
Citation: Le, T.-T.-H.; Prihatno, A.T.;

Oktian, Y.E.; Kang, H.; Kim, H.

Exploring Local Explanation of

Practical Industrial AI Applications:

A Systematic Literature Review. Appl.

Sci. 2023, 13, 5809. https://doi.org/

10.3390/app13095809

Academic Editors: Esteban

García-Cuesta, Manuel Castillo-Cara

and Ricardo Aler Mur

Received: 12 April 2023

Revised: 1 May 2023

Accepted: 5 May 2023

Published: 8 May 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied  
sciences

Review

Exploring Local Explanation of Practical Industrial AI
Applications: A Systematic Literature Review
Thi-Thu-Huong Le 1,2,* , Aji Teguh Prihatno 3 , Yustus Eko Oktian 1,2 , Hyoeun Kang 3 and Howon Kim 3,*

1 Blockchain Platform Research Center, Pusan National University, Busan 609735, Republic of Korea;
yustus@islab.re.kr

2 IoT Research Center, Pusan National University, Busan 609735, Republic of Korea
3 School of Computer Science and Engineering, Pusan National University, Busan 609735, Republic of Korea;

ajiteguh@pusan.ac.kr (A.T.P.); hyoeun405@gmail.com (H.K.)
* Correspondence: lehuong7885@gmail.com (T.-T.-H.L.); howonkim@pusan.ac.kr (H.K.)

Abstract: In recent years, numerous explainable artificial intelligence (XAI) use cases have been devel-
oped, to solve numerous real problems in industrial applications while maintaining the explainability
level of the used artificial intelligence (AI) models to judge their quality and potentially hold the
models accountable if they become corrupted. Therefore, understanding the state-of-the-art methods,
pointing out recent issues, and deriving future directions are important to drive XAI research effi-
ciently. This paper presents a systematic literature review of local explanation techniques and their
practical applications in various industrial sectors. We first establish the need for XAI in response to
opaque AI models and survey different local explanation methods for industrial AI applications. The
number of studies is then examined with several factors, including industry sectors, AI models, data
types, and XAI-based usage and purpose. We also look at the advantages and disadvantages of local
explanation methods and how well they work in practical settings. The difficulties of using local
explanation techniques are also covered, including computing complexity and the trade-off between
precision and interpretability. Our findings demonstrate that local explanation techniques can boost
industrial AI models’ transparency and interpretability and give insightful information about them.
The efficiency of these procedures must be improved, and ethical concerns about their application
must be resolved. This paper contributes to the increasing knowledge of local explanation strategies
and offers guidance to academics and industry professionals who want to use these methods in
practical settings.

Keywords: machine learning; explainable artificial intelligence; local explanation techniques; industrial
application; trustworthiness

1. Introduction

Machine learning (ML) and deep learning (DL) models have achieved remarkable
success in a variety of domains, including healthcare [1–3], financial systems [4,5], criminal
justice [6,7], and cybersecurity [8,9]. While accuracy is critical, the emphasis on accuracy
has frequently resulted in developers sacrificing interpretability in favor of better accuracy
by making models more complex and difficult to comprehend [10]. When the learning
model has the authority to make critical decisions that influence people’s well-being, this
lack of interpretability becomes a major concern.

To overcome this issue, explainable artificial intelligence (XAI) approaches must pro-
vide end-users with coherent explanations of these models’ decision-making processes.
Indeed, because these models are black boxes, it is difficult to understand how they arrive
at their conclusions. XAI technologies provide visualization techniques to comprehend the
decision-making processes of these models, making forecast explanations easier to under-
stand and communicate. Although the concept of XAI has recently received significant
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attention in studies [11,12], it has only recently received significant attention in academia,
with an increasing number of research papers being published on the topic [13].

The increasing use of ML and DL models in various applications has highlighted
the need to explain the decision-making processes to gain end-users’ trust in industrial
applications. However, it is essential to investigate the effectiveness and limitations of local
explanation techniques in industrial settings. To address this research gap, we conducted a
literature review that focused on XAI studies within various industrial sectors, AI models,
data types, and the usage and purpose of XAI. Our study stands out from the existing
literature survey papers by covering a comprehensive set of criteria, including data types
and industrial sectors, as illustrated in Table 1. As shown in Table 1, our survey is more
comprehensive and distinctive than previously published surveys in two main criteria:
data types and industrial sectors. While many existing surveys only cover one industrial
sector or one or two data types, our analysis aims to better understand the local explanation
in industrial settings and identify future research directions.

Table 1. Comparison of existing surveys with our work.

Survey Paper Year
Data Type Industrial Sector

T I Ta Te ASR EBM E F H IE C SA
[14] 2020

[15] 2021

[16] 2021

[17] 2021

[18] 2022

[19] 2022

[20] 2022

[21] 2022

[22] 2022

[23] 2022

[24] 2022

[25] 2022

[26] 2022

[27] 2022

[28] 2022

[29] 2023

[30] 2023

[31] 2023

Ours 2023

Legend: means included, means not included. T: time series; I: image; Ta: table; Te: text; ASR: autonomous
systems and robotics; EBM: energy building management; E: environment; F: finance; H: healthcare; IE: industrial
engineering; C: cybersecurity; SA: smart agriculture

This paper’s main goal is to assess the state of local explanation strategies today thor-
oughly and explore how they are used in the marketplace. To accomplish this, we present a
methodical literature analysis that identifies the gaps and limits in the existing research and
analyzes and examines the efficacy and limitations of various local explanation strategies
in deriving insights from complex models in the industrial setting. Furthermore, we pro-
vide recommendations for future research, including areas where further investigation is
needed to improve the effectiveness and applicability of local explanation techniques in the
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industry. The research motivation emphasizes the precision of the study and the void in
the research and highlights the research objectives and questions that need to be addressed
throughout the paper. The main contributions of the paper are as follows:

• Identifying and categorizing local explanation techniques for industrial AI applications
based on different criteria categories, including XAI usage and purpose, industrial
applications and AI models, and data types.

• Analyzing the advantages and disadvantages of different local explanation techniques
in explaining complex models in the industrial context.

• Identifying the current challenges of local explanation for industrial AI applications
and suggesting recommendations for addressing these challenges, such as developing
more effective and efficient local explanation techniques and exploring the ethical
implications of using these techniques.

• Summarizing the study’s main findings, identifying gaps and limitations in the current
literature, and suggesting future research directions, which can guide future research
efforts and lead to more reliable and trustworthy AI systems in industry.

The paper is structured as follows: In Section 2, we describe the methodology we
used for the literature review. Section 3 presents the survey results on local explanation
techniques and their practical applications in industry. We first provide an overview of
local explanation techniques and then analyze their distribution based on different criteria
categories, including XAI usage and purpose, industrial applications and AI models, and
data types. We then highlight the advantages and disadvantages of these techniques
in explaining complex models in the industrial context and identify several challenges.
Furthermore, we provide recommendations for addressing these challenges. In Section 4,
we summarize the main findings of our study, identify gaps and limitations in the current
literature, and suggest future research directions. Finally, in Section 5, we conclude the
paper and recommend future research on local explanation techniques and their practical
applications in industry.

