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Featured Application: In this paper, the vibration data of CWRU motor bearings is used as
the original data to simulate the real working conditions of motor bearings in the working
environment of hydrogen station by simulating the noise signal of hydrogen station. Then, the
BOA-ResNet18 model is used to diagnose the faults of the added noise signals, and the accuracy
of the fault diagnosis is very high, and the experimental results show that this model can be
applied in the fault diagnosis of hydrogen station equipment under the working conditions of
hydrogen station.

Abstract: The harsh working environment of hydrogen refueling stations often causes equipment
failure and is vulnerable to mechanical noise during monitoring. This limits the accuracy of equipment
monitoring, ultimately decreasing efficiency. To address this issue, this paper presents a motor bearing
vibration signal diagnosis method that employs a Bayesian optimization (BOA) residual neural
network (ResNet). The industrial noise signal of the hydrogenation station is simulated and then
combined with the motor bearing signal. The resulting one-dimensional bearing signal is processed
and transformed into a two-dimensional signal using Fast Fourier Transform (FFT). Afterwards,
the signal is segmented using the sliding window translation method to enhance the data volume.
After comparing signal feature extraction and classification results from various convolutional neural
network models, ResNet18 yields the best classification accuracy, achieving a training accuracy of
89.50% with the shortest computation time. Afterwards, the hyperparameters of ResNet18 such as
InitialLearnRate, Momentum, and L2Regularization Parameter are optimized using the Bayesian
optimization algorithm. The experiment findings demonstrate a diagnostic accuracy of 99.31% for
the original signal model, while the accuracy for the bearing signal, with simulated industrial noise
from the hydrogenation station, can reach over 92%.

Keywords: Bayesian optimization; ResNet18; fault diagnosis; signal processing

1. Introduction

Hydrogen is a zero-emission, efficient, and versatile energy carrier that can be pro-
duced from a variety of sources. It is a crucial solution to replace unsustainable fossil fuels
and reduce carbon emissions in the 21st century [1]. Notably, the hydrogen refueling station
plays a vital role in the hydrogen energy industry chain, serving as a critical infrastructure
that connects hydrogen suppliers with fuel vehicle users downstream [2]. A compressor,
hydrogen dispenser, and hydrogen storage vessel are critical pieces of equipment in a
hydrogen refueling station. Among these, the rolling bearing is an essential component in
the oil pump motor of the compressor. The bearings are exposed to forces in all directions
due to the complex working environment. Without proper coordination with other parts or
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maintenance, they are prone to damage. The failure of a rolling bearing can result in exten-
sive economic losses and may even compromise worker safety, leading to a breakdown in
the entire industrial production process. For this reason, the diagnosis of faults in rolling
bearings holds immense practical significance.

With the development of artificial intelligence algorithms, deep learning algorithms
can realize the extraction of equipment fault characteristics from monitoring data and
diagnose their deep faults, and they have been widely used in the field of machinery fault
diagnosis. Therefore, in the bearing fault diagnosis, many scholars at home and abroad
propose a variety of deep learning algorithms to identify and classify the bearing faults.
Feng et al. [3] proposed a multi-level denoising technique based on Improved Singular
Value Decomposition (ISVD) and Intrinsic Time Scale Decomposition (ITD) combined
with an improved deep residual network (ResNet) for rolling bearing fault diagnosis.
The experimental results show that the proposed method can realize more accurate fault
diagnosis of rolling bearings in high noise environment compared with other methods.
Guogian Jiang et al. [4] proposed a new interpretable deep learning model called Multi
Wavelet Kernel Convolutional Neural Network (MWKCNN) for fault diagnosis. Diwang
Ruan et al. [5] detailed the physical characteristics of bearing acceleration signals to guide
the design of CNN. The results show that physically guided convolutional neural network
(PGCNN) with rectangular input shape and rectangular convolutional kernel works better
than baseline convolutional neural network with higher accuracy and less uncertainty.
Manu Krishnan et al. [6] proposed a new method for modeling dynamic systems by
combining wavelets with input-output dynamic modal decomposition (ioDMD). The
experimental results show that the algorithm still performs well under the influence of
noise. Xiaoyu et al. [7] proposed a Residual Network (ResNet)-based deep migration
diagnostic model for bearing failures by combining Wavelet Packet Transform (WPT) and
Multicore Maximum Mean Difference (MK-MMD). And the comparative experiments
under different working loads and speeds were carried out on two test benches. The results
show that the proposed method has good fault diagnosis and noise prevention ability
and is suitable for the task of working condition transition. Xudong Li et al. [8] optimize
and improve the Neural Architecture Search (NAS) according to the field of automated
machine learning, and apply it to the field of fault diagnosis. Tian Zhang et al. [9] proposed
a slope and threshold with tanh function adaptive activation function (STAC-tanh), which
improves the problem of the activation function compressing part of the fault information
in the traditional neural network. A convolutional neural network is a typical deep learning
method that has been widely used for image recognition. Chunran Huo et al. [10] proposed
an improved adaptive dimension transformed convolutional neural network (ADC-CNN)
to improve the accuracy by 9% for the problem for which 1D-CNN could not fully utilize the
feature extraction. Among the classical models of convolutional neural networks include
LeNet, AlexNet, GoogleNet, VGG, ResNet, DRSN, and so on.

In the field of bearing fault diagnosis, the current motor bearing fault data collected
by Western Reserve University is more widely used and widely used as the base database
for neural network training models [11-13].

