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Abstract: Efficient and seamless railway operations depend on the systematic and well-coordinated
maintenance of both rolling stock and infrastructure. However, track maintenance, or ‘trackwork’,
can cause substantial delays if not properly aligned with train schedules. This study comprehensively
investigates how trackwork influences train operations in Sweden. It involves an in-depth analysis
of an extensive dataset comprising over 225,000 recorded instances of planned trackwork and
approximately 32.5 million train passages throughout the year 2017. Multiple logistic and negative
binomial regression models showed that train running time delay occurrence is higher in the sections
with scheduled trackwork. Trains passing through trackwork are 1.43 times more likely to experience
delays compared to trains that do not pass through scheduled trackwork. The likelihood of an
opportunity for the train delay recovery passing the section with scheduled trackwork is reduced by
11%. Additionally, the frequency of train delay increase is 16% higher, and delayed recovery is 4%
lower in relation to trackwork. With the number of trackwork set to increase over the coming years,
these results bring attention to train scheduling and the performance of trackwork.

Keywords: railway infrastructure maintenance; train delays analysis; trackwork scheduling; Swedish
railway system; regression analysis

1. Introduction

Ensuring the reliability of railway operations is crucial, especially with an anticipated
shift of more traffic to rail [1]. With the increase in train traffic, the wear and tear on
railway infrastructure components intensify, necessitating regular track maintenance [2].
Trackwork refers to the maintenance or renewal of railway infrastructure components
that require planned temporary capacity restrictions for the section on the track where
the activity is taking place. Such limitations can include complete track closures, reduced
speed limits, or switching to single-track operations [3,4]. These restrictions might lead to
train delays, thus often requiring adjustments in train schedules [4,5]. To address this issue,
substantial research has been conducted in the field of maintenance optimisation and train
operations [6–9].

Punctuality is vital for the competitiveness of railway services, as delays can severely
compromise the quality of service for both passenger and freight railway operations [10–12].
Punctuality and delay refer to trains running either at or behind the scheduled arrival time.
In Sweden, punctuality is assessed in terms of the percentage of trains arriving at the final
destination within 5 min of the scheduled time. While punctuality is the metric that is
most commonly used to evaluate the performance of railway operations, it is a result of
delays that have occurred throughout the journey. Delay is a measurement (in minutes) of
a negative deviation from the train timetable [12,13]. Running time delay is measured as
the time difference between the scheduled and actual train travel time between stations.
Another important aspect linked to train punctuality is delay recovery, defined as a delay
time reduction [14].
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There is a growing body of research focusing on identifying the factors behind train
delays, with notable contributions from various studies [3,5,15–18]. Among the method-
ologies employed, statistical regression models, machine learning, neural networks, and
hybrid approaches are frequently used to analyse and predict railway operation delays [18].
Research in this domain utilises a diverse array of predictors for train delays, including train
and infrastructure faults, maintenance activities (such as servicing or trackwork), speed
limitations, human errors, network control actions, weather conditions, and other causative
factors [10,16,18–21]. Delay prediction models often incorporate parameters like the dis-
tance a train covers, its length, running time margins, the railway capacity, and passenger
volumes [5]. Furthermore, delays are also linked to railway infrastructure failures, inad-
equate maintenance, and imposed speed reductions [22–26]. Previous research indicates
that factors such as ongoing construction, maintenance, speed restrictions, and the state
of the infrastructure can contribute to reduced train punctuality [5,10,15]. Despite these
insights, the specific impact of trackwork on train delays remains under-explored. This
study endeavours to fill this knowledge gap, aiming to provide a detailed understanding
of how trackwork specifically affects train delays.

1.1. Railway Infrastructure Maintenance in Sweden

The Swedish Transport Administration, as an infrastructure manager, is responsible for
the maintenance and renewals of railway infrastructure in Sweden [27]. The maintenance is
delegated to five main maintenance companies and over 1000 subcontractors, governed by
34 different contracts. In line with current regulations, the maintenance contractors must
conduct operational planning and request railway capacity [28], initiating applications
12 weeks before the scheduled trackwork and finalising them at least four weeks in advance.
A detailed description of this process can be found in [29]. Once these applications are
authorised, they are recorded in the track utilisation plan. If trackwork is not aligned
with train schedules during the annual capacity allocation, it raises the likelihood of train
disruptions [30].

Trackwork that is performed frequently to preserve the condition of the infrastructure
usually lasts for less than 24 h. In Sweden, this regular maintenance is referred to as “basic
maintenance”, which includes inspections, snow removal, switch lubrication, maintenance
at level crossings, signal repair, tamping of tracks, and turnouts [7]. This paper focuses
on basic infrastructure maintenance, which does not lead to prolonged track closures but
implies certain operational restrictions for train traffic.

The trackwork schedule is documented in the track utilisation plan, a digital record
of all maintenance activities kept by the Swedish Transport Administration. There is an
absence of systematic digital records concerning the actual execution of the scheduled
trackwork. While dispatchers do maintain logs of conducted trackwork, these records are
traditionally consigned to logbooks and have not yet been systematically transcribed into a
digital format. Therefore, the present study is predicated upon the data available from the
scheduled trackwork as outlined in the track utilisation plan.