2. Literature Review Methodology

This section outlines our methodology for conducting a comprehensive literature
review on local explanation techniques and their practical applications in industry. Our dis-
cussion of local explanation techniques and their practical applications in industry is built
upon a thorough and objective literature study, made possible by a rigorous search strategy,
inclusion and exclusion criteria, data extraction and analysis, and quality assessment. The
workflow of the survey methodology is shown in Figure 1. We used a clear process that
included the following phases to attain this goal:

Figure 1. The workflow of the survey on the local explanation for industrial AI applications.

1. Identifying the research question: Our research question focused on understanding the
different types of local explanation techniques used in industry, their benefits and
limitations, and their effectiveness in explaining complex machine learning models.
Our review aims to answer the following research questions:

• (Q1) What local explanation techniques are used in industrial applications?
• (Q2) How widespread are practical industrial applications of local explanation

techniques?
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• (Q3) What are the benefits and limitations of local explanation techniques for
industrial applications?

• (Q4) How to build effective local explanation techniques in practical settings?

By answering these questions, we hope to provide a comprehensive overview of the
current state of the art in local explanation techniques for practical industrial applications.

2. Identifying relevant literature: We conducted a comprehensive search of relevant aca-
demic and industry sources, including peer-reviewed journals, conference proceed-
ings, technical reports, and gray literature. The search included studies published
from 2020 to Mar 2023. We used a combination of keywords and controlled vocabulary
terms related to machine learning, interpretability, local explanations, and industrial
applications to identify relevant articles. We specifically examined academic resources
such as ACM Digital Library, IEEE Xplore, ScienceDirect, Google Scholar, MDPI,
and others. The search terms used include “local explanation techniques”, “model
interpretability”, “explainable artificial intelligence”, “XAI”, “machine learning”, and
“industrial applications”. We also manually searched relevant journals and conference
proceedings to ensure comprehensive coverage of the literature.

3. Screening and selection of studies: We used a two-stage screening process to identify
articles for inclusion in our review. In the first stage, we screened titles and abstracts
to identify potentially relevant articles. In the second stage, we screened the full text
of articles to determine their eligibility based on our inclusion and exclusion criteria.
We included studies focusing on local explanation techniques and their applications
in industrial settings. Studies investigating the effectiveness and limitations of dif-
ferent explanation techniques and their comparative analysis were also considered.
We excluded studies focusing on global explanations, theoretical aspects of model
interpretability, or applications in non-industrial settings.

4. Data extraction and quality assessment: Data from the selected papers were extracted,
including study design, sample size, research question, methods, results, and limita-
tions. We extracted data from the selected studies, including the authors, publication
year, research question, methodology, datasets used, and main findings. The data
were analyzed thematically to identify patterns, trends, and research gaps in the
literature. We also performed a qualitative synthesis of the studies, highlighting the
benefits and limitations of local explanation techniques and their effectiveness in
industrial applications.

5. Data synthesis and analysis: We synthesized the data from the selected articles using a
thematic analysis approach. We identified common themes and patterns across the
articles and summarized the findings in a narrative synthesis.

6. Interpretation and reporting of results: We interpreted the results of our review in light
of our research question and the existing literature. We reported our findings in
a structured manner, highlighting the key themes and patterns that emerged from
our analysis.

Overall, our literature review methodology was designed to ensure our review’s
comprehensiveness, validity, and rigor. We set out to present a thorough and trustworthy
evaluation of the available literature on local explanation strategies in industrial applica-
tions, using a well-defined methodology. One hundred and one papers were chosen using
the aforementioned six procedures. The literature review was completed by 31 March
2023. These papers were categorized according to the industrial sectors, data types, applied
AI model, used dataset, and practical local explanation techniques in terms of usage and
purpose. After that, we analyzed the growth and distribution of local explanations for
industrial AI applications following several important factors, such as the AI model, indus-
trial sector, data types, usage, and purpose. Finally, several representative AI industrial
application methods were chosen to analyze the pros and cons in depth, as represented
in Section 3.
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3. Survey Results on Local Explanation in Industrial AI Applications

The taxonomy of XAI techniques, as mentioned in [32–35], follows four aspects:
(1) scope or level explanation; (2) purpose explanation; (3) implement or usage explanation;
(4) data types. First, both global and local explanations are included at the explanation
level. The models’ operational and decision-making processes and their ability to be
articulated are generally emphasized by each explanation level. For many purposes,
selecting the explanation level depends on specific cases or subgroups. The survey scope
with the local explanation level is the main priority of this paper. Second, there are post
hoc and intrinsic (ante hoc) approaches regarding XAI’s purpose. The characteristics,
decision-making procedures, and rules of the models, such as linear models, decision trees,
Bayesian networks, etc., provide internal justifications for the model type. Meanwhile,
post hoc reasoning holds that black-box models’ innermost workings and decision-making
procedures are revealed after training. Numerous post hoc XAI solutions have been created,
because post hoc explainers include anything from black-box models to interpretable
models. Third, usage or implementation includes both agnostic and specific models.
Model-specific approaches use the model’s characteristics and properties to make it [36]
interpretable. Such approaches’ strengths come at a cost, because applying them to different
models is challenging. What gives them their power is their access to model internals such
as weights or structures. Meanwhile, post hoc explanations can be provided after the model
has been trained using model-agnostic techniques, which can be used for any ML model.
Since these methods can only examine input–output pairings, they have the drawback of
being unable to benefit from model internals. Fourth, from an XAI-based data perspective,
a data type can be tabular, text, image, time series, or any other type.

Most proposed explainable AI systems from industrial applications have been tested,
including autonomous systems and robotics, energy and building management, security
and privacy, environment, finance, industrial engineering, healthcare, and smart agriculture.
The year-by-year distribution of publications on the local explanation of industrial AI
applications from 2020 to March 2023 is depicted in Figure 2. According to the literature
review, researchers increasingly use local XAI approaches in industrial applications. In
particular, the links between XAI approaches and different industrial application areas are
shown in Table 2.

Figure 2. Year-wise distribution of publications on the local explanation of industrial AI applications.
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Table 2. Local explanation on AI industrial applications.