Lin Pei et al. [14] proposed a bearing fault diagnosis method based on a one-dimensional
convolutional generative adversarial network (1ID-DCGAN) and one-dimensional convo-
lutional self encoder (1D-CAE), which realized high-precision diagnosis across different
devices with small samples. Shanshan Ding et al. [15] proposed a rolling bearing fault
diagnosis method based on reparametrized VGG (RepVGG), and the recognition and
classification accuracy of vibration signals reaches more than 95%. Hao Wei [16] and Xu
Min et al. [17] used the CWRU bearing database as the basic data and used wavelet packet
transform and other data processing methods to introduce the processed signals into the
improved ResNet model. The signal after processing is imported into the modified ResNet
model by using wavelet packet transform and other data processing methods for computa-
tional analysis, which effectively solves the overfitting problem and achieves good results
at the same time. In addition, Lanjun Wan et al. [18] proposed a convolutional adaptive
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model integrating a feature extraction module, a domain adaptive module, and a fault
identification module, and used ResNet network as a feature extractor, which can extract
the required features from the original signal. In addition, Deep Residual Neural Network
(DRSN) is a network architecture proposed in 2020 based on ResNet plus a soft threshold
function. Li Shichao et al. [19] used the DRSN network architecture to achieve intelligent
identification and filtering of inertial force interference signals and instrumentation noise
signals to improve the accuracy of aerodynamic testing. Hao Yin et al. [20] proposed a
new fault diagnosis method for pressure relief valves, combining the elastic weight con-
solidation (EWC) algorithm with the Deep Residual Shrinkage Network (DRSN), and the
experimental validation of the model yielded an average accuracy rate of 98.8%, with an
average loss of 0.095.

In summary, the accuracy of fault identification in the literature regarding convolu-
tional neural networks in the field of fault diagnosis is summarized as Table 1.

Table 1. Comparison of fault diagnosis accuracy of different models.

Literature Diagnostic Methods Accuracy
Literature [4] MResNet-SVM 97.40%
Literature [15] MWKCNN 98.36%
Literature [19] FB-LSTM 98.60%
Literature [17] RepVGG 98.02%
Literature [21] GMA-DRSN 91.2%

Jun Gu et al. [21] proposed a rolling bearing fault diagnosis method based on varia-
tional modal decomposition (VMD), continuous wavelet transform (CWT), convolutional
neural network (CNN), and support vector machine (SVM), and verified the effectiveness
of the proposed method using the bearing vibration data and spindle unit failure test
bench data from Case Western Reserve University (CWRU), and the average classification
accuracy of the former was 99.9% and the average classification accuracy of the latter was
90.15%. Wang Huan et al. [22] proposed a novel attention-guided joint learning convo-
lutional neural network (JL-CNN) for mechanical equipment condition monitoring. The
fault diagnosis task (FD task) and signal denoising task (SD task) are integrated into an
end-to-end CNN architecture, and good noise robustness is achieved through dual-task
joint learning. In addition, CNNs are widely used in fault diagnosis of various mechanical
devices [23,24]. Jia Linsan, Wang Hui, and Zongmeng et al. [25-27] extracted data from
vibration signals generated when various machines such as bearings are damaged, and
detected and processed the signals of various faults by using end-to-end CNN model based
on GNR (GTFE-Net), MS-CNN, and other methods, and the final results showed that the
optimized convolutional neural network model can be widely used in the field of fault
diagnosis of mechanical equipment.

In the computational process of neural networks, the choice of hyperparameter values
such as learning rate, batch size, hidden layer size, etc. will directly affect the performance
and training speed of neural networks. Bayesian optimization is a method to find the opti-
mal hyperparameter settings by modeling the relationship between known hyperparameter
configurations and model performance. It uses Bayesian inference and real-time feedback
mechanisms to gradually improve the selection of hyperparameters, thus improving the
performance of the model. Chang Miao et al. [28] proposed a wind turbine bearing fault
diagnosis strategy based on Bayesian optimization and improved convolutional neural
network (CNN) for the problems of weak rolling bearing fault features, difficult extrac-
tion and low diagnostic efficiency of wind turbine. The results show that the accuracy of
the optimized fault diagnosis model rises by 12.85% compared with the original model.
Tang Liang et al. [29] designed a Bayesian optimization improved LeNet-5 algorithm and
carried out experiments through the bearing database, which showed that the bearing
fault diagnosis model constructed by this algorithm had an accuracy of 99.94% in the
training set, 99.89% in the validation set, and the accuracy of the test set also reached
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99.65%. S. Jayalakshmy et al. [30] used Bayesian optimization of hyperparameters such as
the initial learning rate, the strength of the L2 regularization, and the stochastic gradient
descent momentum in a GoogleNet network to improve the computational accuracy of the
original GoogleNet network by 7.35%. Shengnan Tang et al. [31] optimized a CNN neural
network using Bayesian optimization algorithm and compared the computational results
with LeNet5, which was 2.92% more accurate than LeNet5. Chen et al. [32] proposed a fault
pulse extraction and feature enhancement method for bearing fault diagnosis. The method
is able to extract weak fault pulses from bearing signals containing strong background noise,
periodic harmonics and strong random pulses. The anti-interference ability of the model is
improved. Wang Yuxuan et al. [33] proposed a new method for fault diagnosis of motor
bearings based on Extreme Gradient Growth Tree (XGboost) and Bayesian optimization to
achieve more accurate identification of vibration signals in the system.

In the operational setting of hydrogen refueling stations, bearings frequently become
contaminated with acoustic noise, including mechanical vibration. Therefore, it is necessary
to employ denoising techniques to mitigate the impact of noise on the acquired signals [34].
When comparing current denoising techniques, it is evident that wavelet denoising and
wavelet packet thresholding represent optimal methods for removing mid- and high-
frequency noise from large samples with varying degrees of denoising. This conclusion
was reached after comparing various denoising techniques, including empirical modal
decomposition and variational modal decomposition [34-38]. Hai Qiu et al. [39] compared
the performance of wavelet-decomposition-based denoising methods and wavelet-filtering-
based denoising methods based on mechanical defect signals. The comparison results
show that wavelet filtering is more suitable and reliable for detecting the weak features of
mechanical impulse-like defect signals, while wavelet decomposition denoising method is
more effective in smoothing signal detection. Diletta Sacerdoti et al. [40] compared signal
analysis techniques for rolling bearing diagnosis and proposed a diagnostic method based
on the combination of cepstrum prewhitening and squared-envelope spectroscopy, which
was combined with experimental analysis. Finally, it was suggested that the best way
to perform condition monitoring should be a combination of classical signal-based and
new data-driven techniques. Babu T et al. [41] used Debauchies Wavelet-02 (DB-02) to
diagnose faults in journal bearings and classified the faults using artificial neural networks
(ANN). The classification result was 85.7%. In addition, the advantages of using DB-02
wavelet technique over conventional wavelet technique in high-speed machines were
experimentally analyzed.

