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Abstract: Twin-field QKD (TF-QKD) protocols allow for increased key rates over long distances when
compared to standard QKD protocols. They are even able to surpass the PLOB bound without the
need for quantum repeaters. In this work, we revisit a previous TF-QKD protocol and derive a new,
simple, proof of security for it. We also look at several variants of the protocol and investigate their
performance, showing some interesting behaviors due to the asymmetric nature of the protocol.
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1. Introduction

Quantum key distribution (QKD) allows two parties to establish a shared secret key
that is secure even against computationally unbounded adversaries. This is a task that
is impossible to achieve using classical communication alone, unless computational as-
sumptions are made on the adversary’s capabilities. However, QKD has several limitations,
especially in terms of distance. See [1–3] for a general survey on QKD.

In general, the key-rate of a QKD system is severely restricted by the total transmit-
tance of the channel between parties. Several strategies can mitigate this, including trusted
node networks [4–6] and quantum repeaters [7–9]. Quantum network research, in gen-
eral, is a rapidly growing topic both for QKD [10] and the more general Quantum Inter-
net [11] (the latter of which can support QKD, but also other applications such as distributed
computing [12–14] and distributed quantum sensing [15–18]). However, an interesting third al-
ternative for boosting QKD distances are so-called twin-field QKD (TF-QKD) protocols [19–24]
which can even beat the PLOB bound [25].

Proving security of QKD protocols (TF or otherwise) is an important task, and devel-
oping novel proof techniques can be vital for advancing the state of the art (in addition
to providing an additional proof of security which, itself, is interesting). Since TF-QKD
can already be demonstrated experimentally over long distances [26,27] (even up to over
800 km [28]), it is important to study rigorously the underlying security proofs for these
systems as they are applicable using today’s technology. Doing so affords researchers
more mathematical tools to handle new protocols, and may even lead to improvements in
performance under certain conditions as newer techniques may provide more optimistic
security results in some cases (or, more formally, more optimistic bounds on the quantum
min entropy between the users and an adversary system).

In this paper, we re-visit a TF-QKD protocol introduced in [19] and develop an entirely
new proof of security using methods of quantum sampling as introduced in [29], and
sampling-based entropic uncertainty relations [30]. Our proof is fairly simple and can be
used potentially for other TF-QKD protocols. In particular, our method might be easily
adapted to the sending-not-sending TF protocol [31].

While our new proof does not improve on previously produced key-rates, we feel
it is still interesting to develop alternative methods. Indeed, by now numerous proofs of
security have been performed for BB84, all leading to the same result; yet different methods
can be applied to different protocols later “down the road”, and thus developing alternative
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techniques is an important area of research in quantum cryptography. We also make two
small changes to the original protocol (which our new security proof can handle easily) and
show some interesting behaviors of these new protocols, including improved performance.
We are not aware of these two variants in the current literature, thereby making them a
second contribution of this paper.

2. Preliminaries

We now introduce some notation and other preliminary concepts and technical lemmas
that will be important in our work later. Let Ad = {0, 1, · · · , d − 1} be a d-dimensional
alphabet. Given a word q ∈ AN

d and a subset t ⊂ {1, · · · , N}, we write qt to denote
the substring of q which is indexed by t and q−t to mean the substring indexed by the
complement of t. If t is a singleton t = {i}, we often simply write qi to represent the i’th
character of q.

Given δ > 0 and two real numbers, x and y, we write the following:

x ∼δ y ⇐⇒ |x − y| ≤ δ. (1)

Given a word q ∈ AN
d and a particular character a ∈ Ad, we write #a(q) to denote the

number of times a appears in the word q:

#a(q) = |{j : qj = a}|. (2)

We use #a,b(q) to denote the number of times a and b appear in q:

#a,b(q) = |{j : qj = a or qj = b}|. (3)

Let X be a random variable taking value xi, with probability pi. Then, H(X) denotes
the Shannon entropy of X, namely H(X) = −∑i pi log2 pi. All logarithms in the paper are
base two, unless otherwise specified. We use h(x) to denote the binary Shannon entropy,
defined as h(x) = −x log2 x − (1 − x) log2(1 − x).

A quantum state or density operator is a Hermitian positive semi-definite operator of
unit trace, acting on some Hilbert space H. If ρAE acts on HA ⊗HE, we write ρA to denote
the quantum state resulting from a partial trace over E, namely ρA = trEρAE. This notation
is similar for states acting on additional Hilbert spaces.