As highlighted by [31], the current Swedish train planning system lacks established
guidelines governing single-track operations during maintenance activities. Consequently,
there is a minimal expectation for timetables to be meticulously adjusted in line with
scheduled trackwork. Moreover, given the substantial volume of trackwork, we do not
expect operators to cancel a majority of trains. Nevertheless, during instances of extensive
closures, operators possess the requisite capacity to either cancel or reroute trains as
necessary. This scenario underscores the significance of analysing the impact of planned
maintenance on train operations.

1.2. Study Objectives

This research focuses on assessing the impact of trackwork on train delays. It analyses
Swedish data, including over 225,000 scheduled track maintenance events and approxi-
mately 32.6 million train passages throughout the country in 2017. This study is designed
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to answer the following research questions: (1) To what extent does trackwork influence
the probability and frequency of train delays in Sweden? (2) How does the scheduled
trackwork affect a delay recovery opportunity of the train? While this paper focuses on
the Swedish railway system, we believe our findings apply in the European Union, as the
railway capacity allocation process follows the same regulations [32].

2. Methodology

This section outlines our methodology to assess the impact of trackwork on train
delays in Sweden, using two regression analyses: multiple logistic regression and negative
binomial regression. The section begins by presenting the datasets obtained from the
Swedish Transport Administration covering the Swedish railway network in 2017 [33]. The
data preparation process involves combining and structuring this data to make it suitable
for regression analysis. Following this, we describe our use of multiple logistic regression
to analyse the probability of train delays in relation to trackwork and other factors. Then,
we explain the application of negative binomial regression to examine the frequency of
these delays. Both methodologies are chosen for their effectiveness in handling the complex
nature of our dataset and their relevance to railway operations analysis.

2.1. Overview of Data

The first dataset comprises the trackwork records from the track utilisation plan, de-
tailing 225,507 instances of scheduled trackwork. Each record provides specific information
about the scheduled time, location, and the restrictions imposed on train traffic due to
maintenance. Our study focused on basic maintenance trackwork, which is characterised
by the absence of full track closures and a duration of less than 24 hours.

In the track utilisation plan, locations of trackwork are identified by unique signal
numbers situated along the track segments that span between two designated stations,
marked as Ss and Se in Figure 1. Out of the 225,507 trackwork activities listed for 2017, we
identified 3218 distinct track segments, which may include up to nine intermediary stations.
Within these segments, the plan records a set of smaller trackwork that is performed at the
same time in the same area. To streamline our dataset, we merged overlapping activities
into single records, thereby eliminating duplication and simplifying the dataset for analysis.
As a result, adjacent trackwork events, such as those depicted in Figure 1 as Ss.1–Sn.1 and
Sn.2–Se.2, were combined into consolidated entries, labelled as trackwork 1–2 in the figure.

Train route

Ss.1 Sn.1

Sn.2 Se.2

Trackwork 1

Ss.1-2 Se.1-2

Trackwork 2

Trackwork 1-2

SeSs

Figure 1. Railway track segment where trackwork happens between stations S1 and Sn.

The second dataset comprises the train punctuality data, extracted from the train
plan 2017. This dataset provides information about the scheduled departure/arrival time
and actual departure/arrival time to each station on the assigned train path, with a time
precision of one minute. It includes specific details for each train route, such as a unique
identification number, the type of train, and the type of track (whether single, double, or
quadruple). In total, this dataset captures 32,591,482 train observations (Figure 2). Each
recorded train passage is captured as a sequence of stations along its route, providing a
precise geographical profile compared to the trackwork dataset (Figure 1). To integrate the
datasets, we matched each unique journey in the punctuality records with corresponding
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track segments between the start (Ss) and end (Se) stations on the route. Given that trains
traversed numerous segments or bypassed them entirely on their routes, 32.6 million
recorded journeys throughout 3218 designated segments comprised roughly 27.2 million
distinct train passages (Figure 2).

Figure 2. Data processing workflow for train punctuality and trackwork analysis.

Following this, we prepared the datasets for analysis with two regression models:
multiple logistic regression and negative binomial regression. For the logistic regression,
we defined two additional variables to capture both the presence and absence of train
running time (runtime) delay increases, without altering the overall number of observations
(Figure 2). In contrast, for the negative binomial regression, we aggregated the data based on
a unique mix of train type, track type, trackwork, train entry status, daytime, and location.
We then grouped the dataset with three new variables to quantify the counts of train
running time delay increases, decreases, and instances where delays remained constant.

Table 1 shows a summary statistic of trackwork duration and train delay size. On
average, the trackwork lasted for 181 min but had a large range and a standard deviation of
207 min. The running time delay was calculated as a difference between the scheduled and
actual train running times between analysed stations. The measurements were conducted
with a precision of up to 1 min. The mean value of the observed train running time delays
is -0.15 min, and a standard deviation of 5. The range of delay times spans substantially,
with the earliest arrivals recorded at minus 444 min, and the maximum value 1447 min.



Appl. Sci. 2024, 14, 125 5 of 15

Table 1. Statistical summary of trackwork duration and train delays length.