The Fourier transform is a method of transforming a signal from a time-domain signal
to a frequency-domain signal, and the Fast Fourier Transform (FFT) is an algorithm for
efficiently computing the discrete Fourier transform. FFT processing of signals can achieve
higher signal accuracy. Zuolu Wang [42] developed a wireless three-axis rotor sensing
system (ORS) and used FFT and Hilbert envelope analysis to greatly improve the accuracy
of their system troubleshooting. Sahin Yavuz [43], experimentally and by using the FFT
method, investigated the effect of deceleration time on the root mean square (RMS) value
of residual vibration (RV). The effect of the result’s agreement shows that the FFT method
is very effective for studying transient vibration problems in complex systems.

Dongwen Li et al. [44] proposed a combined model based on RSM-XGBoost and
KF algorithm to study the remaining life prediction problem of an aircraft engine, and
solved the noise influence problem by adding a Carr filter to achieve higher life prediction
accuracy. Cong Wang et al. [45] worked on analyzing the elite RSH by estimating the
desired approximation error. Based on the distribution of non-zero elements in the Markov
chain transfer matrix, the search process of the elite RSH was classified into three categories,
and a general framework for estimating the approximation error, called error analysis, was
proposed.

To process the CWRU bearing database used in this study, vibration signal window
shifting and wavelet denoising were applied. The signals underwent diagnosis and classifi-
cation using ResNet18. Some hyperparameters were optimized with the Bayesian optimiza-
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tion algorithm to improve fault diagnosis accuracy. Finally, noise was added to replicate
real hydrogenation station conditions, ensuring model anti-interference capabilities against
noise signals.

This paper analyzes and processes the bearing failure signals of Western Reserve
University (CWRU). The bearing vibration signal is transformed from a one-dimensional
signal to a two-dimensional signal using the Fast Fourier Transform (FFT). The signal
samples are split to expand the number of samples by using the vibration signal window
panning. Due to the presence of various noise sources, such as mechanical noise and
electromagnetic interference, the vibration signal may be affected during the motor bearing
signal acquisition process. Therefore, it is necessary to denoise the decomposed bearing
signal. In this paper, we denoise the CWRU signal using a 5-level Symlet-5 wavelet
and suppress or eliminate the noise signal using a soft threshold function. The signal is
then inputted into various convolutional neural network models for computation. After
analyzing the computing time and computational accuracy, this paper selects the resnet18
network to construct the training model. Next, the parameters of the trained neural
network model are tuned using Bayesian optimization, based on the theory of neural
network hyperparameter optimization, to achieve better fault diagnosis results. To simulate
the hydrogen refueling station’s production environment and verify the model’s anti-
interference ability, noise signals of 70 dB, 80 dB, 90 dB, and random pulse signals were
added to the CWRU bearing signal. The final test results demonstrate that the BOA-
ResNet18 model maintains high fault diagnosis accuracy even with the added noise signals,
indicating excellent anti-interference ability.

2. Vibration Signal Data Processing and Feature Enhancement

The computational accuracy of convolutional neural networks is highly related to
the diversity of data samples and the obviousness of the samples’ features. Too few data
samples and inconspicuous data features can lead to overfitting in the calculation process,
resulting in inaccurate calculation results. In order to solve the above problems, image data
enhancement and data expansion techniques are introduced. In image processing, common
data enhancement operations include rotation, flipping, panning, scaling, cropping, and
SO on.

2.1. Signal Analysis

Western Reserve University (CWRU) bearing data acquisition tests were measured
under different horsepower motor fan end and drive end bearing vibration data, of which
the drive end bearing was for 6205-2RS JEM SKF (produced by SKF, Gothenburg, Sweden)
deep groove ball bearings, the fan end bearing was for 6203-2RS JEM SKF deep groove
ball bearings, and for which the SKF6025 bearings sampling frequency was 12 kHz and
48 kHz and the SKF6023 sampling frequency was 12 kHz. SKF6023 sampling frequency
was 12 kHz. The experiment used EDM treatment to form a single point of failure on the
inner and outer rings and balls of the bearings, and the bearings with different failure
parts were operated at different speeds and frequencies. Finally, the vibration values of
the inner ring, outer ring, rolling element, and normal state of the bearing were recorded,
respectively.

In this paper, the vibration signal data of the drive end bearing at a frequency of
12 kHz and a rotational speed of 1772 r/min are selected, and the specific data are shown
in Table 2.
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Table 2. Sample set of CWRU bearing failure data.
. Sample Set
Bearing Type Motor Load Motor S.PEED Fault Diameter Fault Location (Number of ]gata Points Per
(Horsepower) (r/min) (mm)
Sample/Number of Samples)
Inner ring 122,100/1
0.1778 Rolling element 122,100/1
Outer ring 122,100/3
Inner ring 122,100/1
Drive end bearing 0.3556 Rolling element 122,100/1
Outer ring 122,100/1
(6205-2RS JEM 1772 .
SKF) Ir}ner ring 122,100/1
0.5334 Rolling element 122,100/1
Outer ring 122,100/3
Inner ring 122,100/1
0.7112 Rolling element 122,100/1
Outer ring 0

2.2. Data Expansion

As can be seen from Table 1, the samples of each type of bearing faults are too small,
so it is necessary to introduce data expansion processing techniques to split the data. Since
the dataset is one-dimensional, this paper utilizes the Fast Fourier Transform (FFT) to
convert the data into two-dimensional frequency domain signals and then uses sliding
window panning to divide the signals. The total number of samples is maximized and
the computational effect of the neural network is enhanced while preserving the temporal
vibration signal coherence as well as the signal characteristics.