The Bell basis [32–34] is spanned by states {|ϕ0⟩ , · · · , |ϕ3⟩}:

|ϕ0⟩ =
1√
2
(|00⟩+ |11⟩) = 1√

2
(|++⟩+ |−−⟩) (4)

|ϕ1⟩ =
1√
2
(|00⟩ − |11⟩) = 1√

2
(|+−⟩+ |−+⟩)

|ϕ2⟩ =
1√
2
(|01⟩+ |10⟩) = 1√

2
(|++⟩ − |−−⟩)

|ϕ3⟩ =
1√
2
(|01⟩ − |10⟩) = 1√

2
(|+−⟩ − |−+⟩)

where |+⟩ and |−⟩ are the Hadamard basis states, |±⟩ = 1√
2
(|0⟩ ± |1⟩). Given a word

i ∈ AN
4 , we write |ϕi⟩ to denote |ϕi⟩ = |ϕi1⟩ ⊗ · · · |ϕiN ⟩.

Given a density operator ρA, we write H(A)ρ to be the von Neumann entropy of ρA
defined as H(A)ρ = −tr(ρA log2 ρA). The conditional quantum min entropy is defined as
follows [35]:

H∞(A|E)ρ = sup
σE

max
{

λ ∈ R : 2−λ IA ⊗ σE ≥ ρAE

}
, (5)

where A ≥ B is used to indicate that the operator A− B is positive semi-definite. The smooth
conditional min entropy, denoted as Hϵ

∞(A|E)ρ, is defined as follows [35]:

Hϵ
∞(A|E)ρ = sup

σAE

H∞(A|E)σ, (6)

where the supremum is over all density operators σAE such that ||ρAE − σAE|| ≤ ϵ, where
||A|| is the trace distance of operator A.
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Quantum min entropy is a vital quantity in quantum cryptography as it relates directly
to the number of uniform random secret bits one may extract from a quantum state [35].
In particular, given ρAE where the A register is classical and the E register is quantum,
privacy amplification may be used to extract a uniform secret bit string. Let σKE be the result
after applying the privacy amplification process to ρAE. Then, it holds the following [35]:∣∣∣∣∣∣∣∣σKE − I

2ℓ
⊗ σE

∣∣∣∣∣∣∣∣ ≤ 2−
1
2 (Hϵ

∞(A|E)ρ−ℓ) + 2ϵ = ϵPA. (7)

In particular, after privacy amplification, the resulting output is almost a uniform
random ℓ-bit string, independent of Eve’s system. To determine a suitable size for ℓ, one
only need to measure the min entropy of the state ρAE before privacy amplification. For a
given ϵPA, the final key is said to be ϵPA secure.

Quantum min entropy has a number of useful properties that we will require later.
First, given a state of the form ρAEZ = ∑z pz |z⟩ ⟨z| ⊗ ρ

(z)
AE (i.e., a state classical on Z), the

following holds:
H∞(A|E)ρ ≥ H∞(A|EZ)ρ ≥ min

z
H∞(A|E)ρ(z) . (8)

The following lemma allows us to bound the entropy in a state after performing a
certain type of quantum operation on it, if we know the min entropy in a suitable state that
is close in trace distance:

Lemma 1 (from [36]). Let ρ and σ be two quantum states and F be some CPTP map that acts
as follows:

F (ρ) = ∑
x

px |x⟩ ⟨x| ⊗ ρ
(x)
AE

F (σ) = ∑
x

qx |x⟩ ⟨x| ⊗ σ
(x)
AE

Then, the following holds:

Pr
(

H4ϵ+3ϵ1/3

∞ (A|E)ρ(x) − H∞(A|E)σ(x) ≥ 0
)
≥ 1 − 2ϵ1/3, (9)

where the probability is over the outcome x and ϵ ≥ 1
2 ||ρ − σ||.

Finally, the following lemma allows us to bind the min entropy of a superposition of
Bell states (the lemma is found in [37], though its proof uses techniques similar to those
in [29,35] for bounding the min entropy of a general superposition state):

Lemma 2 (from [37] based on a proof in [29,35]). Let Q ∈ [0, 1/2] and

|ψ⟩ABE = ∑
i∈AN

4
1
N #1,3(i)≤Q

αi |ϕi⟩AB |Ei⟩ = ∑
i

αi |ϕi1⟩A1B1
|ϕi2⟩A2B2

· · · |ϕiN ⟩AN BN
|Ei⟩ , (10)

where recall #1,3(i) is the number of times 1 and 3 appear in the string i. Let ρAE be the state
resulting from taking |ψ⟩, measuring all A particles in the Z basis and then tracing out the B
register. Then, the following holds:

H∞(A|E)ρ ≥ N(1 − h(Q)). (11)

Quantum Sampling

Our new proof of security will utilize a quantum sampling framework introduced
by Bouman and Fehr in [29]. In this section, we review some of their work that we will
need later.

A classical sampling strategy over AN
d is a triple of algorithms. The first is a process

that randomly chooses a subset t ⊂ {1, · · · , N} with probability PT(t). The second is a
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guessing function g : A∗
d → R. The third is a target function r : A∗

d → R. The strategy
will first choose a random subset and observe qt. Next, a guess is computed g(qt); this
guess should be δ close to the value of the target function, but evaluated on the unobserved
portion of the string r(q−t). That is, g(qt) ∼δ r(q−t).

