Analysis of Electromagnetic Interference Effect on Semiconductor Scanning Electron Microscope Image Distortion
Abstract
:1. Introduction
2. Related Works
2.1. EMI Analysis
2.2. Denoising Algorithms
2.3. Edge Detection Algorithms
3. Measures of Image Object
4. Experimental Analysis
5. Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Płuska, M.; Czerwinski, A.; Ratajczak, J.; Kątcki, J.; Oskwarek, Ł.; Rak, R. Separation of image-distortion sources and magnetic-field measurement in scanning electron microscope (SEM). Micron 2009, 40, 46–50. [Google Scholar] [CrossRef] [PubMed]
- Henry, T.; Patterson, O.; Brown, G. Application of ADC techniques to characterize yield-limiting defects identified with the overlay of E-test/inspection data on short loop process testers. In Proceedings of the 10th Annual IEEE/SEMI Advanced Semiconductor Manufacturing Conference and Workshop (ASMC), Boston, MA, USA, 8–10 September 1999; pp. 330–337. [Google Scholar]
- Tobin, K.W.; Lakhani, F.; Karnowski, T.P. An Industry Survey of Automatic Defect Classification Technologies, Methods, and Performance. In Proceedings of the Society of Photo-Optical Instrumentation Engineers (SPIE), Santa Clara, CA, USA, 6–7 March 2002; pp. 46–53. [Google Scholar]
- van Ginneken, B. Fifty years of computer analysis in chest imaging: Rule-based, machine learning, deep learning. Radiol. Phys. Technol. 2017, 10, 23–32. [Google Scholar] [CrossRef] [PubMed]
- Kondo, N.; Harada, M.; Takagi, Y. Efficient Training for Automatic Defect Classification by Image Augmentation. In Proceedings of the 2018 IEEE Winter Conference on Applications of Computer Vision (WACV), Lake Tahoe, CA, USA, 12–15 May 2018; pp. 226–233. [Google Scholar]
- Cheon, S.; Lee, H.; Kim, C.O.; Lee, S.H. Convolutional Neural Network for Wafer Surface Defect Classification and the Detection of Unknown Defect Class. IEEE Trans. Semicond. Manuf. 2019, 32, 163–170. [Google Scholar] [CrossRef]
- O’Leary, J.; Sawlani, K.; Mesbah, A. Deep Learning for Classification of the Chemical Composition of Particle Defects on Semiconductor Wafers. IEEE Trans. Semicond. Manuf. 2020, 33, 72–85. [Google Scholar] [CrossRef]
- Tsai, T.-H.; Lee, Y.-C. A Light-Weight Neural Network for Wafer Map Classification Based on Data Augmentation. IEEE Trans. Semicond. Manuf. 2020, 33, 663–672. [Google Scholar] [CrossRef]
- Yang, Y.-F.; Sun, M. Double feature extraction method for wafer map classification based on convolution neural network. In Proceedings of the 31st Annual SEMI Advanced Semiconductor Manufacturing Conference (ASMC), Saratoga Springs, NY, USA, 24–26 August 2020; pp. 1–6. [Google Scholar]
- Arena, S.; Bodrov, Y.; Carletti, M.; Gentner, N.; Maggipinto, M.; Yang, Y.; Beghi, A.; Kyek, A.; Susto, G.A. Exploiting 2D Coordinates as Bayesian Priors for Deep Learning Defect Classification of SEM Images. IEEE Trans. Semicond. Manuf. 2021, 34, 436–439. [Google Scholar] [CrossRef]
- Tian, P.; Li, C.; Fu, H.; Yu, X.; Wei, Z.; Ni, Q.; Chen, X.; Ding, Y.; Xu, R.; Sun, R. Wafer defect classification based on DCNN model. In Proceedings of the China Semiconductor Technology International Conference (CSTIC), Shanghai, China, 14–15 March 2021; pp. 1–6. [Google Scholar]
- Xu, Y.; Li, D.; Xie, Q.; Wu, Q.; Wang, J. Automatic defect detection and segmentation of tunnel surface using modified Mask R-CNN. Measurement 2021, 178, 109316. [Google Scholar] [CrossRef]
- de la Rosa, F.L.; Sánchez-Reolid, R.; Gómez-Sirvent, J.L.; Morales, R.; Fernández-Caballero, A. A Review on Machine and Deep Learning for Semiconductor Defect Classification in Scanning Electron Microscope Images. Appl. Sci. 2021, 11, 9508. [Google Scholar] [CrossRef]
- de la Rosa, F.L.; Gómez-Sirvent, J.L.; Sánchez-Reolid, R.; Morales, R.; Fernández-Caballero, A. Geometric transformation-based data augmentation on defect classification of segmented images of semiconductor materials using a ResNet50 convolutional neural network. Expert. Syst. Appl. 2022, 206, 117731. [Google Scholar] [CrossRef]