The Fourier Transform transforms a function from the time domain to the frequency
domain. The Discrete Fourier Transform (DFT) is an application of the Fourier Transform
to discretize the Fourier Transform. It can decompose a signal into a series of sine and
cosine sums for spectrum analysis, filtering, signal processing, etc., while the Fast Fourier
Transform (FFT) is an efficient way of solving the Discrete Fourier Transform. The DFT
formula is as follows:

—jx27tkn
X(k) = Ylx() x 5 )
where N denotes the number of sampling points, x(11) denotes the input signal, and k
represents the frequency domain index. The FFT splits the DFT computation into several
small-scale DFT computations and then recombines them and obtains the overall result by
butterfly operation. The formula is as follows:

X(k) = E(k) + WY x 0[K] 2)

x<k+2’> = E(k) — WN x 0[K] 3)

E[k] is the input elements at even index positions, 0[k] is the input elements at odd
index positions. W,f\] is the rotation factor, and N is the total number of input elements.
The rotation factor W} is

AR o)
where 7 is the subscript of the sequence, k is the subscript of the frequency, and N is the
sequence size. In arithmetic code, the rotation factors are usually stored in complex form,
and the size of the rotation factors is automatically adjusted by calling the data.

The FFT algorithm computes the DFT of these components recursively by decom-
posing the signal into parity components and then combining the results to obtain the
final spectrum. Using the FFT to convert one-dimensional values into Fourier-transformed
frequency domain values can provide higher accuracy for periodic signals or signals
that contain multiple frequency components. It can provide more accurate frequency
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components and amplitude values, since noise signals have a certain anti-interference
ability. Taking the 0.1778 mm fault diameter inner ring fault point as an example, the
time—frequency domain graph obtained after the transformation is as Figure 1.

original signal
6 T T T T

amplification

6 1 | | 1 1 |
0 0.05 0.1 0.156 0.2 0.25 0.3
Time/s

Figure 1. Time-domain signal.

Since the signal is a long sequence signal and the data samples are too small, the
signal must be processed by window function segmentation after the FFT transform. These
windows usually have overlapping parts. Due to the boundary effect of the window
function, this processing method will lead to the appearance of spectral leakage and sub-
flap, which will affect the accuracy of the analysis results. To solve this problem, in this
paper, the signal segmentation is performed by sliding window panning. By panning
between each window, the overlap between windows can be reduced, thus minimizing the
effects of spectral leakage and sub-flap, as shown in Figure 2. Assuming that the length of
the original signal is N, the length of the window is M, and the step length (overlap rate) of
the panning is L, after the panning, then, the length H of the signal obtained by window
panning can be calculated as follows:

03 ‘ ‘ 0.3
025" 1 025}
02- 1 02k

amplitude
o
Bl
amplitude
o
o

011 01l
0.05 0.05 -
0 0 i A .
-6000 -4000  -2000 0 2000 4000 6000 0 1000 2000 3000 4000 5000 6000
frequency(Hz) frequency(Hz)

Figure 2. Bilateral as well as unilateral spectra of the bearing after FFT.
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When the overlap is less than the window length:

H=L+(K-1)xL 5)
When the overlap is greater than the window length:

H=M+(K-1) xL (6)

K is the smallest integer that makes the right end of the equation greater than or equal
toN.

In order to ensure the coherence of the time series vibration signals and maximize the
number of samples, the signal overlap rate is set to be 512, and the window step size is
1024. Each signal is classified into 200 sample sets; the training and 12 kHz and 1772 r/min
drive end bearing failure signal are divided according to the ratio of 30%. As shown in
Figure 3, The specific description of the sample set is shown in Table 3.

Signal segment 1

overlapping signal offset signal

Signal segment 2

Figure 3. Sliding signal window panning split signal.

Table 3. CWRU sample set segmentation.

Sample Label Fault Diameter (mm) Fault Location Training Set/Test Set
1 — trouble-free 140/60
2 inner ring 140/60
3 0.1778 rolling element 140/60
4 outer ring 140/60
5 inner ring 140/60
6 0.3556 rolling element 140/60
7 outer ring 140/60
8 inner ring 140/60
9 0.5334 rolling element 140/60

10 outer ring 140/60
11 inner ring 140/60
12 0.7112 rolling element 140/60

2.3. Wavelet Decomposition Denoising

In the CWRU bearing test operation environment, the motor bearing vibration signal
is affected by a variety of noise sources, including mechanical noise, electromagnetic
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interference, environmental vibration, and so on. These noise signals will be mixed with
the signals generated by the bearing to form the final vibration signal. Therefore, the
presence of noise signals needs to be taken into account when analyzing and processing
the CWRU-bearing dataset. In this paper, wavelet denoising is used to suppress the noise
interference to extract the bearing fault characteristics and perform accurate fault diagnosis.

Wavelet thresholding denoising is a method of signal denoising using the results of the
wavelet transform, which is a technique that converts a signal into the wavelet domain by
applying wavelet decomposition. It utilizes the wavelet transform to extract the frequency
domain information of the signal and suppresses or eliminates the noise components of the
signal by thresholding the wavelet coefficients.

F(jw) = /_ :x’ F(t)e i tdt = /_ +: F()[cos(wt) — jsin(wt)]dt %

Equation (6) is the Fourier transform, and the wavelet transform is in principle chang-
ing the basis function in the Fourier transform to a wavelet. The wavelet transform formula
is as follows:

t—
a

1 [t T
Fla)= 7 [ S <y D ®

T is the time shift, a is the scaling factor, and Y (¢) is the wavelet basis function.

The following are the steps to perform wavelet denoising:

(1) Perform wavelet decomposition: First, select a suitable wavelet basis function
according to the application requirements and signal characteristics. Common wavelet
basis functions include Daubechies, Haar, symlets, etc. Second, the signal to be denoised is
represented as a discrete sequence, x(n1), n =0, 1, ..., N — 1. Then, at each scale, the selected
wavelet basis function is used to perform a convolution operation with the signal to obtain
the Approximation Coefficients and Detail Coefficients.