Category Obs. Mean St. Dev. Min Max

Trackwork duration (minutes) 225,507 181 207 0 1439

Train delays (minutes) 18,948,094 -0.15 5 -444 1447

The analysed 27.2 million train passages have the following characteristics presented
in Table 2. The count of the trains was evenly distributed over 12 months in the year 2017,
with an average count of 2.3 million train passages per month. Table 2 shows the following
characteristics of analysed train passages: train subtype, track type, running time delay,
trackwork, train enter status, and day time. Each category of these variables is listed, along
with the percentage of observations per category, and reports delay-increase observations
within four thresholds (1–4 min, 5–9 min, ≥10 min, and ≥1 min). Notably, among all
categories, freight trains most frequently faced increases in running time delays. In contrast,
when passing the analysed section, commuter trains were less prone to such delay increases.
Instead, these commuter trains predominantly experienced reductions in running time
delays during the period of study. Scheduled trackwork overlapped with about 0.4% of the
train passages, whereas 99.6% of the passages did not pass through scheduled trackwork.
10% of the train passages were on quadruple-track, 52% on double-track, and 39% on
single-track. Our sample was composed of 81% passenger trains and 19% freight trains. In
total, 29% of the train passages in our sample were ahead of schedule entering the analysed
track section, and 43% were behind schedule. Interestingly, trains that entered the section
ahead of schedule often encountered a subsequent increase in running time delay. Finally,
86% of the passages occurred in the daytime and 14% at night. Night-time was defined
(according to the labour act of Sweden [34]) as the period between 22.00 and 06.00. The
total count of observations in the sample is 27,182,178.

Table 2. Characteristics of the analysed sample of train passages.

Variable Category Observations
Delay

Increase
(1–4 min)

Delay
Increase

(5–9 min)

Delay
Increase

(≥10 min)

Delay
Increase
(≥1 min)

Delay
Decrease

Running
Time

Constant

Freight 19% 22.5% 4.3% 4.5% 31% 43% 25%
Unspecified
passenger 1% 24.0% 1.7% 0.8% 26% 39% 34%

InterCity 6% 22.7% 1.4% 0.5% 25% 40% 36%
Train type Airport 3% 27.8% 0.3% 0.1% 28% 14% 58%

Commuter 26% 13.0% 0.4% 0.2% 14% 58% 29%
Regional 32% 20.5% 0.9% 0.3% 22% 43% 36%

High-
speed 13% 23.9% 1.1% 0.4% 25% 33% 42%

Single 39% 20.4% 2.2% 1.8% 24% 45% 30%
Track type Double 52% 20.0% 1.1% 0.8% 22% 44% 34%

Quadruple 10% 15.1% 0.4% 0.2% 16% 45% 39%

Trackwork
Yes 0.4% 26.2% 2.7% 1.8% 31% 42% 27%
No 99.6% 19.7% 1.4% 1.1% 22% 45% 33%

Early 29% 27.4% 2.7% 2.5% 33% 34% 34%
Train Enter Late 43% 17.1% 1.2% 0.8% 19% 50% 31%

On time 29% 15.8% 0.5% 0.2% 17% 47% 36%

Day time
Night 14% 20.9% 2.1% 1.9% 25% 44% 31%
Day 86% 19.5% 1.3% 1.0% 22% 45% 34%
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2.2. Regression Modelling

In this study, we analyse how train running time delay and delay recovery (attributed
to delay decrease) are associated with trackwork. The control factors are train type and
subtype (passenger or freight train, with subtypes of each) and train entry status (early,
late, on time) to the analysed track segment. Track type and day time are control variables
for the trackwork relevant to this study’s context. We develop two types of regression
models: (i) Multiple logistic regression to explore the probability of train running time delay,
and (ii) negative binomial regression to explore the frequency of train running time delay
affected by the presence of scheduled trackwork. In addition to the main models, which
account for more or equal to a 1 min train running time delay, we have also performed a
sensitivity analysis regarding different running time train delay thresholds, accounting for
delays of more than 5 or 10 min.

Table 3 provides a comprehensive statistical summary of the response variables used
in both the logistic and negative binomial regression models. For the logistic regression
model, we consider running time delay increases and decreases of at least one minute,
with the observations totalling 27,182,634. Within this model, the average instance of delay
increases of at least one minute is noted as 0.22, with a standard deviation of 0.42. The
mean for delay decreases of the same threshold is 0.45, reflecting a higher frequency of
delay decreases with a standard deviation of 0.50. The sensitivity of the model to more
substantial delays is also examined, with thresholds at five and ten minutes, revealing
lower average instances, signifying fewer occurrences of longer delays.

Table 3. Statistical summary of the analysed response variables for logistic and negative binomial
regression models.

Regression Train Running Time Delay Obs. Mean St. Dev. Min Max

Increase ≥1 min 27,182,634 0.22 0.42 0 1
Multiple Decrease ≥1 min 27,182,634 0.45 0.50 0 1
logistic Increase ≥5 min 27,182,634 0.03 0.16 0 1

Increase ≥10 min 27,182,634 0.01 0.11 0 1

Increase ≥1 min 406,563 15 44 0 2111
Negative Decrease ≥1 min 406,563 30 100 0 3625
binomial Increase ≥5 min 406,563 1.70 5.28 0 142

Increase ≥10 min 406,563 0.74 2.91 0 86

The negative binomial regression model is employed for count data, chosen due to the
over-dispersion present in the delay counts. The variables for this model are aggregated
counts by trackwork, track type, train subtype, train enter status, and day time and location
(Figure 2), with a total of 406,563 observations. The response variable running time delay
increase/decrease count is a count variable representing the number of increased/decreased
delays in the running time for each train passage in the studied track segment. The count
of running time delay increases of at least one minute shows an average of 15 with a
standard deviation of 44, indicating variability in delay occurrences. For running time
delay decreases of one minute or more, the mean count is 30, with a higher standard
deviation of 100, suggesting a wider spread in the data. Sensitivity analysis for this model
includes delay increases at five- and ten-minute thresholds, with 142 and 86 instances,
respectively, reflecting a marked decline in counts as the delay duration increases.

