT devices on Virtex 4 [15,25,26,32]. In comparison to the reconfig-
urable BEC design specified in [25], the proposed pipelined architecture offers significant
advantages, utilizing 84.8% fewer hardware resources for one PA and PD computation, and
operating at a 4.073 times higher frequency. Furthermore, the addition of point halving to
PA and PD computations increases hardware resource utilization by 85.2%. Similarly, the
proposed non-pipelined architecture offers significant advantages, utilizing 85.3% fewer
hardware resources for one PA and PD computation and operating at a 1.85 times higher
frequency. The addition of point halving to PA and PD computations further increases
hardware resource utilization by 85.7%

In [26], two solutions are proposed. The first solution employs the FF Gaussian-
based multiplier, and the proposed non-pipelined architecture achieves 2.65 times higher
throughput/area while utilizing 74.2% fewer FPGA slices. The proposed 2-stage pipelined
architecture achieves 3.84 times higher throughput/area, using 73.3% fewer hardware
resources than the architecture in [26]. The second solution in [26] uses three parallel-
connected Gaussian FF multipliers. Our experimental results show that the proposed
non-pipelined architecture achieves 2.73 times higher throughput/area, and the proposed
2-stage pipelined architecture achieves 3.96 times higher throughput/area while utilizing
88.7% fewer resources.

In [32], a digit serial pipelined multiplier architecture is proposed for the computation
of PM. In comparison, we find that the proposed non-pipelined architecture uses 89.9%
fewer hardware resources and provides 2.76 times higher throughput than [32]. However,
the two-stage pipelined architecture uses 89.5% fewer hardware resources and achieves
4.012 times higher throughput/area.

For less constrained applications, ref. [15] used a digit parallel multiplier, which
consumes more hardware resources and provides less throughput/area than the proposed
non-pipelined and two-stage pipelined architecture. These results illustrate the potential of
the proposed designs to enhance the security and efficiency of cryptographic computations
in various applications.

6.3.2. Virtex 5 Comparison

This subsection presents a comprehensive comparison of the presented cryptographic
accelerator design with existing architectures on Virtex 5 [24,26,33]. When comparing with
the first solution in [33], the proposed non-pipelined design achieves a clock frequency
and throughput/area that are 3.78 and 1.23 times higher, respectively. Conversely, the
proposed non-pipelined design uses 36.9% fewer hardware resources than the second
solution in [33]. Furthermore, the achieved clock frequency and throughput/area are 2.56
and 1.2% times higher. Similarly, the proposed two-stage pipelined architecture utilizes
70.6% fewer resources and achieves a 1.48 times higher throughput/area, albeit with
a clock frequency that is 1.37 times lower. The second solution in [33] achieves a clock
frequency that is 1.35 times higher while using 67.5% fewer slices and 1.44 times lower
throughput/area than our proposed two-stage pipelined architecture.
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When compared to [24], the proposed two-stage pipelined architecture requires 40.7%
fewer resources and achieves 3.39 times higher throughput/area. On the other hand,
the non-pipelined design achieves 2.81 times higher throughput/area, but requires 44.7%
times lesser FPGA slices. Similarly, as compared to [26], the non-pipelined design achieves
higher throughput/area, but requires 1.8 times more FPGA slices with a clock frequency
that is 1.57 times faster. The two-stage pipelined architecture uses 1.94 times more re-
sources and achieves a clock frequency that is 1.19 times higher, with a significantly higher
throughput/area ratio.

Overall, the proposed cryptographic accelerator design delivers significantly improved
throughput/area and resource efficiency, particularly in low-resource environments such
as IoT devices, compared to existing architectures. Furthermore, our solution outperforms
the best available solutions on the Virtex 5 platform.

6.3.3. Virtex 6 Comparison

This subsection presents a comprehensive comparison between the proposed crypto-
graphic accelerator design and existing architectures on Virtex 6 [15,26]. The work in [26]
requires 1.28 times higher hardware resources as compared to the proposed non-pipelined
architecture while operating at a significantly higher frequency while achieving a better
throughput/area ratio. On the other hand, the proposed 2-stage pipelined architecture
consumes 1.42 times more resources but operates at 2.71 times higher clock frequency,
resulting in a higher throughput/area ratio.