In a continuous situation:

(k) = L g 1 = 28 (1) ©)

dj(k) =) Iy (n — 2k)cji1(n) (10)

cj(k) denotes the kth coefficient in the jth level of approximation coefficients, d;(k)
denotes the kth coefficient in the jth level of detail coefficients, and ¢(j,1)(n) denotes the nth
coefficient in the jth + 1st level of approximation coefficients, and furthermore, the 11, and
hy in the equation represent the low-pass and high-pass filter coefficients of the wavelet
function (Mother Wavelet), respectively, which determine the characteristics of wavelet
decomposition.

Typically, the approximation coefficients represent the low frequency components of
the signal at that scale, while the detail coefficients represent the high frequency components
of the signal at that scale. This is shown in Figures 4 and 5.

(2) Calculate the threshold of the wavelet coefficients: select an appropriate threshold
selection method, such as hard threshold or soft threshold. Calculate the threshold of each
wavelet coefficient according to the selected thresholding method. The formula for hard
thresholding is as follows:

wmzﬁ’wzmr (11)

0 |w| < thr
The soft threshold formula is as follows:

Wiy = {[Sgn(w)](|w| - tl’l?’) |w‘ > thr

12
0 |w| < thr (12)

where thr is the given threshold and w is the wavelet coefficient.
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Figure 4. Approximate coefficient decomposition of vibration signals.
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Figure 5. Detail coefficient decomposition of vibration signals.

Comparing the hard threshold and soft threshold denoising methods, the points
lw! < thr are directly set to zero in the hard threshold, which makes it easy to cause the
discontinuity of the wavelet coefficients, while the soft threshold denoising method elimi-
nates this discontinuity and ensures the smoothness of the reconstructed signal. Therefore,
the soft threshold denoising method is chosen in this paper.

(3) Reconstructing the signal: using the threshold wavelet coefficients, the inverse
wavelet transform is performed to reconstruct the signal after noise reduction.

In this paper, the Symlet-5 wavelet is used to perform 5-level wavelet noise reduction
processing on the CWRU signal, and the noise signal is suppressed or eliminated by the
soft threshold function. The signal after the noise reduction process is as Figure 6.
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Figure 6. Comparison of original signal and denoised signal.

In Figure 6, the orange signal is the denoised signal and the blue signal is the original
signal. The signal can be seen after soft threshold filtering removes most of the noise
components in the signal while preserving the vibration frequency of the signal as well
as the amplitude and other important features. In addition, wavelet threshold denoising
smooths the signal, making the fluctuations of the signal smoother, resulting in the denoised
signal compared to the original signal in some moments of the vibration amplitude being
smaller, but on the whole, it can still reflect the vibration trend and changes to facilitate the
identification of subsequent features.

The denoised 12 kHz, 1772 r /min drive end bearing fault signals are similarly catego-
rized and numbered and divided into denoised sample sets. The sample set is described in
Table 4.

Table 4. CWRU denoising sample set partitioning.

Sample Label Fault Diameter (mm) Fault Location Training Set/Test Set
101 — trouble-free 140/60
102 inner ring 140/60
103 0.1778 rolling element 140/60
104 outer ring 140/60
105 inner ring 140/60
106 0.3556 rolling element 140/60
107 outer ring 140/60
108 inner ring 140/60
109 0.5334 rolling element 140/60
110 outer ring 140/60
111 07112 inner ring 140/60
112 rolling element 140/60

3. Neural Network Selection and Computation

A convolutional neural network (CNN) is a deep learning model specialized in pro-
cessing data with a grid structure (e.g., images and speech, etc.). It extracts features from
the input data through convolutional and pooling operations and performs tasks such as
classification or regression through fully connected layers.

As shown in Figure 7, the basic structure of the convolutional neural network mainly
consists of an input layer, a convolutional layer, a pooling layer, a normalization layer, a
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fully connected layer, and an output layer. Among them, the convolutional layer performs
the convolution operation by capturing the local structure and texture information of the
input data and generating the feature map. Activation function nonlinearization is required
after convolution to introduce the nonlinear nature of the model. Common activation
functions include ReLU, Sigmoid, and tanh. The pooling layer is used to reduce the
spatial size of the feature map and the number of parameters. The normalization layer
is responsible for normalizing the input data to make the data distribution more stable.
The fully connected layer is usually located at the end of the convolutional neural network
and its role is to map the high-level features to the corresponding classes or targets. The
output layer can vary depending on the needs of the task. For classification tasks, a softmax
layer is usually used to transform the output of the model into a vector representing the
probability of each category.

convolutional layer

ponding layer

normalization layer

full connectivity layer

output layer

Al

Figure 7. Convolutional neural network structure diagram.

Different convolutional neural network models can be obtained by combining and con-
necting multiple layer structures of a convolutional neural network in different ways. The
common convolutional neural network models are LeNet-5, AlexNet, VGGNet, GoogleNet,
ResNet, and so on. The sample set in Tables 2 and 3 is imported into the convolutional
neural network model, and the accuracy and loss comparison graphs obtained are as
Figures 8 and 9:

100
90 o T S s At
> v e Ny T
py SRS \/v\' > BVA
80 #
/
70 >
60 AN : ' |
50 -
40 ——CNN
—=—AlexNet
30 GoogleNet
—v—LeNet-5
4 —+—ResNet18
i
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——VGG16
10 :
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Figure 8. Comparison of the accuracy of neural network training denoised sample sets.
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Figure 9. Comparing the loss of denoised sample sets for neural network training.

In the working environment of hydrogenation station, the oil pump motor speed is
usually in the range of 1000 r/min to 3000 r/min, and the drive end working frequency
is usually low compared with the test simulation frequency, and in the occasional failure,
will reach 10 kHz and above. Therefore, in order to fit the actual production environment,
this paper selects the vibration signal data of the drive end bearing at 12 kHz frequency
and 1772 r/min speed. The results of the training accuracy of the denoised samples are
summarized in Table 5.

Table 5. Comparison of training results of different network models.