2.2.1. Multiple Logistic Regression

We use a multiple logistic regression model to analyse the effect of trackwork, along
with other explanatory variables, on the train running time delay increases (1)/decreases (2).
Logistic regression is commonly used to study functional relationships between a cate-
gorical dependent variable and one or more independent variables [35,36]. The response



Appl. Sci. 2024, 14, 125 7 of 15

variable for the first model captures the presence and absence of train running time delay
increase while passing an analysed track segment, coded as 1 and 0 accordingly. In the sec-
ond model, the response variable reports the presence and absence of train delay decrease
in the same circumstances coded as 1 and 0 accordingly. The multiple regression model
predicts the train running time delay increase/decrease (Y) occurrence by the explanatory
(xi) variables described in Table 2. The summary of this model is presented in the equation:

logit(Y) = β0 + β1x1 + β2x2 + β3x3 + β4x4 + β5x5 (1)

where:

• Y is the response variable capturing the presence or absence of the train running time
delay increase (1 min) for the first model and of running time delay decrease (1 min)
for the second model, given the predictor variables. The possible values are 0 or 1;

• X1, X2, . . . , X5 are the predictor variables in the model (trackwork, track type, train
subtype, train enter status, and day time, respectively);

• β0 is the intercept term, and β1, β2, . . . , β5 are the coefficients for each predictor
variable.

The explanatory variable trackwork is a binary variable where 1 is assigned to cases
where the train passage on the studied track segment overlaps with scheduled trackwork;
otherwise, it is: 0. Track type, train type, train enter status, and night are categorical
explanatory variables representing the track type, train subtype, whether the train is on
time, early, or late, and whether the train operates at night, respectively. The time variable
shows when the train passed the analysed line day (0) or night (1). Pearson’s chi-squared
test was used to check the independence of qualitative variables entering the regression
model. The results show that all tested variables were independent. The selection variables
chosen for this model were made by testing several logistic models.

For ease of interpretation, in line with multiple logistic regression coefficients, we
computed the odds ratio (OR). OR is a measure of association between a given exposure in
a logistic regression and an outcome Y:

OR =
odds(Y = 1)
odds(Y = 0)

(2)

The OR, therefore, indicates how much more likely the event is to happen given a
particular exposure (in this case, trackwork) compared to its absence. An OR greater than
1 suggests a higher likelihood of the event when the exposure is present, whereas an OR
less than 1 indicates a reduced likelihood. This measure is particularly useful in logistic
regression as it provides a clear and interpretable metric of the strength and direction of
the association between predictors and the outcome variable.

2.2.2. Negative Binomial Regression

We employed two negative binomial regression models to analyse the relationship
between the count of train running time delay increases (1)/decreases (2) and a set of
explanatory variables. The regression coefficients were estimated using the glm.nb function
in R (2023.06.2). The equation for the model is as follows:

log(E[Y|X]) = β0 + β1X1 + β2X2 + β3X3 + β4X4 + β5X5 + log(εi) (3)

where:

• E[Y|X] is the expected count of running time delay increase (1 min) for the first
model and of running time delay decrease (1 min) for the second model given the
predictor variables;

• X1, X2, . . . , X5 are the predictor variables in the model (trackwork, track type, train
subtype, train enter status, and night, respectively);
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• β0 is the intercept term, and β1, β2, . . . , β5 are the coefficients for each predictor
variable.

• log(εi) is the natural logarithm of the exposure variable for observation.

For ease of interpretation, in line with the coefficients obtained from the negative bino-
mial regression, we computed the incidence rate ratio (IRR) by taking the exponent of the
estimated coefficients, which is expressed as IRR = eβi . This allows us to directly interpret
the proportional change in the count of running time delay increases or decreases associated
with a one-unit change in the predictor variable, with all other variables held constant.

3. Results

This paper conducts a comprehensive analysis of how trackwork impacts train run-
ning time delays, utilising two distinct types of regression models. Firstly, the multiple
logistic regression model elucidates the probabilities of train delays in relation to scheduled
trackwork, taking into account other predictor variables. Secondly, the negative binomial
regression model sheds light on the frequency of delay occurrences, specifically focusing on
the correlation between the presence of scheduled trackwork and the delays experienced
by trains traversing these segments.

3.1. Train Running Time Delay Increase

We employed multiple logistic regression and negative binomial regression models
to examine the correlation between increases/decreases in train running time delays and
trackwork (Table 3), adjusting for a set of categorical independent variables (Table 2). Our
sensitivity analysis focused on understanding the impact of train delay thresholds of 5
and 10 min on this association. We assessed the statistical significance of each coefficient
using the Wald chi-square test. Comprehensive summaries of these models can be found in
Appendix A, Tables A1 and A2.