Industrial Sector Data Type Ref. Year
AI Model and Dataset Practical Local Explanation

AI Model Dataset XAI
Method Usage Purpose

Autonomous
systems and
robotics

Time series
[37] 2020 Deep Q-Networks Voltage load SHAP A P

[38] 2022 FL QoE forecasting FED-XAI S An

Image

[39] 2020 Q-learning Agent data Interaction
data A P

[40] 2021 DRL Depth image, UAV
states

SHAP-
CAM A P

[41] 2022 Faster R-CNN,
ResNet-50 BDD-OID, PSI t-SNE S An

Tabular [42] 2022 RF Processed dataset
(D*) SHAP A P

Text [43] 2021 DT, RF Lyft Level 5 SHAP A P

Energy and
building
management

Time series

[44] 2020 Seq2seq EnergyPlus AM A P

[45] 2020 MLRi, GBT CBECS SHAP A P

[46] 2020 XGBoost PLUTO SHAP A P

[47] 2020 RF GEFCOM
SHAP,
LIME,
ELI5

A P

[48] 2021 XGBoost Historical climate SHAP A P

[49] 2021 DNN IPCC’s SRES A2
climate SHAP A P

[50] 2021 DNN Energy data IG,
DeepLIFT A P

[51] 2021 LSTM Energy
consumption AM S An

[52] 2021 LSTM Heat demand by
FMEDH LIME A P

[53] 2022 XGBoost UNICON dataset SHAP A P

[54] 2022 CatBoost Energy disclosure LIME A P

[55] 2022 DNN Enerate synthetic LIME A P

[56] 2022 LSTM Electricity load LIME A P

[57] 2022 GS-XGBoost Electricity
consumption SHAP A P

[58] 2022 Cubist regression Electricity two
buildings FI S An

[59] 2022 QLattice Residential building FI S An

[60] 2022 Bi-LSTM,
CNN-LSTM SCADA LIME A P

Tabular

[61] 2021 XGBoost Singapore’s
building LIME A P

[62] 2022 RF, CNN, IT CER LIME,
SHAP A P

[63] 2021 XGBoost, SVR,
LightGBM, LSTM

Energy data in
Seoul SHAP A P
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Table 2. Cont.

Industrial Sector Data Type Ref. Year
AI Model and Dataset Practical Local Explanation

AI Model Dataset XAI
Method Usage Purpose

Environment

Time series
[64] 2020 XGBoost,

LSTM-RNN Escherichia coli SHAP A P

[65] 2022 DFNN Building-level
damage LIME A P

Image

[66] 2020 RF Occurrence data LIME A P

[67] 2021 LSTM,
CNN-BiLSTM

Monthly rainfall
data SHAP A P

[68] 2023 XGBoost Land-cover,
topographic LIME A P

Finance
Tabular

[69] 2020 XGBoost Sports and travel SHAP A P

[70] 2021 GBDT Daily observations SHAP A P

[71] 2021 LSTM OHLC LIME A P

[72] 2021 XGBoost Financial indicators SHAP A P

[73] 2022 LightGBM Proprietary SHAP A P

Time series
[74] 2020 XGBoost Credit risk SHAP A P

[75] 2022 DQN SENSEX, DJIA SHAP A P

Healthcare

Tabular

[76] 2020 DT Cervical cancer risk SHAP A P

[77] 2020 Stacked
LSTM-CNN-MLP PhysioNet

SHAP,
occlusion
maps

A P

[78] 2020 DT MIMIC-III Doctor
XAI S An

[79] 2021 XGBoost Diabetes

PDP, ICE,
ALE,
LIME,
SHAP,
Anchors

A P

[80] 2021 XGBoost ROSMAP SHAP A P

[81] 2021 LightGBM K-attention SHAP A P

[82] 2021 RF, GBDT, XGBoost UCI CKD SHAP A P

[83] 2021 RF Retrospective study SHAP A P

Time series

[84] 2020 Bi-LSTM ensemble PhysioNet 2017 Attention S An

[85] 2021 CNN PhysioNet 2017
LIME,
guided
saliency

A P

[86] 2021 WCPH-RNN Retrospective study Saliency A P

[87] 2021 CNN Gait dataset LRP A P

[88] 2022 CNN-CRF Sleep-EDF Grad-
CAM A P
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Table 2. Cont.

Industrial Sector Data Type Ref. Year
AI Model and Dataset Practical Local Explanation

AI Model Dataset XAI
Method Usage Purpose

Image

[89] 2020 VGG-16 Chest X-ray Grad-
CAM S An

[90] 2021 ResNet-50 CT LIME,
SHAP A P

[91] 2021 Inception-v3 Diagnosis of retinal
images

GBP,
SHAP A P

[92] 2021 CNN IVCM

Grad-
CAM,
guided
Grad-
CAM

S An

[93] 2021 EfficientNet Chest X-ray images Grad-
CAM S An

[94] 2021 CNN, LSTM ISIC 2017 and 2018 Grad-
CAM S An

[95] 2021 VGG, ResNet,
DenseNet

COVID-19 chest
X-ray

Grad-
CAM S An

[96] 2021 VGG-16 Chest CT, X-ray
image

Grad-
CAM,
Grad-
CAM++,
LRP

S An

[97] 2022 VGG-19 Oral images Grad-
CAM S An

[98] 2022 COMiT-Net ChestXray-14,
CheXpert

Grad-
CAM S An

[99] 2022 CNN LC25000, NSCLC
Grad-
CAM,
OS

A P

[100] 2022 DNN CheXpert, MIMIC,
NIH CAM S An

[101] 2023 DNN COVID-QU,
QaTa-Cov19

Uncertain-
CAM S An

[102] 2023 VGG-16 CTs Grad-
CAM A P

[103] 2023 EfficientNet,
DenseNet, ResNet Tooth areas Grad-

CAM A P

[104] 2023 ResNet-50 COVIDNet LIME A P

[105] 2023 ResNet152 KVASIR Grad-
CAM S An

Industrial
engineering Time series

[106] 2020 CNN Machinery fault LRP A P

[107] 2020 RF Bushings testbed LIME A P

[108] 2020 CNN, VAE Ford Motor CAM A P
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Table 2. Cont.

Industrial Sector Data Type Ref. Year
AI Model and Dataset Practical Local Explanation

AI Model Dataset XAI
Method Usage Purpose

[109] 2020 Deep-SincNet Motor currents
t-SNE,
SincNet
filters

A P

[110] 2020 CNN, LSTM,
Bi-LSTM C-MAPSS SHAP A P

[111] 2021 1D-CNN Normal and fault
conditions FG-CAM S An

[112] 2021 DNN Prismatic cantilever
steel beam

LIME,
SHAP A P

[113] 2021 TScatNet CWRU, DDS t-SNE S An

[114] 2022 kNN, OCSVM, etc. Bearing, Gearbox
Fault

SHAP,
Local-
DIFFI

A P

[115] 2022 WaveletKernelNet Bearing, Gearbox
Fault

CWConv
layer S An

[116] 2023 SVM, kNN Bearings SHAP A P

Image
[117] 2020 CNN Bearings GradCAM A P

[118] 2020 CNN Image fault
diagnosis CAM A P

Cybersecurity Tabular

[119] 2020 SVM NSL-KDD SHAP A P

[120] 2021 RF, XGBoost,
Sequence Model

ISCX-URL2016,
CICMalDroid 2020

SHAP,
LIME A P

[121] 2021 Autoencoder CID-IDS2017 SHAP A P

[122] 2021 DT, ANN Private dataset SHAP,
LIME A P

[123] 2022 DT NF-BoT-IoT-v2,
NF-ToN-IoT-v2 SHAP A P

[124] 2022 DNN UNSW-NB15 SHAP A P

[125] 2023 CNN ToN_IoT SHAP A P

[126] 2023 ANN WUSTL-IIoT,
NSL-KDD

TRUST,
LIME A P

Smart
agriculture

Tabular

[127] 2021 RF Wheat, maize, olive
groves LIME A P

[128] 2022 DT, RF Maize crop yield LIME A P

[129] 2022 LSTM, Bi-LSTM, Bi-
GRU-LSTM-CNN ProductReview SHAP,

LIME A P

[130] 2022 XGB, MLP, SVM Crop
Recommendation

SHAP,
LIME A P

Time series

[131] 2020 CNN Meteorological,
wheat yield data RAM A P

[132] 2022 LightGBM Diverse physical
agricultural

SHAP,
LIME A P

[133] 2023 GRU Plant SSPs ISM S An
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Table 2. Cont.