Network Structure Accuracy (Denoised Samples) Training Time(s)

Single CNN 73.67% 311
AlexNet 87.83% 346
GoogleNet 89.83% 637
LeNet-5 67.33% 401
ResNet18 89.50% 251
ResNet50 90.17% 1065
VGG16 87.33% 1009

Comparing the training accuracy and training time of each model, the training effect of
ResNet18 network is the best. Therefore, ResNet18 network is chosen to build the training
model in this paper.

3.1. ResNet18

Residual neural network is a new deep convolutional neural network architecture
proposed by Kaiming He et al. in 2015, and its main core idea is to solve the gradient
vanishing and expression bottleneck problem in deep neural networks by introducing
“residual blocks”. Traditional deep networks have the problem of gradient vanishing, as the
number of network layers increases, the backpropagated gradient signal becomes weaker
and weaker, resulting in training difficulties. Residual blocks, on the other hand, allow
direct connections across layers, making it easier to transfer information. The residual block
structure is shown in Figure 10.
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Figure 10. Residual block structure diagram.

In Figure 10, x is the input, F(x) is the mapping function, and G(x) = F(x) + x is the
constant mapping function. By constant mapping, it means that G(x) = x when F(x) tends
to 0. The corresponding mathematical expression for the residual block is:

yr = h(x;) + F(x;, Wp)xi1 = f(y1) (13)

where x; and x(,1) represent the input and output of the lth residual unit, respectively, F()
represents the residual function, h(x;) = x; denotes the constant mapping, and f is the ReLU
activation function. Based on Equation (12), the learning feature from shallow ! to deep L

can be obtained as:
L1

xp=x+ Y F(x, W) (14)
i=l

The introduction of residual blocks into the residual connection structure can play key
roles, such as connecting and transferring gradients, learning residuals, extracting high-
level features, and increasing network depth. These roles make the residual connection
structure have better convergence, stronger expressiveness, and higher performance in
training deep neural networks.

By combining different numbers of residual blocks, residual neural network architec-
tures with different numbers of layers can be derived. Some of the more common ones are
ResNet-18, ResNet-34, ResNet-50, ResNet-101, and ResNet-152. The numerical designation
of these ResNet models indicates the number of layers. For example, ResNet-18 consists of
18 convolutional layers, while ResNet-50 consists of 50 convolutional layers. As the number
of layers increases, the network becomes deeper and is able to learn more complex feature
representations.

As can be seen from Section 3.1, ResNet-18 is chosen for fault classification recognition
in this paper, which consists of four residual modules, each containing two convolutional
layers and a jump connection. These convolutional layers typically have a 3 x 3 convolu-
tional kernel size and use the ReLU activation function. Between each residual module,
downsampling operations are used to reduce the size of the feature maps. The ResNet-18
structure is shown in Figures 11 and 12.
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Figure 12. Residual block construction.

The network input is an RGB image with a size of 224 x 224 pixels and three channels.
The output corresponds to ten different failure modes. To extract features and generate
64 output channels, the input image undergoes a convolution operation using 64 convolu-
tion kernels, each with a size of 3 x 3, a stride of 2, and a padding of 1. The convolutional
layer’s output size is 112 x 112 x 64 in the ResNet-18 network. The network has four
residual connected structures. The convolution operation’s step size is 2 in residual blocks
a-1 and b-1, reducing the output feature maps’ spatial size by half while keeping the
number of channels the same. This is to preserve more spatial information in the deeper
features. In residual blocks a-2 and b-2, the convolution operation has a step size of 2
and the number of channels is doubled. This results in the output feature map being
reduced by half in size. The purpose of this is to increase the number of channels in deeper
features and further decrease the size of the feature map. Residual blocks a-3 and b-3 use a
step size of 2 for the convolution operation, which doubles the number of channels and
reduces the spatial size of the output feature map by half. This helps to extract deeper
features and increase the number of channels. In residual blocks a-4 and b-4, the number
of channels is doubled while the spatial size of the output feature map is reduced by half,
but the step size of the convolution operation is 1. The network’s expressive power was
improved by increasing the number of channels in deeper features. The ResNet-18 network
feature-extracted and downsampled the image to produce ann x 10 x 14 x 14 feature
map (n is the MiniBatchSize value). This was followed by an average pooling layer of size
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14 x 14 and a Softmax classifier to produce ann x 10 x 1 x 1 feature image. The specific
parameters of the network structure are shown in Table 6.

Table 6. Network architecture parameters.

Layer Type Output Size
input layer 224 x 224 x 3
convolutional layer 1 112 x 112 x 64
residual block a-1 112 x 112 x 64
residual block b-1 112 x 112 x 64
residual block a-2 56 x 56 x 128
residual block b-2 56 x 56 x 128
residual block a-3 28 x 28 x 256
residual block b-3 28 x 28 x 256
residual block a-4 14 x 14 x 512
residual block b-4 14 x 14 x 512
Average pooling layer 14 x 14 x 512

full connectivity layer 1x1x10

4. Bayesian Optimization of ResNet18
4.1. Over-Parameter Range Setting

Convolutional neural networks require some parameters to be set before training,

which are not learned by the optimization algorithm and must be set manually by humans.
Such manually set parameters are called hyperparameters. The setting of hyperparameters
directly affects the performance of the model and the training process to a large extent. The
following are some common hyperparameters in convolutional neural network training:

1.

InitialLearnRate refers to the extent to which the model parameters are updated
during each iteration. Choosing an appropriate learning rate ensures that the objective
function converges to a local extreme at the appropriate time. To avoid falling into the
local optimum in the early stages, a larger learning rate is usually set initially to reduce
the network’s attenuation. There are different types of decay, such as exponential
decay:

Ir = Ir0 x dt/% (15)

The Ir0 is the initial learning rate, d, is the decay factor,  is the number of iterations,
and ds is the number of decay steps.

L2Regularization Parameter: L2 regularization is used to control the complexity of
the model and prevent overfitting. The L2Regularization parameter determines the
weight of the regularization term in the overall loss function. Its paradigm loss
function L(W) is calculated as follows:

LW) = Y (yi — f(x1))? (16)

M-

I
—

The A is the hyperparameter controlling the size of the regularization term and wi is
the size of the coefficient corresponding to the ith model vector.