The multiple logistic regression analysis presented in Table 4 reports the probability
of train running time delays, categorised into delays of ≥1 min, ≥5 min, and ≥10 min, in
relation to scheduled trackwork and other operational factors. The regression coefficients
are significant at the 0.1% level, except for the airport train type and the impact of trackwork
on delays of at least 10 min. For delays of at least 1 min, the model reveals an increase in
the likelihood of delay (OR = 1.43) when trackwork is scheduled. This effect diminishes
slightly for delays of 5 min or more (OR = 1.37), and becomes non-significant for substantial
delays of at least 10 min (OR = 1.04). Track and train type play a considerable role in
predicting delays. Quadruple tracks demonstrate a decreased probability of short and
moderate delays but an increased likelihood of longer delays (OR = 1.28). Conversely,
single tracks and commuter trains consistently correlate with higher odds across all delay
thresholds. The analysis also indicates that unspecified passenger and high-speed trains
are less likely to experience significant delays. Notably, late departures and night-time
operations do not emerge as significant predictors of delay.

The negative binomial regression analysis, summarised in Table 5, investigates the
frequency of train running time delays at thresholds of ≥1 min, ≥5 min, and ≥10 min,
considering other explanatory variables (track type, train type, train departure status, and
day time). For delays ≥1 min, the presence of trackwork slightly increases the frequency
of delays (IRR = 1.16). This effect is marginally more pronounced for delays ≥5 min
(IRR = 1.20) but becomes non-significant for substantial delays of ≥10 min (IRR = 0.98).
The track type shows a differential impact, with quadruple tracks slightly reducing the
frequency of shorter delays (IRR = 0.95) but increasing for longer delays (IRR = 0.72). Single
tracks and unspecified passenger train types tend to increase the frequency of delays across
all thresholds.

The analysis reveals significant variability across different train types in influencing
train running time delay increase occurrences. For instance, intercity and regional trains
consistently show a decreased frequency of delays across all delay size thresholds for
intercity trains for delays ≥1 min). In contrast, although airport trains have a non-significant
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impact on the shortest delays, they considerably increase the likelihood of longer delays.
Departure status and time of day also contribute to delay frequencies, with late departures
and night-time operations showing varying degrees of influence.

Table 4. Multiple logistic regression model summary. Response variables: train running time delay
increase ≥1 min (1; 0), train running time delay increase ≥5 min (1; 0), and train running time delay
increase ≥10 min (1; 0).

Delay Increase ≥1 min Delay Increase ≥5 min Delay Increase ≥10 min

Estimate CI 95% Odds
Ratio

Estimate CI 95% Odds
Ratio

Estimate CI 95% Odds
Ratio

(Intercept) -0.64 [-0.64, -0.64] 0.53 -2.56 [-2.56, -2.55] 0.08 -3.27 [-3.28, -3.26] 0.04

Trackwork (No = 0) 0.36 [0.35, 0.37] 1.43 0.31 [0.28, 0.34] 1.37 0.04ns [-0.00, 0.09] 1.04

Track type Quadruple -0.45 [-0.46, -0.45] 0.64 -0.95 [-0.97, -0.93] 0.39 0.25 [0.23, 0.27] 1.28
(Double = 0) Single 0.05 [0.05, 0.06] 1.06 0.48 [0.48, 0.49] 1.62 0.44 [0.44, 0.45] 1.56

Unspecified
passenger

0.03 [0.02, 0.03] 1.03 -1.24 [-1.27, -1.21] 0.29 -1.68 [-1.72, -1.64] 0.19

InterCity -0.09 [-0.10, -0.09] 0.91 -1.55 [-1.56, -1.53] 0.21 -2.33 [-2.35, -2.30] 0.10
Train type Airport 0.41 [0.40, 0.42] 1.50 -1.77 [-1.80, -1.74] 0.17 -15.46* [-30.33, -0.60] 0.00
(Freight train = 0) Commuter -0.61 [-0.61, -0.61] 0.54 -2.94 [-2.95, -2.93] 0.05 -3.00 [-3.01, -2.98] 0.05

Regional -0.19 [-0.19, -0.19] 0.83 -1.70 [-1.71, -1.69] 0.18 -2.31 [-2.32, -2.29] 0.10
High-
speed

0.01 [0.00, 0.01] 1.01 -1.57 [-1.58, -1.56] 0.21 -2.86 [-2.88, -2.84] 0.06

Departure status Late -0.59 [0.00, 0.01] 1.01 -1.57 [-1.58, -1.56] 0.21 -2.86 [-2.88, -2.84] 0.06
(Early = 0) On time -0.19 [-0.19, -0.19] 0.83 -1.70 [-1.71, -1.69] 0.18 -2.31 [-2.32, -2.29] 0.10

Day time (Day = 0) Night -0.59 [0.00, 0.01] 1.01 -1.57 [-1.58, -1.56] 0.21 -2.86 [-2.88, -2.84] 0.06

All coefficients are significant at the 0.1% level except for those marked with ‘*’ (significant at the 1% level) and
‘ns’ (not significant).

Table 5. Negative binomial regression model summary. Response variables: count of train running
time delay increase ≥1 min, train running time delay increase ≥5 min and train running time delay
increase ≥10 min.