Industrial Sector Data Type Ref. Year
AI Model and Dataset Practical Local Explanation

AI Model Dataset XAI
Method Usage Purpose

Image

[134] 2021
ResNet-V2, VGG-19,
VGG-16,
Inception-V3

Diseased leaves of
pearl millet

Grad-
CAM A P

[135] 2022 LightGBM Agri-worker motion
ELI5,
PDPbox,
Skater

A P

[136] 2022 CNN Fire and smoke
LIME,
Grad-
CAM++

A P

Text [137] 2022 OAK4XAI Graph database AgriComO S An

A: agnostic, P: post hoc, S: specific, An: ante hoc.

3.1. Quantitative Analysis
3.1.1. Analysis Based on Usage and Purpose

Figure 3 presents the distribution of publications based on local explanation meth-
ods’ usage and purpose for industrial AI applications, as derived from Table 2. The
survey shows that the SHAP (Shapley additive explanations), LIME (local interpretable
model-agnostic explanations), and various Grad-CAM (gradient-weighted class activation
mapping) methods are the most commonly used local explanation techniques, accounting
for 39.47%, 22.81%, and 18.42% of the studies, respectively. Other local explanation methods
have been used less frequently. Regarding usage and purpose, most of the SHAP and
LIME applications in the surveyed literature are agnostic and post hoc. At the same time,
the specific and ante hoc of local explanations are primarily used in various Grad-CAM
methods for industrial AI applications.

Figure 3. Distribution of studies based on local explanation with usage and purpose for industrial
AI applications.

3.1.2. Analysis Based on Industrial Applications and AI Model Implementation

In this section, we present statistics on the distribution of publications on local ex-
planation in the context of industrial AI applications and the AI models employed, based
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on the findings in Table 2. Figure 4 illustrates the classification of the research papers
we reviewed according to their industrial application domain. As depicted in Figure 4a,
healthcare and energy and building management are the most frequently studied sectors,
accounting for 29% and 20% of the surveyed XAI techniques, respectively. Conversely,
cybersecurity, autonomous systems and robotics, finance, and environment constituted less
than 10% of the surveyed techniques, suggesting that these domains have yet to see the
widespread application of XAI methods.

(a) Based on AI industrial applications

(b) Based on AI models

Figure 4. Distribution of studies based on local explanations for industrial applications and AI models.

Additionally, we analyzed the distribution of AI models used in the surveyed works.
We found that most local explanation techniques were applied to various CNN models, ac-
counting for 25% of the publications, followed by gradient boosting techniques, particularly
XGBoost, at 20%. Decision tree, DQN (deep Q-network), and VGG (visual geometry group)
models, among others, were used in less than 10% of the surveyed papers, indicating a lack
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of widespread use of these models with XAI for other industrial applications. These results
are presented in Figure 4b.

3.1.3. Analysis Based on Data Types

Based on the information presented in Table 2, we analyzed the distribution of pub-
lications on local explanation techniques used for different types of data in industrial
applications. Figure 5 breaks down the studies based on data types, including tabular, time
series, text, and image. The results show an increasing interest in interpretable ML for
healthcare with image data (16.83%) and energy and building management with time-series
data (16.83%). However, fewer applications of local explanation techniques were found
for text data (1.98%), consistent with the findings for the entire industrial sector. It is
worth noting that since this review covers publications up to 31 March 2023, the number of
publications for 2023 is expected to exceed those of 2022.

Figure 5. Breakdown of publications based on local explanation for industrial applications, with
data types.

3.2. Qualitative Analysis

This section discusses the effectiveness and limitations of local explanation techniques
in industrial applications from the results of Table 2.

3.2.1. Autonomous Systems and Robotics

According to the survey results in Table 2, several publications have focused on XAI
local explanations for autonomous systems and robotics.

Zhang et al., 2020 [37] employed the SHAP method and the probability of SHAP
values to explain emergency control based on DRL in power systems, in the context of time-
series data. Their study combined a post hoc XAI technique with agnostic usage. As an
alternative, Renda et al. [38] proposed the FED-XAI idea, which suggests federated learning
of XAI models for AI-pervasive 6G networks while proposing an ante hoc XAI strategy.
The concept is anticipated to enhance the performance, intelligence, and trustworthiness of
automated vehicle networking and improve user experience, fostering end-users’ protection
in network AI processes.

In the context of image data, He et al., 2021 [40] proposed a new DRL scheme for
model explainability using an agnostic and post hoc XAI approach. They developed a
saliency map generation method that merges CAM and SHAP values to create visual and
textual action explanations for non-expert users. The model can be refined and enhanced
based on the explanation generated. On the other hand, Zhang et al., 2022 [41] employed
a distinctive and ante hoc XAI strategy to improve the performance and transparency
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of autonomous driving systems’ decision making by offering multi-modal explanations,
particularly when interacting with pedestrians.

Cui et al., 2022 [42] used SHAP and random forest (RF) approaches regarding tabular
data to encourage transparent DRL-based decision making. They adopted an agnostic and
post hoc XAI approach. Regarding text datam and employing an agnostic and post hoc
approach, Nahata et al., 2021 [43] developed interpretable machine learning models to
evaluate and forecast collision risk based on various sensor data features.

3.2.2. Energy and Building Management

As presented in Table 2, our survey results show that XAI local explanation
research has concentrated on time-series and tabular data with energy and building
management applications.

Much research has used an agnostic and post hoc design for time-series data and two
main approaches, SHAP and LIME. For example, Arjunan et al. [45] proposed an approach
that improves the current Energy Star calculation method and employs extra model output
processing to illuminate how a building can reach a particular score. Li et al. [57] used SHAP
to analyze and interpret the XGBoost-based grid search power load forecasting model. While
Zdravkovi et al. [52] presented an AI-assisted control of district heating systems (DHS) for
effective heat distribution. Kim et al.’s explanation of the energy demand forecast model
employing feature importance and attention methods was published in [44]. To support and
elucidate the forecasts, Grzeszczyk et al. [56] suggested a strategy based on the LIME method.
Both Wenninger et al. [59] and Moon et al. [58] used distinct and ante hoc XAI techniques
with feature-important analysis. While Wenninger et al. proposed the QLattice for estimating
the final energy performance of residential buildings, Moon et al. evaluated the most crucial
aspects of electrical load forecasting. However, several of these studies’ weaknesses must
be addressed in future research. For example, the generalizability of the procedures and
outcomes only relates to the input data tested. The explanations may also be difficult for
average consumers to comprehend [45]. Future studies could concentrate on developing
technical research and apps to provide more intuitive explanations to general consumers [57].
Furthermore, robust model interpretability can sometimes be difficult, and future studies
should investigate alternate brain models and ways of explaining black-box models [59].