Momentum: In neural network learning, stochastic gradient descent (SGD) is a com-
mon optimization algorithm. However, it is very easy to fall into the problem of
local minima during the operation; in addition, SGD also has the problem of slow
convergence speed. To improve the shortcomings of SGD algorithm, Momentum algo-
rithm is introduced. Momentum is a technique used to speed up the convergence of
optimization algorithms. It reduces oscillations during parameter updates and allows
the optimization algorithm to converge to the optimal solution faster by introducing a
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momentum term that takes into account the direction of the previous gradient update.
The basic momentum formula is as follows:

v = Y01 +1Vy](0)0 = 0 — vy (17)

vy is the momentum term, which represents the cumulative information of the gradient;
7 is the momentum factor; it controls how much the previous gradient affects the
current update; 77 is the learning rate, which specifies the step size of each update; and
V](0) is the current gradient.

4.2. Optimization Test Analysis

The most popular hyperparametric optimization algorithms are stochastic search,
grid search, and Bayesian optimization. Bayesian optimization methods tend to perform
better in parametric optimization problems. Compared to grid search and random search,
Bayesian optimization methods are usually able to find better parameter combinations with
the same computational resources. Li Dongwen et al. [39] used the random search algorithm
to optimize an aircraft engine vibration signal prediction model, and the difference between
the test error and the training error was calculated to be more than 1 in the experimental
process, which did not meet the accuracy requirements of this experiment, and Cong Wang
et al. [40] optimized the calculation of the random algorithm to meet the computational
requirements. The global search algorithm takes too long and costs too much to be applied
in this experiment.

Bayesian optimization is an optimization method used to find the global optimum of
a black box function (optimal objective function). Among them, the prior function and the
collection function are the core processes of the Bayesian optimization algorithm. The prior
function mainly utilizes Gaussian process regression:

f(x) ~ GP(m(x), k(x, x')) (18)

GP denotes a Gaussian process, m(x) is the mean function, and k(x, x) is the covariance
(or kernel) function. A Gaussian process is a probabilistic model that characterizes the
distribution of a function by a mean vector and a covariance matrix based on a collection of
points in the input space. Bayesian optimization tuning using the Gaussian process can
take into account the previous parameter information to continuously update the prior
function and guide the next optimal choice, which greatly saves computation time.

The collection function is an important part of the Bayesian optimization process
used to select the next combination of hyperparameters to evaluate. The construction
of the collection function based on the mean and variance calculated by the Gaussian
process reflects the degree to which the numerical points are worth searching. And the
extreme point of this function is the next search point. Choosing the appropriate collection
function can help the algorithm converge to the optimal solution quickly and accurately.
Common sampling functions include Thompson Sampling, Expected Improvement, and
Upper Confidence Bound. The collection process is represented by Equations (18) and (19):

Xig1 = I;qea}%()\(x, Dy.) (19)
ri=1y" — il (20)

r is the total loss, X is the decision space, A(x,Dy;) is the collection function, and y* is
the optimal solution.

To summarize, the Delikere process sampling is chosen in this paper. Assume that
the Dirichlet sampling of this model is G1, where the underlying distribution of G1 is H1
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and the concentration parameter is «. Then, the result of the sampling can be expressed as
follows for any segmentation point t:

Gl(t) = iwi x 5(6i) (1)
i=1

where wi is a random variable satisfying the Dirichlet distribution, i.e., wi ~ Dir(«x), and 04 is
a random variable sampled from the underlying distribution H1.
The Bayesian optimization process is as follows:

1. Select initial parameters and evaluate for the objective function.

2. Construct the agent model of the Bayesian optimization algorithm, i.e., the prior
function and the learning function.

3. Select the next parameter point xi to be evaluated.

4.  Execute the objective function on the selected parameter point and record the results.

5. Add the new parameter objective function evaluation data to the existing data set and
retrain the agent model.

6. Determine whether the stopping condition is satisfied; if not, return to step (3) until
the optimal value parameter point is output.

Bayesian optimization was used to optimize some hyperparameters of ResNet18, the
number of iteration rounds was set to 30, the maximum number of iterations per round
was set to 120, the sampling function was chosen to sample the Delicacy process, and the
range of hyperparameter settings is shown in Table 7.

Table 7. Hyperparameter optimization and range.

Hyperparameterization Minimum Maximum
InitialLearnRate 0.001 0.1
L2Regularization Parameter 1 x 10710 1x 1072
Momentum 0.8 0.98
Optimizers RMSprop, Adam, Sgdm

Based on the above selected range of hyper-parameters, the BOA-ResNet18 network
was used for experimental validation. Setting the range of hyperparameter optimization
based on previous expert experience [31,32], and the results showed that the Bayesian
optimized.

Network achieved 99.31% computational accuracy. Comparison of the fault diagnosis
accuracy with other literature for raw CWRU signals is shown in Table 8.

Table 8. Comparison of diagnostic results.

Literature Diagnostic Methods Accuracy

This paper BOA-RseNet18 99.31%
Literature [17] FB-LSTM 98.60%
Literature [21] RepVGG 98.02%
Literature [42] GMA-DRSN 91.2%

It can be seen that the neural network model built in this paper has the best fault
diagnosis accuracy for the original signal of CWRU bearings.
The accuracy as well as the validation loss are shown in Figures 13 and 14.
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Figure 13. BOA-ResNet18 denoised data sample set validation accuracy.
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Figure 14. BOA-ResNet18 denoised data sample set validation loss.

Figure 13 shows the classification of the model on the test set, and it can be seen that the
model has a very low false positive rate, which means that it is able to make judgments on
different fault types very well. Therefore, the model performs well in achieving fault-type
judgment.