Formally, δ > 0 and a subset t should be fixed. Then, the set of good words should be
defined as follows: Gt = {q ∈ AN

d : g(qt) ∼δ r(q−t)}. (12)
Recall, we wrote that x ∼δ y if and only if |x − y| ≤ δ. A good word is one where the

guess is always δ close to the target for the given subset t. The classical error probability of
the sampling strategy is defined simply as follows:

ϵcl
δ = max

q∈AN
d

Prt(q ̸∈ Gt). (13)

From this definition, it holds that for any word q ∈ AN
d , if the sampling strategy is

performed on it, the probability that it fails (namely that the guess is not δ close to the
target) is at most ϵcl

δ .
The main result from [29] was to extend this to the quantum domain. A classical

sampling strategy can be promoted to a quantum one in a natural way: given a quantum
state |ψ⟩AE where the A register consists of N qudits, each qudit of dimension d, one chooses
a subset t and measures the qudits, indexed by t, in some d dimensional orthonormal basis
{|0⟩B , · · · , |d − 1⟩B}. This measurement results in a classical outcome qt. Then, according
to Bouman and Fehr’s main result, the unmeasured portion behaves like a superposition of
words that are δ close to the guess (with respect to the given target). To formalize this, a
basis B is fixed and the following space is considered:

span(Gt)⊗HE = span
{
|q⟩B : q ∈ Gt

}
⊗HE. (14)

This subspace is called the ideal subspace; a state within it is called an ideal state. Note
that if one is given an ideal state |νt⟩ (which only makes sense at the moment for a specific
subset t according to this definition and thus the superscript index), and if one performs a
measurement in the B basis on subset t resulting in outcome qt ∈ A|t|

d , the post measured
state must collapse to one that is of the following form:

|νt
q⟩ = ∑

i∈AN−|t|
4

g(qt)∼δr(i)

αi |i⟩B ⊗ |Ei⟩ . (15)

Namely, it must collapse to a superposition of words that are δ close to the observed
value (with respect to the given guess and target functions). The states may not be necessar-
ily ideal; however, the following theorem says that for any quantum state, one can define a
collection of ideal states that are ϵ close in trace distance to the given state.

Theorem 1 (from [29], but re-worded slightly for our application and approach). Let δ > 0,
B be a d-dimensional orthonormal basis, and |ψ⟩AE be a pure quantum state where the A register
consists of N qudits, each qudit of dimension d. It is assumed that the dimension of each system N
is known. Given a classical sampling strategy with error probability ϵcl

δ , there is a collection of ideal
states {|νt⟩}t, indexed by all subsets t such that PT(t) > 0:

|νt⟩ ∈ span(Gt)⊗HE (16)

Furthermore,

1
2

∣∣∣∣∣
∣∣∣∣∣∑t

PT(t) |t⟩ ⟨t| ⊗ |ψ⟩ ⟨ψ| − ∑
t

PT(t) |t⟩ ⟨t| ⊗ |νt⟩ ⟨νt|
∣∣∣∣∣
∣∣∣∣∣ ≤

√
ϵcl

δ . (17)

Note that, the original proof of Theorem 1 assumes Eve’s ancilla is finite dimensional.
This is without loss of generality in our proof since we are considering ideal sources.

Before leaving this section, we discuss an important sampling strategy which we will
use later. This strategy was analyzed in [37] for Bell states. Given a word q ∈ An+m

4 , a
subset of size m is uniformly chosen at random from all m size subsets of {1, · · · , n + m}.
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The guess and target functions are simply g(x) = r(x) = 1
|x|#1,3(x). This defines the set of

good words as follows:

Gt =

{
q ∈ An+m

4 :
1
m

#1,3(qt) ∼δ
1
n

#1,3(q−t)

}
, (18)

where recall #1,3(qt) is the number of 1’s and 3’s in the word qt.
The failure probability of this strategy was proven in [37] as follows:

ϵcl
δ ≤ 2 exp

(
−δ2 m(n + m)

n + m + 2

)
. (19)

3. Protocol

We now describe the specific TF-QKD protocol, introduced in [19], which we will be
analyzing. A single round of the quantum communication stage consists of the follow-
ing operations:

1. Alice prepares an entangled quantum state of the form:

|ψa⟩ =
√

q |0, v⟩Aa +
√

1 − q |1, p⟩Aa

where the A register is a private qubit memory, while the a register consists of a single
photon in either the vacuum state |v⟩a or a non-vacuum state |p⟩a. This register will
be transmitted to a central server. Finally, q is a publicly known parameter chosen by
Alice and Bob which will be optimized later.

2. Similarly, Bob creates the state:

|ψb⟩ =
√

q |1, v⟩Bb +
√

1 − q |0, p⟩Bb .

The A and B registers are kept private, while the a and b registers are sent to a
central server.