Delay Increase ≥1 min Delay Increase ≥5 min Delay Increase ≥10 min

Estimate CI 95% IRR Estimate CI 95% IRR Estimate CI 95% IRR

(Intercept) -1.01 [-1.02, -1.00] 0.36 -2.53 [-2.54, -2.51] 0.08 -3.19 [-3.21, -3.17] 0.04

Trackwork (No = 0) 0.15 [0.12, 0.17] 1.16 0.18 [0.13, 0.22] 1.20 -0.02ns [-0.08, 0.05] 0.98

Track type Quadruple -0.05 [-0.07, -0.03] 0.95 -0.50 [-0.54, -0.47] 0.60 -0.32 [-0.37, -0.27] 0.72
(Double = 0) Single 0.05 [0.05, 0.06] 1.06 0.35 [0.33, 0.36] 1.41 0.33 [0.31, 0.35] 1.39

Unspecified
passenger

-0.09 [-0.10, -0.07] 0.92 -0.93 [-0.96, -0.89] 0.40 -1.42 [-1.47, -1.37] 0.24

InterCity -0.17 [-0.18, -0.16] 0.84 -1.21 [-1.23, -1.19] 0.30 -1.77 [-1.80, -1.74] 0.17
Track type Airport 0.03ns [-0.02, 0.08] 1.03 -1.88 [-1.97, -1.80] 0.15 -2.48 [-2.60, -2.36] 0.08
(Freight train = 0) Commuter -0.49 [-0.51, -0.48] 0.61 -2.08 [-2.11, -2.06] 0.12 -2.68 [-2.72, -2.65] 0.07

Regional -0.28 [-0.29, -0.27] 0.75 -1.57 [-1.59, -1.56] 0.21 -2.17 [-2.19, -2.15] 0.11
High-
speed

-0.16 [-0.17, -0.15] 0.85 -1.39 [-1.41, -1.37] 0.25 -2.01 [-2.04, -1.98] 0.13

Departure status Late -0.27 [-0.28, -0.27] 0.76 -0.23 [-0.24, -0.22] 0.80 -0.21 [-0.23, -0.19] 0.81
(Early = 0) On time -0.35 [-0.36, -0.34] 0.71 -0.82 [-0.84, -0.80] 0.44 -0.99 [-1.01, -0.96] 0.37

Day time (Day = 0) Night -0.02 [-0.02, -0.01] 0.98 -0.06 [-0.08, -0.05] 0.94 -0.08 [-0.10, -0.06] 0.92

All coefficients are significant at the 0.1% level except for those marked with ‘ns’ (not significant).
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3.2. Train Running Time Delay Decrease

We utilised both multiple logistic regression and negative binomial regression mod-
els to explore the opportunity for train delay reduction whilst traversing segments with
scheduled trackwork. Detailed summaries of these models are presented in Appendix A,
specifically in Tables A3 and A4. The statistical significance of each coefficient was deter-
mined using the Wald chi-square test, providing a robust basis for our analysis.

The outcomes of the multiple logistic regression model are summarised in Table 6.
All coefficients are significant at the 0.1% level. The model indicates that trackwork is
associated with a slight decrease in the likelihood of delay reduction (OR = 0.89). There
is a notable increase in the probability of delay reduction for the quadruple track type
(OR = 1.24). Among all train types, commuter trains exhibit an increased probability of
delay reduction (OR = 1.30). If the train departs late, it is more likely to reduce delays
(OR = 1.96). The time of day shows a minimal impact, with night-time operations slightly
less likely to reduce delays (OR = 0.95).

Table 7 presents the negative binomial regression model outcomes, examining the
count of train running time delay decreases exceeding or equal to 1 min. The model
indicates a slight reduction in the frequency of delay reductions in the presence of trackwork
(IRR = 0.96). For track types, quadruple tracks correlate with a lower frequency of delay
reduction (IRR = 0.78), while single tracks demonstrate a marginal increase (IRR = 1.05).
In terms of train types, commuter trains are more likely to reduce delays (IRR = 1.15), in
contrast to airport trains, which show a notable decrease (IRR = 0.37). Departure status is
a significant predictor, with late departures more frequently reducing delays (IRR = 1.26)
and similar trends observed for on-time departures (IRR = 1.18). The time of day does not
have a statistically significant impact.

Table 6. Multiple logistic regression model summary. Response variable: train running time delay
decrease ≥1 min (1; 0).

Coefficient Estimate CI 95% Odds Ratio

(Intercept) -0.51 [-0.51, -0.50] 0.60

Trackwork (No = 0) -0.12 [-0.13, -0.11] 0.89

Track type Quadruple 0.21 [0.21, 0.22] 1.24
(Double = 0) Single 0.06 [0.06, 0.07] 1.07

Unspecified passenger -0.40 [-0.41, -0.39] 0.67
InterCity -0.36 [-0.36, -0.35] 0.70

Train type Airport -1.81 [-1.81, -1.80] 0.16
(Freight train = 0) Commuter 0.26 [0.26, 0.26] 1.30

Regional -0.29 [-0.29, -0.29] 0.75
High-speed -0.71 [-0.71, -0.70] 0.49

Departure status Late 0.67 [0.67, 0.68] 1.96
(Early = 0) On time 0.47 [0.47, 0.47] 1.60

Day time (Day = 0) Night -0.05 [-0.05, -0.05] 0.95

All coefficients are significant at the 0.1% level.

Table 7. Negative binomial regression model summary. Response variable: count of train running
time delay decrease ≥1 min.

Coefficient Estimate CI 95% IRR

(Intercept) -0.99 [-1.00, -0.98] 0.37

Trackwork (No = 0) -0.04 [-0.06, -0.02] 0.96

Track type Quadruple -0.25 [-0.27, -0.23] 0.78
(Double = 0) Single 0.05 [0.04, 0.05] 1.05
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Table 7. Cont.