The application of various XAI techniques to tabular data, with an agnostic and post
hoc approach, has been explored. Specifically, LIME and SHAP have been investigated for
generating local explanations. Examples include Srinivasan’s SHAP-based XAI-FDD [61],
Sim’s SHAP-based analysis of input variables for energy consumption forecasting [63],
and Wastensteiner’s LIME and SHAP-based visualizations for personalized feedback on
electricity consumption time-series data [62]. Srinivasan et al. [61] proposed XAI-FDD
(explainable artificial intelligence-fault detection and diagnosis), which uses explanations
generated for each data instance to detect incipient faults. By combining human expertise
with the explanations provided by the XAI system, this approach could potentially improve
accuracy in classification. The XAI-FDD may examine air-handling systems, renewable
energy sources, and other building energy components. Sim et al. [63] used SHAP-based
XAI to examine how input variables affect energy use forecasting. Their research divided
the input variables into three categories—strong, ambiguous, and weak—providing insights
into which variables had the most significant impact. However, they only analyzed certain
targets, input factors, and predictive models.

Future studies may need to consider a more comprehensive range of socioeconomic
variables for different types of buildings. Wastensteiner et al. [62] developed five visu-
alizations using ML and XAI methods, to provide personalized feedback on electricity
consumption time-series data, incorporating domain-specific knowledge. However, their
approach only considered SHAP-based XAI visualizations, and future research could
explore other XAI methods, such as LIME, for additional visualizations.
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3.2.3. Environment

Researchers in the field of environmental science have focused on XAI techniques
applied to time-series and image datasets, as summarized in Table 2.

Researchers have seen the application of SHAP and LIME approaches with agnostic
and post hoc designs in time-series data, as shown in Table 2. Graham et al. [64] employed
deep neural networks (DNN) and XAI algorithms on the “Dynomics” platform to explore
patterns in transcriptional data on a genome-scale and identify the genes contributing to
these patterns. Gao et al. [65] used LIME to interpret the DFNN (dynamic fuzzy neural
networks) models to assess the danger levels of a building in Cameron County, Louisiana,
in response to a fictitious impending hurricane, with updated weather predictions. Despite
these studies’ achievements, there are still limitations, and future research can expand the
analytical targets and models employed in these investigations.

The use of SHAP and LIME techniques with agnostic and post hoc designs on image
data has been explored by various research groups, as described in [66–68]. Masahiro
et al. [66] discuss the importance of XAI in ecological modeling and list tools that can
be employed to understand complex model behavior at different scales. Integrating XAI
with ecological and biogeographical knowledge can enhance the accuracy of machine
learning models. Kim et al. [68] used the XGBoost model and SHAP to analyze urban
expansion, where land-cover characteristics were identified as the primary factor, followed
by topographic attributes. However, the XGBoost-SHAP model’s accuracy, such as using
AutoML algorithms, should be assessed compared to other XAI methods. Dikshit et al. [67]
built and compared an XAI model to physical-based models using an explainable deep
learning technique. Their study examined how predictors interacted locally for distinct
drought conditions and timeframes, providing insight into how the model produced
specific findings at different spatiotemporal intervals. Future research should look at SHAP
plots for long-term forecasting and other additive SHAP properties.

3.2.4. Finance

In the finance sector, the majority of researchers have focused on using LIME and SHAP
methods with an agnostic and post hoc approach for tabular and time-series datasets (as
shown in Table 2). Some researchers, including Gramegna et al. [69], Benhamou et al. [70],
Babaei et al. [72], and de Lange et al. [73], have applied the SHAP method on tabular
datasets, while Kumar et al. [75] and Bussmann et al. [74] have developed their SHAP
methods on time-series datasets. Additionally, Gite et al. [71] have utilized the LIME
method for a tabular dataset.

Several researchers have focused on applying explainable AI models to tabular datasets
in finance. For example, Gramegna et al. [69] proposed a model that uses Shapley values
and similarity clustering to explain why customers either buy or abandon non-life insurance
coverage. In contrast, Benhamou et al. [70] utilized SHAP to identify important variables
in stock market crises and provide local explanations of the probability of a crisis at each
date. Babaei et al. [72] developed a Shapley-based model to predict the expected return of
small and medium-sized enterprises based on their credit risk and expected profitability.
Similarly, de Lange et al. [73] combined SHAP with a LightGBM (light gradient-boosting
machine) model to interpret explanatory variables affecting credit scoring, which outper-
formed the bank’s logistic regression model. Additionally, Gite et al. [71] proposed a model
that uses long short-term memory (LSTM) and efficient machine learning techniques to
accurately predict stock prices based on user sentiments derived from news headlines.
They suggest further research directions to include automated prediction of financial news
headlines and adding emotion-based GIFs to enhance the model’s appeal. This model
can be used as a decision maker for algorithmic trading. Future research may explore
applying these methods to other situations in the finance sector, such as underwriting and
claims management.

Kumar et al. [75] have suggested using SHAP with a popular deep reinforcement
learning architecture, DQN, to explain an agent’s actions in financial stock trading, in time-
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series data. Additionally, they advised expanding the method to continuous action space
and using DRL models, such as deep deterministic policy gradient (DDPG) and advantage
actor–critic (A2C), to improve the explanation by adding more technical indicators as
features. In another study, Bussmann et al. [74] created an explainable AI model for fintech
risk management, particularly for assessing the risks associated with peer-to-peer lending
platforms’ credit borrowing. They used Shapley values to interpret AI predictions based
on underlying explanatory variables. Future research could be conducted on enhancing
prediction understanding by clustering the Shapley values.

3.2.5. Healthcare

Table 2 shows that in the healthcare sector, most research studies have focused on
applying Grad-CAM, SHAP, and LIME methods.

Numerous studies have utilized the SHAP method to interpret tabular data. For
example, while Kim et al. [81] developed an interpretable machine learning model for pre-
dicting early neurological deterioration related to stroke, Beebe et al. [80] developed
an approach that captures non-linear feature effects in personalized risk predictions.
Rashed et al. [82] developed models for diagnosing chronic kidney disease (CKD) that
identified important features consistent with clinical knowledge. Zhang et al. [83] also
used SHAP to develop machine learning models for CKD diagnosis that provided physi-
cians with richer information on feature importance to improve decision making. These
studies highlight the usefulness of SHAP in developing interpretable models for medical
applications and the potential to improve clinical decision making.