3. The central server routes the incoming ab registers through a 50:50 beam splitter with
two detectors, D0 and D1. The outcome of the detectors are reported to Alice and Bob.
The possible outcomes are “0” (meaning detector D0 clicked); “1” (meaning detector
D1 clicked); “vac” (meaning no detector clicked); and “other” (meaning any other
outcome, such as both detectors clicking).

4. If the server reported “vac” or “other”, Alice and Bob discard this round and their
private qubits. If the server reported “1”, Bob applies a Pauli Z gate to his private
ancilla, thereby flipping the phase of the |1⟩B state.

5. If the server reported either “0” or “1”, Alice and Bob should now hold a Bell state
|ϕ0

0⟩AB. They will measure their private qubits in either the Z or the X basis. Some of
the Z and X measurements will be used to test the fidelity of the state; the remaining
Z basis states will be used for key distillation.

We note that there is a simple change to the above protocol which turns it into an
equivalent prepare-and-measure protocol where Alice and Bob do not need to measure
or hold private memories. For more details on that, the reader is referred to the original
paper [19].

To see why the above protocol works, consider a single round. At the beginning, Alice
and Bob create the joint state:

|ψ0⟩ = (
√

q |0, v⟩Aa +
√

1 − q |1, p⟩A,a)⊗ (
√

q |1, v⟩Bb +
√

1 − q |0, p⟩Bb)

∼= q |0, 1, v, v⟩ABab +
√

q(1 − q)(|0, 0, v, p⟩ABab + |1, 1, p, v⟩ABab) + (1 − q) |1, 0, p, p⟩ABab . (20)

At this point, the ab registers are sent through a 50:50 beam splitter. We denote the
output modes of the BS as D0 and D1. We simply denote the action of this splitter (up to
phase rotation) as follows:

BS |v, v⟩ab = |v⟩01
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BS |p, v⟩ab =
1√
2
(|D0⟩01 + |D1⟩01)

BS |v, p⟩ab =
1√
2
(|D0⟩01 − |D1⟩01)

BS |p, p⟩ab = |ψ2⟩01

where |ψ2⟩01 is the state resulting from the action of the beam splitter upon the receipt of
two photons, one from Alice and one from Bob; the exact description of this state is not
important for the following discussion.

After applying the BS to Equation (20), but before measuring the output of the BS, the
state evolves to (after permuting subspaces) the following:

q |v⟩01 |01⟩AB +
√

q(1 − q)(|0⟩01 |ϕ0⟩AB − |1⟩01 |ϕ1⟩AB) + (1 − q) |ψ2⟩01 |10⟩AB . (21)

At this point, a measurement of the BS output register is performed and the outcome
is broadcast. Assuming that 1 − q is “small”, whenever a “D0” or “D1” is measured, Alice
and Bob’s state should collapse to an entangled Bell state; when the outcome is D1, Bob
will apply a Pauli Z gate to transform the state |ϕ1⟩ to |ϕ0⟩. Since 1 − q > 0, there will
be some error in the multi-photon case, and this is something that users must optimize.
Thus, interestingly, for this TF-QKD protocol, even when there is no channel noise and
everything is ideal, there will always be some error in Alice and Bob’s raw key, which error
correction must later repair.

At this point, we comment that two varieties of the above protocol may be introduced,
which we denote as Π-Zero and Π-One. For Π-Zero, Alice and Bob will only use rounds
where the server reports an outcome of D0 (if any other outcome is reported, including D1,
that round is discarded); similarly, Π-One is defined to be the same, but Alice and Bob will
only use rounds where the server reports an outcome of D1. The original protocol, where
Alice and Bob use rounds where the server reports either D0 or D1, will be denoted Π-Total.
While Π-Zero and Π-One may discard more rounds, we show later that improvements
in key-rates can be found in some instances based on channel statistics. This is due to the
asymmetric nature of the protocol (which we discuss in more detail in Section 5.1). We are
not aware of these slight modifications being analyzed in prior literature.

Entanglement-Based Version

Instead of analyzing the above protocol, we will instead analyze the following
entanglement-based protocol. It is not difficult to see that security of the following
entanglement-based version will imply security of the above prepare-and-measure version.
The entanglement-based version operates as follows:

1. Eve creates a quantum state |ψ⟩ABCE, where the A and B portions consist of N qubits
each, while the C portion lives in a Hilbert space spanned by orthonormal basis
C = {|“c”⟩} for all c ∈ {“0”, “1”, “v”, “?”}N (here, “v” will denote a vacuum observa-
tion and “?” an “other” event). The E portion is arbitrary. Alice and Bob are given the
A and B registers, while the C register is sent to a trusted third party Charlie.

2. Charlie measures his entire C register in the C basis, broadcasting the result to all
parties. Alice and Bob discard all qubits rounds where the reported outcome was
“vac” or “?”. Let Nc be the number of remaining systems not discarded.