Coefficient Estimate CI 95% IRR

Unspecified passenger -0.14 [-0.16, -0.13] 0.87
InterCity -0.12 [-0.13, -0.11] 0.89

Train type Airport -1.00 [-1.04, -0.95] 0.37
(Freight train = 0) Commuter 0.14 [0.13, 0.15] 1.15

Regional -0.08 [-0.09, -0.07] 0.92
High-speed -0.26 [-0.27, -0.24] 0.77

Departure status Late 0.23 [0.22, 0.24] 1.26
(Early = 0) On time 0.17 [0.16, 0.18] 1.18

Day time (Day = 0) Night 0.00ns [-0.01, 0.01] 1.00
All coefficients are significant at the 0.1% level except for those marked with ‘ns’ (not significant).

4. Discussion

In this paper, we have analysed the association between trackwork and train delays,
employing two distinct types of regression models: multiple logistic regression and negative
binomial regression. These models provide a comprehensive understanding of the impact
of trackwork on train delays. The logistic regression model sheds light on the probability of
delay occurrences, while the negative binomial regression offers insights into the frequency of
these delays.

Our study concludes that trackwork is linked to an increased rate of delay occurrences
and a higher probability of delay increase. Trains passing through sections with sched-
uled trackwork are 1.43 times more likely to experience an increase in running time delay
(≥1 min). Simultaneously, there is a 16% increase in the expected count of instances where
train delays increase by at least one minute, compared to scenarios without trackwork.
Conversely, the opportunity for train delay recovery diminishes in the presence of track-
work. The frequency of delay reduction decreases by 4%, and the likelihood of a delay
decrease is 11% lower than when there is no trackwork. The sensitivity analysis regarding
the size of the delay reveals a more pronounced effect for delays between 1 and 10 min,
while the impact of trackwork on delays exceeding 10 min is insignificant. This indicates
that trackwork primarily contributes to smaller, more frequent delays.

Although the negative impact of scheduled trackwork on train punctuality is relatively
minor, primarily causing smaller delays (1–10 min), it still affects the reliability of railway
operations. This effect might be mitigated by providing sufficient time for the trackwork to
be completed and ensuring on-time performance. One strategy for achieving this is through
the use of “maintenance windows”, which involve reserving capacity for trackwork in
advance of the completion of the train timetable. This allows train paths to adapt to capacity
restrictions ahead of time and avoid any negative impact on performance. However, it has
been observed that this approach is not yet utilised to its full potential, and train operators
may have difficulty adapting to the restrictions. Additionally, there may be uncertainty [37]
in the trackwork schedule even close to the execution period, which can lead to changes in
the schedule and difficulties for train operators to adapt, resulting in train cancellations.

The trackwork scheduling approach used in this study is consistent with the SERA
directive [32], which is widely adopted in European Union member states. Therefore,
the findings of this study have broad relevance and demonstrate the need for increased
attention to be given to trackwork scheduling.

5. Conclusions

In this paper, we have investigated the extent to which scheduled trackwork is associated
with the probabilities and frequencies of train delays. Based on 32.5 million train passages
and 225,000 instances of planned trackwork throughout the year 2017, the paper presents two
regression models: multiple logistic regression and negative binomial regression.

The results show that trackwork significantly increases the likelihood of train delays,
with trains 1.43 times more likely to experience delays of at least 1 min in these conditions
and a 16% increase in instances of delay increases. However, trackwork also reduces
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the opportunities for delay recovery, leading to a 4% decrease in the frequency of delay
reductions and an 11% lower likelihood of delay decrease. The analysis particularly
highlights that trackwork predominantly affects shorter delays (1–10 min), with negligible
impact on longer delays exceeding 10 min.

Only a small share of trains overlap with scheduled trackwork. However, the absolute
number is likely to increase as both the number of trains and trackwork increase. While
this issue was not a major contributor to delays in 2017, we expect that it will grow signif-
icantly with time. While the analysis indicates a relatively modest impact of trackwork
on train delays, the anticipated increase in trackwork activities over the coming years
could potentially magnify this issue. Therefore, exploring improved scheduling and perfor-
mance strategies for trackwork may contribute to minimising conflicts between trackwork
and train passages, albeit with the current effect being marginal. This study serves as a
preliminary insight into the dynamics between trackwork and train operations, suggest-
ing a measured approach towards optimising trackwork scheduling to accommodate the
evolving demands of the railway network.
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Appendix A

Table A1. Multiple logistic regression model summary. Response variable: train running time delay
increase/decrease ≥1 min (0; 1).