Three XAI approaches were used for time-series data: attention, layer-wise relevance
propagation (LRP), and Grad-CAM. Mousavi et al. [84] introduced HAN-ECG. This
bidirectional-recurrent-neural network-based technique employs three attention mecha-
nism levels to detect atrial fibrillation (AF) patterns in an ECG (electrocardiogram). How-
ever, the success of the strategy is dependent on the preprocessing stage. This method
should be applied to different ECG leads and arrhythmias in the future to extract novel
patterns that may be beneficial in detecting arrhythmias. An interpretability method was
proposed by Filtjens et al. in their paper [87] to explain DNN decisions for recognizing the
movement preceding the freezing of gait (FOG) in Parkinson’s disease (PD). The recom-
mended pipeline can help physicians to explain DNN conclusions and let ML experts check
the generalizability of their models. This pipeline could be used to start FOG treatment
pipelines. In these circumstances, the interpreters can promote the provision of external
stimuli and evaluate the effectiveness of the intervention by picturing diminished signifi-
cance for FOG. Dutt et al.’s SleepXAI [88], an explainable unified method for multi-class
sleep stage categorization utilizing modified Grad-CAM, was first proposed in 2012. This
technique explains multi-class categorization of univariate EEG (electroencephalogram)
signals while significantly increasing overall sleep stage classification accuracy. During the
anticipated sleep stage, SleepXAI generates a heatmap depicting relevant features learned
from univariate EEG data. It enables sleep specialists to link observed characteristics
to traditional manual sleep grading techniques, boosting confidence in opaque systems
with justifications.

Various studies have applied the Grad-CAM method for interpreting image data,
focusing on medical imaging. For example, Figueroa et al. [97] proposed a two-stage
training process to enhance classification performance and guide the CNN’s attention to
lesion areas. To detect COVID-19 on chest X-ray images, Chetoui et al. [93] developed
DeepCCXR (deep COVID-19 CXR detection), while Barata et al. proposed a hierarchical
neural network with spatial attention modules for skin cancer diagnosis. To help COVID-
19 patients be triaged more quickly, Singh et al. [95] proposed an AI-based solution;
Malhotra et al. [98] presented COMiT-Net; and Oztekin et al. [103] proposed an explainable
deep learning model. These investigations show that the model’s decision-making process
is now more accurate and comprehensible and can be directed to focus on particular areas
of interest. However, limitations include the need for more accurate labeled datasets,
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limited data availability, and extending the models to process other types of diseases with
radiography images.

3.2.6. Industrial Engineering

In industrial engineering, time-series and image datasets are commonly used for local
explanation methods such as Grad-CAM and SHAP, as seen in Table 2.

Brusa et al. [116] and Hong et al. [110] have both employed Grad-CAM in their
ML models to interpret their predictions for time-series data. Hong et al. employed
XAI algorithms to find the most important sensors in predicting the remaining useful
life of a turbofan engine, and Brusa et al. used SHAP values to diagnose flaws in indus-
trial bearings. Other interpretability approaches, such as LRP and LIME, were used by
Grezmak et al. [106] and by Serradilla et al. [107]. The effectiveness of a CNN trained
on pictures of the time-frequency spectra of vibration signals measured on an induction
motor was evaluated by Grezmak et al. using LRP. Serradilla et al., in contrast, em-
ployed XAI methods to direct the development, improvement, and interpretation of a
model for estimating the remaining life during fatigue testing, based on condition and
setting variables.

For image data, Grad-CAM and CAM (class activation mapping) are common agnostic
and post hoc explanation methods used in the industrial engineering sector. Chen et al. [117]
used Grad-CAM to interpret the predictions of their CNN (convolutional neural net-
work) model for bearing fault classification using time-frequency spectra. Similarly, Sun
et al. [118] employed CAM to diagnose faults and recognize images in the cantilever beam
case. Both studies demonstrated the feasibility of using explainable deep learning to di-
agnose faulty components from images. Future research directions may include testing
different equipment settings to determine the minimum requirements for successfully
implementing these techniques.

3.2.7. Cybersecurity

Local explanations based on XAI techniques in cybersecurity are mainly applied to
tabular data. This is evident from the industrial sector analysis presented in Table 2, where
most methods employed are based on SHAP.

An ML-based intrusion detection system (IDS) employing an ensemble trees technique
was proposed in work by Le et al. [123]. The method employs decision trees and random
forest classifiers, and it does not require much computational power to train the models. The
SHAP approach was utilized to explain and interpret the models’ classification conclusions,
allowing cybersecurity specialists to optimize and evaluate the validity of their judgments
swiftly. Karn et al. [122] developed an ML-based detection strategy for anomalous pods in a
Kubernetes cluster in a different study. To identify and explain crypto-mining applications,
the system uses auto-encoding-based techniques for LSTM models, SHAP, LIME, and
LIME. The system’s explainability is critical for system administrators to grasp system-level
rationales for supporting disruptive administrative decisions. Wang et al. [119] also used
SHAP to improve the interpretation of IDSs by integrating local and global explanations.
Their proposed architecture can improve IDS transparency, allowing cybersecurity experts
to make better decisions and optimize IDS structure. Finally, Alenezi et al. [120] employed
RFC (random forest classifier), XGBoost, and the sequential algorithm to study two big
cybersecurity datasets and used three SHAP approaches to explain the feature contributions.
The study emphasizes the need to understand the value of data in order to increase the
explanatory capabilities of cybersecurity threats data using SHAP methodologies, which
can lead to future data collection operations in cybersecurity or other fields.

The benefits of employing SHAP for XAI in cybersecurity include improved model
transparency and interpretability, the ability for cybersecurity specialists to make better
decisions, and the optimization of model structures. However, drawbacks include the
method’s intricacy and the possibility of misleading explanations if the model is not
thoroughly understood.
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3.2.8. Smart Agriculture

The smart agriculture sector is explained locally using various datasets, including
tabular, time-series, and text data, as illustrated in Table 2.

Using publicly available tabular data, Ryo et al. [128] used XAI and interpretable ML
to study the influence of no-tillage on agricultural yield compared to conventional tillage.
The authors assessed the importance of factors for prediction, variable interactions, and
the relationship between relevant variables and the response variable. Adak et al. [129]
used sentiment analysis to assess customer evaluations in the food delivery services (FDSs)
domain, and they justified their predictions using SHAP and LIME. Viana et al. [127] pro-
posed a machine learning model to discover the factors influencing agricultural land usage
at the regional level for wheat, maize, and olive grove plantings. Using a model-agnostic
methodology, they presented global and local interpretations of the significant elements.
XAI technologies were used by Cartolano et al. [130] on the ’Crop Recommendation’ dataset
to make ML models clear and trustworthy. Their research focused on sensitivity analysis,
comparing what the models discovered to what farmers and agronomists already knew.
Future research could look into other XAI methodologies and visualization techniques in
sectors as diverse as computational creativity and emotion recognition.