3. Alice and Bob choose a random subset t ⊂ {1, · · · , Nc} of size mc (which may depend
on Nc), and measure their respective systems, indexed by this subset, in the X basis
which they subsequently broadcast to determine the fidelity of their state.

4. Alice and Bob measure the remaining systems in the Z basis, leading to their raw
key. They then further process this through error correction and privacy amplification
as normal.

Entanglement-based versions of Π-Zero and Π-One are defined similarly, with only
step 2 being changed.
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Note that in the entanglement-based version, Bob does not apply a Pauli correction
gate, since Eve gets to prepare not only Alice and Bob’s state but also the state that would
normally have been output from the BS; it is advantageous for Eve to “simulate” the Pauli
correction before sending it to Bob (though she does not have to; however, not doing
so would lead to additional X basis noise). It is not difficult to see that security of the
entanglement based version above will imply security of the actual TF-QKD protocol. In
the next section, we show a new proof of security, deriving an entropy bound for the
entanglement-based version, which will subsequently produce a key-rate bound for the
TF-QKD protocol.

We note that the protocols above are not novel; they are, at most, very slight variations
of protocols from [19]. Π-Total is identical to prior work in [19], while Π-Zero and Π-One
are only minor variations of that protocol. As discussed in the introduction, the novelty of
our work is in an alternative security proof, derived in the following section.

4. New Security Proof

We now present our new proof of security for the above TF-QKD protocol. Our proof
uses the quantum sampling framework of Bouman and Fehr [29] discussed above, along
with proof techniques used for sampling-based entropic uncertainty relations [30]. Namely,
we prove security of the entanglement-based version which will imply security of the
prepare-and-measure version. The main result is shown in the following theorem:

Theorem 2. Let |ψ⟩ABCE be the state Eve prepares where the A and B portions are N qubits each
and the C portion is in a Hilbert space of dimension 4N . After Charlie’s measurement of the C
register, let c ∈ {0, 1, v, ?}N be the resulting outcome and |ψc⟩ABE be the post measured state
(tracing out the measured C register). Let Nc be the number of signals not discarded, namely
Nc = #0,1(c) for Π-Total, Nc = #0(c) for Π-Zero, and Nc = #1(c) for Π-One. Alice and Bob
will choose a random sample of size mc < Nc/2, measure those qubits in the X basis and determine
the relative number of errors in that basis, denoted as QX . Then, it holds that, except with probability
ϵ f ail = 2ϵ1/3, if the remaining Nc − mc signals are measured in the Z basis

H4ϵ+3ϵ1/3

∞ (A|E) ≥ (Nc − mc)(1 − h(QX + δc)), (22)

where
δc =

√
(Nc + 2) ln(2/ϵ2)

mcNc
. (23)

Proof. Consider the post-measured state |ψc⟩ABE as discussed in the theorem statement.
Without loss of generality, we may write this state as follows:

|ψc⟩ABE = ∑
i∈AN

4

αi |ϕi⟩ |Ec
i ⟩ . (24)

At this point, Alice and Bob discard certain systems based on the value of c. For
instance, whenever cj ∈ {v, ?}, they will discard that round; furthermore, if they are
running Π-Zero (respectively Π-One), they will discard rounds when cj = 1 (respectively
cj = 0). This effectively traces out these systems. Let Nc be defined as in the theorem
statement and RC = N − NC (the number of signals Rejected). It is easy to see that this
operation, effectively tracing out certain systems of A and B, yields a mixed state which
may be written as follows:

ρc
ABE = ∑

r∈ARc
4

p(r)P

 ∑
i∈ANc

4

βi|r |ϕi⟩ |Ei|r⟩


︸ ︷︷ ︸

|ψc,r⟩ABE

= ∑
r∈ARc

4

p(r) |ψc,r⟩ ⟨ψc,r|ABE , (25)

where P(|z⟩) = |z⟩ ⟨z|. The A and B registers of |ψc,r⟩ABE are of Nc qubits each.
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At this point, Alice and Bob choose a random subset t of size mc < Nc/2 (which may
depend on Nc) with uniform probability PT(t) and measure their respective systems in the
X basis, observing the number of errors in this test set. The remaining qubits are measured
in the Z basis. Our goal is to compute the min entropy of this final Z basis measurement.