Delay Increase ≥1 min Delay Decrease ≥1 min

Estimate Std. Error z Value Estimate Std. Error z Value

(Intercept) -0.64 0.001 -494.79 -0.51 0.001 -427.69

Trackwork (No = 0) 0.36 0.007 54.55 -0.12 0.006 -18.94

Track type Quadruple -0.45 0.002 -209.33 0.21 0.002 136.90
(Double = 0) Single 0.05 0.001 52.71 0.06 0.001 72.75

Unspecified passenger 0.03 0.005 5.52 -0.40 0.004 -97.97
InterCity -0.09 0.002 -44.60 -0.36 0.002 -188.71

Train type Airport 0.41 0.003 122.82 -1.81 0.004 -479.89
(Freight train = 0) Commuter -0.61 0.002 -358.20 0.26 0.001 183.37

Regional -0.19 0.001 -131.76 -0.29 0.001 -226.32
High-speed 0.01 0.002 3.75 -0.71 0.002 -437.15

Departure status Late -0.59 0.001 -509.74 0.67 0.001 635.42
(Early = 0) On time -0.64 0.001 -463.72 0.47 0.001 387.51

Day time (Day = 0) Night -0.01 0.001 -5.62 -0.05 0.001 -42.09

All coefficients are significant at the 0.1% level.
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Table A2. Multiple logistic regression model summary. Response variable: train running time delay
increase ≥5 min (0; 1) and train running time delay increase ≥10 min (0; 1).

Delay Increase ≥5 min Delay Increase ≥10 min

Estimate Std. Error z Value Estimate Std. Error z Value

(Intercept) -2.56 0.003 -928.24 -3.27 0.004 -807.11

Trackwork (No = 0) 0.31 0.014 22.43 0.04ns 0.022 1.82

Track type Quadruple -0.95 0.011 -82.80 0.25 0.012 20.76
(Double = 0) Single 0.48 0.003 185.36 0.44 0.004 111.71

Unspecified passenger -1.24 0.013 -96.78 -1.68 0.022 -76.96
InterCity -1.55 0.006 -252.05 -2.33 0.012 -191.98

Train type Airport -1.77 0.017 -105.15 -15.46* 7.584 -2.04
(Freight train = 0) Commuter -2.94 0.007 -435.63 -2.99 0.009 -315.61

Regional -1.70 0.004 -473.64 -2.31 0.006 -376.46
High-speed -1.57 0.005 -319.28 -2.86 0.012 -246.29

Departure status Late -0.13 0.003 -45.92 -0.06 0.004 -13.22
(Early = 0) On time -0.15 0.004 -34.44 -0.10 0.007 -13.23

Day time (Day = 0) Night 0.02 0.003 7.99 -0.03 0.004 -7.49

All coefficients are significant at the 0.1% level except for those marked with ‘*’ (significant at the 1% level) and
‘ns’ (not significant).

Table A3. Negative binomial regression model summary. Response variable: train running time
delay increase/decrease count ≥1 min.

Delay Increase ≥1 min Delay Decrease ≥1 min

Estimate Std. Error z Value Estimate Std. Error z Value

(Intercept) -1.01 0.005 -206.13 -0.99 0.005 -216.53

Trackwork (No = 0) 0.15 0.011 13.20 -0.04 0.010 -4.10

Track type Quadruple -0.05 0.010 -4.90 -0.25 0.010 -26.39
(Double = 0) Single 0.06 0.004 14.55 0.05 0.003 13.85

Unspecified passenger -0.09 0.008 -10.63 -0.14 0.007 -19.41
InterCity -0.17 0.006 -30.17 -0.12 0.005 -23.25

Train type Airport 0.03ns 0.024 1.25 -1.00 0.023 -42.86
(Freight train = 0) Commuter -0.49 0.007 -69.58 0.14 0.006 21.69

Regional -0.28 0.005 -58.86 -0.08 0.004 -17.98
High-speed -0.16 0.006 -25.05 -0.26 0.006 -43.18

Departure status Late -0.27 0.004 -65.72 0.23 0.004 58.85
(Early = 0) On time -0.35 0.005 -73.25 0.17 0.004 38.67

Day time (Day = 0) Night -0.02 0.004 -4.47 0.00ns 0.004 0.05

All coefficients are significant at the 0.1% level except for those marked with ‘ns’ (not significant).

Table A4. Negative binomial regression model summary. Response variable: train running time
delay increase ≥5 min count and train running time delay increase ≥10 min count.

Delay Increase ≥5 min Delay Increase ≥10 min

Estimate Std. Error z Value Estimate Std. Error z Value

(Intercept) -2.53 0.005 -320.18 -3.19 0.005 -319.80

Trackwork (No = 0) 0.18 0.011 8.10 -0.02ns 0.010 -0.48

Track type Quadruple -0.51 0.019 -26.72 -0.32 0.025 -12.97
(Double = 0) Single 0.35 0.006 53.87 0.33 0.008 38.90
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Table A4. Cont.

Delay Increase ≥5 min Delay Increase ≥10 min

Estimate Std. Error z Value Estimate Std. Error z Value

Unspecified passenger -0.93 0.017 -55.59 -1.42 0.026 -55.31
InterCity -1.21 0.010 -119.85 -1.77 0.015 -121.38

Train type Airport -1.89 0.043 -44.13 -2.48 0.057 -43.79
(Freight train = 0) Commuter -2.08 0.012 -167.86 -2.68 0.017 -157.55

Regional -1.57 0.008 -192.58 -2.17 0.011 -196.72
High-speed -1.39 0.011 -127.03 -2.01 0.015 -133.85

Departure status Late -0.23 0.007 -33.64 -0.21 0.009 -24.01
(Early = 0) On time -0.82 0.009 -92.14 -0.99 0.013 -76.19

Day time (Day = 0) Night -0.06 0.007 -8.86 -0.08 0.009 -8.86

All coefficients are significant at the 0.1% level except for those marked with ‘ns’ (not significant).
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