In comparison to the architecture presented in [15], the proposed non-pipelined
design employs 1.65 times fewer resources, operates at 1.04 times less clock frequency,
and achieves a 1.16 times higher throughput/area ratio. Similarly, the proposed 2-stage
pipelined architecture uses 33.5% fewer resources, operates at 1.55 times higher clock
frequency, and achieves a 1.21 times better throughput/area ratio.

The proposed architecture and the works in [29] are not directly comparable because
they use different implementation fields. The implementation field in this article is GF(2233),
while the implementation field for [29] is GF(p). However, a comparison of the two ar-
chitectures is still possible by considering the clock frequency, hardware resources, and
throughput/area ratio. The proposed non-pipelined architecture achieves a significant
speedup and resource reduction over the work in [29]. For d = 59, the Virtex-6 implementa-
tion of the proposed non-pipelined architecture achieves a clock frequency that is 1.91 times
higher and utilizes 4.125 times fewer resources. In addition, the proposed non-pipelined
architecture achieves a higher throughput/area ratio than the work in [29]. The proposed
pipelined architecture further improves the speedup and resource reduction. For d = 59, the
Virtex-6 implementation of the proposed pipelined architecture achieves a clock frequency
that is 3.12 times higher and utilizes 73.18% fewer resources. In addition, the proposed
pipelined architecture achieves a higher throughput/area ratio.

Overall, the comparison results demonstrate that the proposed non-pipelined design
offers an excellent trade-off between hardware resources, clock frequency, and through-
put/area ratio. However, the two-stage pipelined architecture may be a better choice
for applications that prioritize higher throughput/area and can tolerate higher hardware
resource usage.

6.3.4. Virtex 7 Comparison

In this comparison, we have observed that the proposed two-stage pipelined architec-
ture outperforms both the non-pipelined and pipelined designs presented in [15] on various
metrics. The proposed non-pipelined architecture uses 37.5% fewer hardware resources
and operates at 1.06 times the clock frequency of the non-pipelined design, resulting in
a 1.337 times higher throughput/area ratio. Similarly, when compared to the pipelined de-
sign in [15], the proposed architecture uses 25.4% fewer hardware resources while operating
at a clock frequency that is 1.74 times higher, resulting in an impressive 1.21 times higher
throughput/area ratio. These results demonstrate that our proposed architecture offers
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a highly efficient solution for cryptographic computations in low-resource environments,
while also providing a suitable trade-off between hardware resources, clock frequency, and
throughput/area ratio.

The proposed architecture and the work in [34] are not directly comparable because
they use different implementation fields. However, it is still possible to compare the two
architectures by considering the clock frequency, hardware resources, and throughput/area
ratio. For d = 59, the Virtex-7 implementation of the proposed non-pipelined architecture
achieves a clock frequency that is 1.44 times higher and utilizes 52.9% fewer resources. In
addition, the proposed non-pipelined architecture achieves a higher throughput/area ratio.
The proposed pipelined architecture further improves the speedup and resource reduction.
For d = 59, the Virtex-7 implementation of the proposed pipelined architecture achieves
a clock frequency that is 2.34 times higher and utilizes 39.43% fewer resources. In addition,
the proposed pipelined architecture achieves a higher throughput/area ratio than the work
in [34].

In general, it has been observed that using a pipeline with a hybrid algorithm can
result in superior performance while requiring fewer hardware resources. The suggested
design capitalizes on these advantages to achieve impressive throughput/area ratios.

7. Conclusions

This article has presented a new hardware architecture for performing point multipli-
cation operations using the unified addition law of the BEC model for ECC. The proposed
architecture has employed a hybrid approach of Montgomery as well as double-and-add
algorithms to improve efficiency. The implementation of a Montgomery radix-2 multiplier
has achieved a maximum frequency of 320.584 MHz on Virtex 7 FPGA device. The orig-
inal mathematical formulations of the PA and PD laws for BECs have been revised, and
a two-stage pipelining approach was employed to optimize the throughput over area ratio.
Furthermore, the inclusion of a modular multiplier has reduced the total number of clock
cycles when compared to alternative parallel multipliers. The implementation results on
various platforms have shown that the proposed hardware architecture provides a better
throughput/area ratio than the most recent state-of-the-art architectures. The achieved re-
sults are important for a variety of applications, such as e-commerce, financial transactions,
and government communications. The probable future work may include investigating the
use of other optimization techniques, such as operand sharing and operand forwarding, to
further improve the performance of the proposed architecture. Similarly, the extension of
the proposed architecture to support other ECC curves is another area of interest.
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