In Figure 15, the green squares indicate samples that are categorized accurately, i.e.,
the model correctly predicts the samples into that category, while the red squares indicate
samples that are categorized incorrectly, i.e., the model incorrectly predicts the samples
into other categories. It can be seen that the model predicts well. To explore the accuracy
of the BOA-ResNet18 network for the calculation results of signals in other formats, and
to avoid the possibility of the algorithm calculating a single sample, the denoised two-
dimensional vibration signals were converted to three-channel color time—frequency plots
by time—frequency analysis, as shown in Figure 16. In the color time-frequency diagram
clearly depicts the relationship between the signal frequency over time and also expresses
the corresponding amplitude magnitude by the change of different colors.
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Figure 15. Classification of data from denoised sample set by BOA-ResNet18.
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Figure 16. Color time—frequency diagram generated by time—frequency transformation of a 2D

vibration signal.

The above processed signals are classified and numbered, and imported into the BOA-
ResNet18 network for calculation, and the results show that the fault diagnosis accuracy
of the color time—frequency diagram signals reaches 95.42%. This result proves that the
BOA-ResNet18 network can achieve better accuracy and loss value with fewer iterations
and a shorter running time under different fault data types, and the optimization of the
network can be accomplished by continuously adjusting the parameters. The validation set
obtained is shown in Figures 17 and 18.
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Figure 17. Troubleshooting accuracy of two signals in the BOA-ResNet18 network.
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Figure 18. Troubleshooting loss values for two signals in the BOA-ResNet18 network.

4.3. Validation of Model Immunity to Interference

In the production environment of a hydrogen refueling station, the bearings experi-
ence varying loads while the signal acquisition process is affected by on-site mechanical
noise contamination. Therefore, to simulate real working conditions and verify the BOA-
ResNet18 network’s generalization ability for various signals, this study introduces Gaus-
sian noise to the original vibration signals to model mechanical noise in the hydrogenation
plant.

SNR = 10 x lg% (22)

The average signal power (Ps) and average noise power (Pn) are used to calculate
the signal-to-noise ratio (SNR) on a logarithmic scale expressed in decibels (dB), whereby
dB =10 x IgSNR. To simulate actual working conditions, this study adds three different
values of SNR (70 dB, 80 dB, and 90 dB) since the bearing vibration signal typically has an
SNR between 70 dB and 90 dB. The added noise signal is shown in Figure 19.
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Figure 19. Time-domain waveforms of the vibration signal were studied under the original signal
and various decibel levels of noise.

Additionally, the harsh operating conditions of hydrogen refueling stations and the
continuous operation of compressors cause bearings to typically experience fatigue rupture,
scoring, or wear caused by foreign object intrusion. As a result, this proposes adding
random pulse signals to simulate the sudden changes in vibration signal waveforms that
result from faults. The resulting simulated fault signal can be expressed as follows:

y(#) = x(t) + noise(t) + f(t) (23)

where x(t) represents the original bearing signal and noise(t) represents the Gaussian noise
signal:
noise(t) = A x e(~((t=t0)" / (2xsigma®))) (24)

where f is the frequency of the signal, A is the amplitude of the noise signal, t is the center
time of the noise signal, and sigma is the standard deviation of the noise signal. f(t) is a

random pulse signal:
f(t) = A X P(t—ty) x rand (25)

where A represents the pulse’s amplitude, P(t — fj) represents the pulse function, £,
represents the pulse’s start time, and rand represents a random number.

Existing experiments indicate that the amplitude range of random pulse signals of
industrial motor bearings is typically about seven times greater than that of signals in the
normal state [35,36]. To account for the frequency of oil pump motor bearing faults, each
signal fragment contains five additional sampling points for random pulse signal collection.

As shown in Figure 20, an increase in decibel value results in a more pronounced fault
characteristic frequency of the original signal. The BOA-ResNet18 network was used to
diagnose the aforementioned four signals and the calculated results are presented in Table 9
and Figure 21.

Table 9. Computational accuracy and computation time of BOA—ResNet18 network under different

signals.
Signal Accuracy Time(s)
Original signal 99.44% 235
dB =70 98.47% 248
dB =80 95.56% 317

dB =90 92.95% 335
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Figure 20. Analog bearing noise signal.
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Figure 21. Calculation process for different noise signals.

ResNet18 is resistant to interference thanks to its residual structure and capacity
to extract features from abstract imagery. Bayesian optimization enhances the network
model’s data fitting ability and further improves its generalization capabilities. The model
maintains a computational accuracy of 92.95% when subjected to both Gaussian and
random impulse noise, demonstrating its ability to withstand interference in the operational
environment of a hydrogen refueling station.

5. Conclusions

In this paper, a fault diagnosis method based on BOA—ResNet18 is proposed. The
CWRU bearing signals are segmented using the method of sliding window shift of vibration
signals to expand the number of data samples. By comparing the computational ability
of various types of classical convolutional neural network models, it is determined that
the ResNet18 network is used as the basic model for the operation; and the Bayesian
optimization improves the accuracy of the network operation. The conclusions of this
paper are as follows.

In terms of data signal processing, this paper adopts the method of vibration signal
window panning with 1024 data as the window step, which ensures the signal continuity
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while maintaining the signal characteristics and greatly improves the accuracy of subse-
quent calculations. In addition, in order to reduce the mechanical noise signal interference
in the data set, this paper adopts the five-layer wavelet threshold denoising method, which
improves the accuracy of fault data operation.

The learning rate and hyperparameters such as L2 regularization parameter in the
ResNet18 network are optimized by the Bayesian optimization algorithm, and the obtained
optimal hyperparameter combinations are reintroduced into the network for operation,
which improves the accuracy of operation from 89.50% to 99.31%. It shows that the model
can easily realize the fault identification and fault diagnosis tasks in the field of bearing
fault problems, such as selecting the next parameter point xi to be evaluated.

Due to the site conditions at the hydrogen refueling station and the damage to the
hydrogen compressor oil pump motor bearings, we simulated the real oil pump motor
bearing signals by adding 70-90 dB Gaussian noise signals and random pulse signals to
the existing bearing signals. The BOA-ResNet18 algorithm has been trained to recognize
signals. The results indicate that the model possesses excellent anti-interference capability,
as it can still achieve over 92% training accuracy despite the presence of added noise signals.
This model has practical significance.
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