We now switch to ideal states to complete our analysis. Next, r and c are fixed.
Then, using Theorem 1, we construct the ideal states {|ϕc,r,t⟩}, such that for every r, c, the
following holds:

|ϕc,r,t⟩ ∈ span(Gt)⊗HE = span
{
|ϕi⟩ : i ∈ ANc

4 and
1

mc
#1,3(it) ∼δ

1
nc

#1,3(i−t)

}
⊗HE (26)

Also,

1
2

∣∣∣∣∣
∣∣∣∣∣∑t

PT(t) |t⟩ ⟨t| ⊗ |ψc,r⟩ ⟨ψc,r| − ∑
t

PT(t) |t⟩ ⟨t| ⊗ |ϕc,r,t⟩ ⟨ϕc,r,t|
∣∣∣∣∣
∣∣∣∣∣ ≤

√
ϵcl

δ . (27)

Now, using the sampling strategy discussed earlier, with error probability shown in

Equation (19), and choosing δ as in Equation (23), we have
√

ϵcl
δ ≤ ϵ. The above is true for

any r and c; based on the triangle inequality, for every c, we have the following:

1
2

∣∣∣∣∣
∣∣∣∣∣∑r

p(r)∑
t
|t⟩ ⟨t| ⊗ |ψc,r⟩ ⟨ψc,r| − ∑

r
p(r)∑

t
|t⟩ ⟨t| ⊗ |ϕc,r,t⟩ ⟨ϕc,r,t|

∣∣∣∣∣
∣∣∣∣∣

≤1
2 ∑

r
p(r)

∣∣∣∣∣
∣∣∣∣∣∑t

PT(t) |t⟩ ⟨t| ⊗ |ψc,r⟩ ⟨ψc,r| − ∑
t

PT(t) |t⟩ ⟨t| ⊗ |ϕc,r,t⟩ ⟨ϕc,r,t|
∣∣∣∣∣
∣∣∣∣∣ ≤ ϵ. (28)

Let X0 = |++⟩ ⟨++|+ |−−⟩ ⟨−−| be the POVM element measuring Alice and Bob’s
qubit in the X basis and reporting the same result (i.e., no error); let X1 = I − X0 be the
same, but when Alice and Bob’s outcomes are different (i.e., an X basis error). Note that
X1 |ϕj⟩ = 0 whenever j = 0, 2. Thus, X1 can only be observed if j = 1, 3 (see Equation (4)).

After choosing t and measuring using POVM {X0, X1}, resulting in outcome qX ∈ {0, 1}mc ,
it is clear from Equation (26), that the post-measured state must collapse to one that may be
written in the following form:

|ϕc,r,t
qX

⟩ = ∑
i∈Amc

4
#1,3(i)=#1(qX)

p(i)P

 ∑
j∈Anc

4
1

nc #1,3(j)∼δ
1

mc #1,3(i)

|ϕj⟩ |Ẽj|i⟩

. (29)

Alice and Bob subsequently measure their remaining particles in the Z basis leading
to their raw keys. The resulting density operator is denoted with σc,r,t

AE . Using Lemma 2,
along with Equation (8), we have the following:

H∞(A|E)σc,r,t ≥ nc(1 − h(#1(qX) + δc)). (30)

Lemma 1 and Equation (28) completes the proof.

The actual key-rate of the TF-QKD protocol then follows immediately and is stated in
the corollary below:

Corollary 1. Let ϵ > 0 be given. Then, except with probability ϵ f ail = 2ϵ1/3, if the key-length of
the TF-QKD protocol is set to

ℓ = nc(1 − h(QX + δc))− leakEC − 2 log2
1
ϵ

(31)

where leakEC is the information leaked during error correction, the final resulting key is ϵPA-secure,
for ϵPA = 9ϵ + 4ϵ1/3.

Proof. This follows immediately from Theorem 2 and Equation (7).
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We note that our key-rate above agrees asymptotically with the prior work in [19] for
Π-Total and so our new proof above is simply an alternative method and not one that
necessarily obtains higher results.

5. Evaluation

We now evaluate the key-rate assuming a lossy channel with detector mismatches and
inefficiencies. In particular, each channel will have a transmittance of

√
η. We will assume,

for evaluation purposes, that the server is honest, but has faulty devices. Thus, the server
will perform the correct measurement; however, the detectors will have a non-zero dark
count rate pd and a non-unit efficiency f . The measurement may also be misaligned in that
it may report “0” when it should have, ideally, observed “1”.

To evaluate, we require certain expected values for Nc along with the expected noise.
Let p(0) (respectively p(1)) be the probability that the server sends the message “0” (re-
spectively “1”). Then, the expected value of NC is simply N(p(0) + p(1)), where N is the
total number of rounds Alice and Bob perform for the protocol. To find these values under
our evaluation setup, we trace the protocol’s execution.

First, consider the joint state created by Alice and Bob:(√
q |0, v⟩Aa +

√
1 − q |1, p⟩Aa

)
⊗

(√
q |1, v⟩Bb +

√
1 − q |0, p⟩Bb

)
∼=q |0, 1, v, v⟩ABab + (1 − q) |1, 0, p, p⟩ABab +

√
q(1 − q)(|0, 0, v, p⟩ABab + |1, 1, p, v⟩ABab). (32)

The qubits are sent through a lossy channel which, as in [19]. We model a beamsplitter
with transmittance

√
η; it is as follows:

BS |p⟩ = √
η |p⟩+

√
1 − η |ṽ⟩

BS |v⟩ = |v⟩ .