Several studies have looked into the usage of deep neural networks in time-series
data research. For example, Wolanin et al. [131] used a deep neural network to predict
wheat yield in the Indian wheat belt. They used regression activation maps (RAMs) to
improve interpretability to show the model’s learned features and yield drivers. Similarly,
Kawakura et al. [132] created an XAI-based technique for agri-directors to train agri-
workers by analyzing varied data and merging agri-informatics, statistics, and human
dynamics. Li et al. [133] created the ExamPle model, which employed a Siamese network
and multi-view representation to forecast plants’ small secreted peptides (SSPs) and re-
vealed the SSPs’ sequential pattern. Additionally, Kundu et al. [134] presented the AIDCC
(automatic and intelligent data collector and classifier) framework for automating the
collection of imaging and parametric datasets from farms producing pearl millet, disease
prediction, and feature visualization using deep learning and IoT.

Finally, Apostolopoulos et al. [136] showed that the Xception network outperforms
other CNNs in recognizing suspicious situations in various photos. It improved its post
hoc explainability by using the Grad-CAM++ and LIME algorithms. They recommended
that future studies look at various methodologies, such as fuzzy logic and fuzzy cognitive
maps (FCM), to examine timely fire and smoke incident detection.

Ngo et al. [137] have presented OAK4XAI (model towards out-of-box explainable arti-
ficial intelligence), an XAI system for text data analysis that combines domain knowledge
semantics via an ontology and knowledge map model. To describe the knowledge mined
in agriculture, they developed the agriculture computer ontology (AgriComO), a well-
structured framework suitable for agriculture and computer domains. In future research,
the authors intend to create an explanation interface as a service for user engagement
and to expand the model by integrating multiple ML algorithms for prediction utilizing
explainable methodologies.

3.3. Current Challenges and Recommendations of Local Explanation for Industrial Applications

Based on our study and analysis of the surveyed papers, we identify several challenges
and derive possible recommendations to solve those issues.

3.3.1. Challenges

Local explanations are essential to industrial AI applications but face two significant
challenges. The first challenge is that local explanations require computational resources
and only provide a narrow view of the model’s behavior. The second issue is the trade-
off between interoperability and performance accuracy, as a human-centric strategy is
still required.
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Local explanation techniques aim to provide insight into the decision-making pro-
cesses of complex ML models by highlighting the contribution of individual features to the
final prediction for a specific input instance. Some of the popular local explanation tech-
niques used in industrial applications include LIME [138], SHAP [139], and Anchors [140].
These techniques have been applied to a wide range of applications such as credit risk
assessment [73], image classification [141], and text classification [142]. These techniques
provide transparency, increase trustworthiness, and can improve model performance.
However, the effectiveness of these techniques may vary depending on the type of model,
dataset, and task [138,139]. Several studies have demonstrated the effectiveness of local
explanation techniques in industrial applications. For example, Selvaraju et al. [141] used
LIME to explain the predictions of a deep neural network for image classification and
showed that the technique improved the model’s performance and helped to detect biases
in the dataset. De Lange et al. [73] used SHAP to interpret the predictions of a credit risk
assessment model and found that the technique increased the transparency and trustwor-
thiness of the model. Different local explanation techniques have strengths and weaknesses
in explaining complex ML and DL models in industrial applications. Several studies have
compared the performance of different techniques, such as LIME, SHAP, and Anchors, on
various tasks and datasets [73,139,140]. These studies have shown that the effectiveness of
these techniques may depend on the type of model, dataset, and task and that no single
technique is universally superior.

XAI has been proposed as a way to address the lack of transparency and limitations
of AI’s usage in critical fields [14,143]. The goal of XAI, according to [144], is to provide
techniques that let end users comprehend, believe in, and control the rising number of
AI systems. For typical learning models with high-dimensional datasets, interpretability
and performance accuracy frequently trade off. Models with high architectural complexity,
such as DL and random forests, often provide better performance accuracy, but are called
"black-box models" because they lack transparency and explainability. In contrast, white-
box or glass-box models, such as linear, graphical, and decision trees, provide transparent
and understandable results. Still, their performance may be subpar [145]. However, recent
research by [146] challenges the assumption that relatively simple ML models are easy to
interpret, as interpretability depends on the context of use, users involved, and complexity.
Therefore, Schoonderwoerd et al. [147] argue for a more human-centric approach to XAI,
which prioritizes user needs over the explainability of the ML model. As a result, there
may be situations where a high-performance model is preferred over an explainable one,
or vice versa [148].

3.3.2. Recommendations

Section 3.3.1 discusses the challenges of interpreting complex models and the limi-
tations of local explanations in capturing global model behavior, which can hinder the
adoption and trust in AI models. To address these challenges and improve the interpretabil-
ity and transparency of industrial AI applications, we suggest the following remedial
measures based on our analysis and knowledge:

• Data quality assurance: Ensuring high-quality datasets is essential to minimize the
impact of challenges associated with local explanation techniques. By performing
data cleaning, normalization, and preprocessing, we can ensure that the datasets are
high quality and minimize the risks of producing unreliable and inaccurate explana-
tions [149].

• Model validation: Thorough model validation and testing should be carried out to
ensure that the model is accurate and reliable [145,146]. Our study suggests involving
end-users in the interpretability process, prioritizing the evaluation of the model’s
interpretability according to the context of use, and providing clear explanations of
the model’s limitations and assumptions to enhance transparency and trust in the
model [150].
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• Appropriate choice of explanation techniques: The efficacy of local explanation strategies
varies according to model type, dataset, and task. Thus, choosing the most appropriate
technique for the application is crucial. Researchers can also develop hybrid models
that combine black-box and white-box models’ strengths to achieve high performance
and interpretability [148].

• Human-in-the-loop: A human-in-the-loop approach can improve the quality of local
explanations and enhance trust in the model. By including human experts in the
decision-making process, we can ensure that the local explanations are relevant and
accurate for the intended use case [151].

Different local explanation techniques have strengths and weaknesses in explaining
complex ML and DL models in industrial applications. It is, therefore, essential to select the
appropriate technique, ensure data quality, validate models, and include human experts
in the decision-making process to minimize the impact of the challenges associated with
local explanation techniques. To support our arguments, we draw on the literature, which
has shown that the effectiveness of local explanation techniques may vary depending
on the model type, dataset, and task [152]. Furthermore, recent research has challenged
the assumption that relatively simple ML models are easy to interpret, as interpretability
depends on the context of use, the users involved, and complexity [153]. Therefore, our
study emphasizes the need for a more human-centric approach to XAI, prioritizing user
needs over the explainability of the ML model.

In conclusion, our paper provides a roadmap for using local explanation techniques
in industrial AI applications, addressing the challenges associated with their use and
enhancing the models’ transparency, interpretability, and trust. However, we acknowledge
that our framework is not exhaustive and that further research is needed to develop more
robust and effective approaches to XAI in industrial settings.

4. Discussion of Gaps and Limitations in the Current Literature

Local explanation techniques have gained significant attention due to their potential to
increase transparency and interpretability in complex ML and DL models used in industrial
applications. While these techniques have shown promise, several gaps and limitations
must be addressed.