Note that we introduced a new state |ṽ⟩ to ensure that the above is unitary; however,
|v⟩ and |ṽ⟩ cannot be distinguished by the parties and will look like a vacuum in either case.

The above causes the joint state to evolve into the following:

q |01vv⟩+ (1 − q) |10⟩ (η |pp⟩+ (1 − η) |ṽṽ⟩+
√

η(1 − η)(|pṽ⟩+ |ṽ, p⟩))

+
√

q(1 − q)(|00⟩ (√η |v, p⟩+
√

1 − η |v, ṽ⟩) + |11⟩ (√η |p, v⟩+
√

1 − η |ṽ, v⟩)) (33)

At this point, the system enters the server’s measurement device which, before the actual
measurement is performed, we model as a unitary operator C, where for any x, y ∈ {v, ṽ}:

C |x, y⟩ = |x, y⟩
C |p, x⟩ = (α |D0⟩+ β |D1⟩) |x⟩
C |x, p⟩ = (β |D0⟩ − α |D1⟩) |x⟩
C |p, p⟩ = |ψ2⟩

Ideally, α = β = 1/
√

2. Note that the additional |x⟩ system in the above definitions
are used only to ensure unitarity of C and that the server’s subsequent measurement cannot
distinguish between |v⟩ and |ṽ⟩. Following the application of C, the server will measure the
first of the two systems in its control, thereby leading to the reported outcome. Note that,
since |v⟩ and |ṽ⟩ are technically indistinguishable, both observations are reported simply
as a “vacuum” by the server.

Applying C to the joint state in Equation (33), but before the actual measurement, yields
the following:

q |01⟩ |vv⟩+ (1 − q) |10⟩ (η |ψ2⟩+ (1 − η) |ṽ, ṽ⟩

+
√

η(1 − η)([α + β] |D0, ṽ⟩+ [α − β] |D1, ṽ⟩))
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+
√

q(1 − q)(|00⟩ (√η(β |D0, v⟩ − α |D1, v⟩) +
√

1 − η |v, ṽ⟩))

+
√

q(1 − q)(|11⟩ (√η(α |D0, v⟩+ β |D1, v⟩) +
√

1 − η |ṽ, v⟩)) (34)

At this point, the server measures and reports the outcome. This measurement will be
affected by dark counts (pd) and the detector efficiency ( f ). For simplicity in evaluation,
we will simply assume that the double-photon outcomes (namely, |ψ2⟩) do not interfere,
constructively or destructively, with the other terms in the |10⟩AB term. We will then simply
assume that the probability of observing a |D0⟩ in |ψ2⟩ is p0

2 and the probability of observing
|D1⟩ is p1

2. It turns out that, since q is large generally, this term does not significantly affect
the key-rate and so this assumption does not play a major role in hurting or benefiting the
key-rate. From this, we obtain the following:

p(0) = q2 pd
2

+ (1 − q)2
(

η2 p0
2 + (1 − η)2 pd

2
+ η(1 − η)(α + β)2 f

)
+ q(1 − q)

(
ηβ2 f + (1 − η)

pd
2

+ ηα2 f + (1 − η)
pd
2

)

= q2 pd
2

+ (1 − q)2
(

η2 p0
2 + (1 − η)2 pd

2
+ η(1 − η)(α + β)2 f

)
+ q(1 − q)(η f + (1 − η)pd) (35)

Similarly, we obtain the following:

p(1) = q2 pd
2

+ (1 − q)2
(

η2 p1
2 + (1 − η)2 pd

2
+ η(1 − η)(α − β)2 f

)
+ q(1 − q)(η f + (1 − η)pd)

Next, we need the Z basis and X basis noise, conditioned on Alice and Bob not
discarding the round, i.e., conditioned on the server sending a non-vacuum message in
the Π-Total protocol case or conditioned on sending either “0” or “1” for the Π-Zero or
Π-One protocol case. Let QZ,0 be the probability of a Z basis error and the server sending
the message “0”. Similarly, define QZ,1, QX,0, and QX,1. From the above equations, the
following expressions are easily found:

QZ,0 = q2 pd
2

+ (1 − q)2
(

η2 p0
2 + (1 − η)2 pd

2
+ η(1 − η) f (α + β)2

)
(36)

QZ,1 = q2 pd
2

+ (1 − q)2
(

η2 p1
2 + (1 − η)2 pd

2
+ η(1 − η) f (α − β)2

)
(37)

QX,0 =
1
2

q2 pd
2

+
1
2
(1 − q)2(η2 p0

2 + (1 − η)2 pd
2

+ η(1 − η) f (α + β)2)

+
1
2

q(1 − q)(η(β − α)2 f + (1 − η)
pd
4
) (38)

QX,1 =
1
2

q2 pd
2

+
1
2
(1 − q)2(η2 p0

2 + (1 − η)2 pd
2

+ η(1 − η) f (α − β)2)

+
1
2

q(1 − q)(η(α − β)2 f + (1 − η)
pd
4
) (39)

From these, the required conditional noise values may be determined for our evalua-
tion scenario.

In our evaluations, we set q = 0.95, which was found to be roughly the optimal value.
We also set p0

2 = p1
2 to be 1/2. We found no significant affect on the key-rate for other

values due to the high value of q and so we simply set this value as 1/2. For finite key rates,
we set mc =

√
NC.

To evaluate, we use Corollary 1, setting leakEC = 1.2h(Q + δ), where Q is the Z basis
error noise (e.g., Q = (QZ,0 + QZ,1)/(p(0) + p1) for Π-Total; this is similar for other
protocol settings). A graph of the resulting asymptotic key-rates is shown in Figure 1
(comparing to the PLOB bound [25]). The finite key results are shown in Figure 2. Note
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that our key-rates agree asymptotically to previous results for the Π-Total version and so
we do not compare them to prior works for that setting; for other settings (namely Π-Zero
and Π-One), we are not aware of any security proof, and so there is no comparison beyond
comparing to Π-Total.

Figure 1. (left) Asymptotic key-rate of the TF-QKD protocol version Π-Total. Here, (x, y, z) implies
pd = 10x, α =

√
1/2 + y and f = z. We also compared it with the PLOB bound [25]. If d is the

distance to Alice and Bob, we set η = 10−(d/2)/10. (right) Asymptotic key-rate of TF-QKD protocol
Π-Total, Π-Zero, and Π-One. Here we set pd = 10−5, α =

√
3/4, and f = 0.8. Note that our

key-rate agrees asymptotically with that from [19] for Π-Total and so we do not plot a comparison;
we are not aware of a key-rate result for Π-Zero or Π-One. We note that Π-One can yield strictly
higher key-rates and support longer distances.

Figure 2. (left) Key-rate as a function of the number of signals (note that x-axis is log-scale). Here,
pd = 10−8, distance is 25km; α =

√
3/4; and f = 0.8; (right) Finite key-rate as a function of distance;

here, we use the same parameters as in the left figure, but with N = 1015. Again, we note that Π-One
can outperform the other two protocol modes of operation.

5.1. A Discussion on the Asymmetric Nature of the Protocol

It is worth taking a closer look as to why Π-Zero and Π-One perform differently from
the standard version Π-Total. First, consider Equations (36) and (37). Note that, even
under ideal conditions of pd = 0, f = 1, and α = β = 1/

√
2 (which is what would be

expected if all devices were perfect and there were simply natural loss η), for any η > 0, it
holds that QZ,1 < QZ,0. Similarly, QX,1 < QX,0. The same inequalities hold for imperfect
devices (i.e., when pd > 0 and f < 1). This can be seen more clearly in Figure 3. Thus,
anytime the server sends message 0, there is actually a greater chance of error than in
the case of message 1. Therefore, under most conditions and under this channel scenario,
discarding all messages of 0 actually improves the performance of the system. The users
may decide, after measuring the channel statistics, to determine which mode of operation
to perform; thus, the users can always optimize their choice of protocol after the quantum
data have been transmitted and can therefore always choose the mode that will return the
higher number of key-bits. It would be interesting to analyze these three protocols under
other channel scenarios, beyond depolarizing. Note that our security proof can handle any
channel scenario; however, we chose only depolarization channels for our evaluations in
this section.
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Figure 3. Showing the total Z basis error rate for Π-Zero (top), Π-Total (middle) and Π-One
(bottom). Lower is better as it indicates less raw key error. The asymmetric nature of the protocol
causes there to be fewer errors when the server sends message 1. See text for further discussion.

6. Closing Remarks

In this paper, we revisited a TF-QKD protocol introduced in [19] and derived a new
proof of security for it. Our new proof uses methods from quantum sampling tech-
niques [29]. While our new proof agrees with prior works and does not show higher
key-rates compared to them, we still feel that alternative proof techniques are interesting
and important. We also investigated two slight variants of the protocol and showed how
they can lead to improved key-rates in some scenarios.

Many interesting future problems remain. It would be fruitful to further explore the
two variants and see if additional improvements can be made. Furthermore, a finite key
proof using decoy-state methods (using our sampling-based proof approach) would be
interesting, especially for Π-Zero and Π-One. Adapting our proof technique to other TF-
QKD protocols would also be very interesting; a particular candidate to start with would
be the sending or not-sending (SNS) TF-QKD protocol [31] due to its similar encoding
mechanism. Also, it would be interesting to discover whether or not asymmetric protocols
(similar to Π-Zero and Π-One analyzed in this work) can be defined and shown to be more
efficient for such protocols like the SNS TF-QKD mechanism.

Also, leading into more practical device considerations, it is known that for single-
photon interference protocols (such as the TF protocol discussed in this paper), there are
still challenges with matching the mode of the photon and detector, which ultimately affects
the protocol’s performance [38]. Such issues must be considered in future works to address
applicability issues of the protocol.
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