4.1. Discussion of Survey Results and Gaps

Section 3 presents our survey results, allowing us to answer the four main research
questions outlined in Section 2. Analyzing the data collected gave us insights into using
local explanation techniques in industrial applications and their distribution, benefits,
limitations, and effectiveness.

Q1: What local explanation techniques are used in industrial applications? SHAP,
LIME, and Grad-CAM variations are among the most extensively employed local expla-
nation approaches in industrial applications, according to the survey data presented in
Section 3.1.1. SHAP assigns an importance score to each feature based on the Shapley value
from cooperative game theory. LIME is a model-agnostic explanation method that learns
an interpretable model locally around the prediction to explain the predictions of any black-
box model. Grad-CAM variations in deep neural networks use gradient information to
depict and explain the features contributing to a certain prediction. In numerous industrial
areas, these strategies have proven beneficial in delivering local explanations and boosting
transparency and trust in AI models.

Q2: How widespread are practical industrial applications of local explanation tech-
niques? The practical industrial applications of local explanation techniques have gained
significant traction in recent years. According to the survey results in Section 3.1.2, local
explanation techniques are widely used in various fields, including healthcare, energy
and building management, and industrial engineering. Among these fields, healthcare
is one of the most prominent sectors in adopting local explanation techniques. These
techniques are used extensively for clinical decision making, disease prediction, and patient
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monitoring. In healthcare, local explanation techniques play a vital role in helping medical
professionals to understand the reasoning behind the predictions of medical diagnosis
models, improving the accuracy of diagnosis, and building trust in the models. Energy and
building management is another sector that has embraced local explanation techniques
to optimize energy consumption and improve building performance. These techniques
are used to interpret the predictions of energy consumption models, identify the factors
affecting energy consumption, and recommend energy-efficient practices. Similarly, in-
dustrial engineering uses local explanation techniques for predictive maintenance and
quality control. These techniques can help to identify potential machine failures, predict
maintenance needs, and improve product quality. The survey results demonstrate that local
explanation techniques are increasingly prevalent in various industrial sectors. Healthcare,
energy and building management, and industrial engineering are among the leading fields
in adopting these techniques.

Q3: What are the benefits and limitations of local explanation techniques for industrial
applications? The ability to explain specific predictions of complex models, identify the
essential components that lead to the prediction, find biases and errors, and establish trust
in the models are all advantages of local explanation techniques. Local explanations are
also useful in increasing AI systems’ transparency, accountability, and fairness. On the
other hand, as outlined in Section 3.3.1, one of the major limitations of local explanation
techniques is the lack of standardization in evaluating and comparing them. Although
numerous studies have proposed various techniques, there is currently no agreed-upon
standard for evaluating their performance, which makes it difficult to compare different
methods. This limitation poses a challenge in determining the most effective technique
for specific applications. To address this issue, there is a need for standard datasets,
metrics, and benchmarks, to enable a fair and accurate comparison of different techniques
in different applications [14]. Another important gap is the limited understanding of the
robustness and generalizability of local explanation techniques across different datasets
and applications. While many studies have evaluated the effectiveness of these techniques
on specific tasks and datasets, it is unclear whether the findings can be generalized to
other tasks and datasets. The effectiveness of these techniques may vary depending on
the type of data and application, making it challenging to determine the most appropriate
technique to use in different scenarios. Therefore, there is a need for a more comprehensive
and diverse evaluation of these techniques across different applications and datasets [154].
Additionally, local explanation techniques may have ethical and social implications that
must be addressed. For example, these techniques may reveal sensitive information about
individuals or groups, and there is a risk of unintended consequences if these explanations
are not carefully designed and implemented. Therefore, it is important to consider these
techniques’ ethical and social implications and to develop guidelines for their responsible
use [155]. Finally, after analyzing our survey results and statistical distributions, it is
evident that the development of local explanation techniques is imbalanced across different
industrial application fields. In summary, local explanation techniques can become more
useful and effective in real-world settings by addressing these limitations and gaps in the
current literature.

Q4: How to build effective local explanation techniques in practical settings? The
effectiveness of local explanation techniques in practical settings can vary depending on
the specific use case and the data quality and models, as mentioned in Section 3.3.2. While
these techniques can provide valuable insights into the behavior of complex models, their
effectiveness may be limited in some cases. For example, if the model is too complex or
the dataset is too noisy, the local explanations may not be reliable or accurate. However,
studies have shown that when combined with other interpretability methods, such as
global explanations or feature importance analysis, local explanations can provide a more
comprehensive understanding of the model behavior and improve the trustworthiness
of the models. Additionally, the human-centered approach is crucial in building effective
local explanations in industrial applications. By involving domain experts and end-users in
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the explanation process, the explanations can be tailored to meet the stakeholders’ specific
needs and preferences, increasing their effectiveness and acceptance.

4.2. Analysis of Potential Biases and Limitations of the Study

One of the potential biases and limitations of this study is the focus on a limited number
of local explanation techniques and industrial applications. While we have discussed some
popular techniques and applications, this study has not covered many other techniques
and applications. Moreover, the effectiveness of these techniques may vary depending
on the specific task, dataset, and model, and our findings may not be generalizable to
other contexts.

Another limitation is the reliance on the existing literature and case studies, which
may be subject to publication bias and other forms of bias. Moreover, many of the studies
that we have reviewed have used different evaluation metrics and benchmarks, which
may make it difficult to compare their findings. Future studies should consider using
standard metrics and benchmarks to enable better comparison and evaluation of different
local explanation techniques.

5. Conclusions and Future Directions

In conclusion, this literature review has provided insights into the industrial applica-
tions of local explanation techniques for ML models. We have discussed the benefits and
limitations of these techniques and highlighted the challenges in their practical use.

Our findings imply that local explanation strategies can help to improve the inter-
pretability and transparency of black-box models in various industrial settings, including
banking, healthcare, and manufacturing. However, limitations and roadblocks remain,
such as computational costs and trade-offs between model accuracy and interpretability.
Consistent evaluation measures, datasets, and benchmarks are required to address these
issues to enable fair and reliable comparisons of diverse methodologies. Furthermore, the
human-centered design of local explanations should be considered, as the ultimate goal is
to enable human users to understand and trust AI systems.

To advance the field, we recommend that future research focuses on developing more
effective and efficient local explanation techniques that can be applied to large-scale datasets
and complex models. Additionally, ethical considerations must be addressed to ensure the
responsible use of these techniques and minimize potential harm to stakeholders.

It is crucial to highlight limitations to this literature evaluation, such as the study
scope and inherent biases in the selection criteria and methods. Nonetheless, this review
contributes significantly to the field and can be a resource for researchers and practitioners
interested in XAI and industrial applications.

To summarize, local explanation techniques can potentially increase the transparency
and interpretability of complex ML and DL models in industrial settings. Further research,
however, is required to address the challenges and limitations of these techniques and
ensure their responsible use.
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