- Gómez-Sirvent, J.L.; de la Rosa, F.L.; Sánchez-Reolid, R.; Morales, R.; Fernández-Caballero, A. Defect classification on semiconductor wafers using Fisher vector and visual vocabularies coding. Measurement 2022, 202, 111872. [Google Scholar]
- Liang, Z.; Tan, G.; Sun, C.; Li, J.; Zhang, L.; Xiong, X.; Liu, Y. An Effective Clustering Algorithm for the Low-Quality Image of Integrated Circuits via High-Frequency Texture Components Extraction. Electronics 2022, 11, 572. [Google Scholar] [CrossRef]
- Nam, Y.; Joo, S.; Kwak, N.; Kim, K.; Kim, D.-N. Precise Pattern Alignment for Die-to-Database Inspection Based on the Generative Adversarial Network. IEEE Trans. Semicond. Manuf. 2022, 35, 532–539. [Google Scholar] [CrossRef]
- Nakagaki, R.; Honda, T.; Nakamae, K. Automatic recognition of defect areas on a semiconductor wafer using multiple scanning electron microscope images. Meas. Sci. Technol. 2009, 20, 075503. [Google Scholar] [CrossRef]
- Płuska, M.; Czerwinski, A.; Ratajczak, J.; Katcki, J.; Rak, R. Elimination of scanning electron microscopy image periodic distortions with digital signal-processing methods. J. Microsc. 2006, 224, 89–92. [Google Scholar] [CrossRef] [PubMed]
- Ning, S.; Fujita, T.; Nie, A.; Wang, Z.; Xu, X.; Chen, J.; Chen, M.; Yao, S.; Zhang, T.-Y. Scanning distortion correction in STEM images. Ultramicroscopy 2018, 184, 274–283. [Google Scholar] [CrossRef] [PubMed]
- Pradelles, J.; Perraud, L.; Fay, A.; Sezestre, E.; Henry, J.-B.; Bustos, J.; Guyez, E.; Berard-Bergery, S.; Le Pennec, A.; Abaidi, M.; et al. Roughness measurement of 2D curvilinear patterns: Challenges and advanced methodology. In Proceedings of the SPIE Advanced Lithography, Online, 22 February 2021; p. 1161110. [Google Scholar]
- Weisbuch, F.; Schatz, J.; Mattick, S.; Schuch, N.; Figueiro, T.; Schiavone, P. Investigating SEM-contour to CD-SEM matching. In Proceedings of the SPIE Advanced Lithography, Online, 9 March 2021; p. 116110Y-2. [Google Scholar]
- Jain, P.; Tyagi, V. A survey of edge-preserving image denoising methods. Inform. Syst. Front. 2016, 18, 159–170. [Google Scholar] [CrossRef]
- Diwakar, M.; Kumar, M. A review on CT image noise and its denoising. Biomed. Signal Process. Control 2018, 42, 73–88. [Google Scholar] [CrossRef]
- Milanfar, P. A Tour of Modern Image Filtering: New Insights and Methods, Both Practical and Theoretical. IEEE Signal Proc. Mag. 2013, 30, 106–128. [Google Scholar] [CrossRef]
- Gonzalez, R.C.; Woods, R.E. Digital Image Processing; Pearson Education: New York, NY, USA, 2018. [Google Scholar]
- Jain, A.K. Fundamentals of Digital Image Processing; Prentice-Hall: Englewood Cliffs, NJ, USA, 1988. [Google Scholar]
- Yang, H.-Y.; Wang, X.-Y.; Qu, T.-X.; Fu, Z.-K. Image denoising using bilateral filter and Gaussian scale mixtures in shiftable complex directional pyramid domain. Comput. Electr. Eng. 2011, 37, 656–668. [Google Scholar] [CrossRef]
- Sun, T.; Neuvo, Y. Detail-preserving median based filters in image processing. Pattern Recogn. Lett. 1994, 15, 341–347. [Google Scholar] [CrossRef]
- Buades, A.; Coll, B.; Morel, J.M. A Review of Image Denoising Algorithms, with a New One. Multiscale Model. Simul. 2005, 4, 490–530. [Google Scholar] [CrossRef]
- Lu, K.; He, N.; Li, L. Nonlocal Means-Based Denoising for Medical Images. Comput. Math. Method. Med. 2012, 2012, 438617. [Google Scholar] [CrossRef] [PubMed]
- Tomasi, C.; Manduchi, R. Bilateral Filtering for Gray and Color Images. In Proceedings of the Sixth International Conference on Computer Vision, Bombay, India, 7 January 1998; pp. 839–846. [Google Scholar]
- Astola, J.; Kuosmanen, P. Fundamentals of Nonlinear Digital Filtering; CRC Press: Boca Raton, FL, USA, 1997. [Google Scholar]
- Pitas, I.; Venetsanopoulos, A.N. Nonlinear Digital Filters: Principles and Applications; Springer: Boston, MA, USA, 1990. [Google Scholar]
- Coupé, P.; Hellier, P.; Kervrann, C.; Barillot, C. Nonlocal Means-Based Speckle Filtering for Ultrasound Images. IEEE T. Image Process. 2009, 18, 2221–2229. [Google Scholar] [CrossRef] [PubMed]
- Frei, W.; Chen, C.-C. Fast Boundary Detection: A Generalization and a New Algorithm. IEEE Trans. Comput. 1977, C-26, 988–998. [Google Scholar] [CrossRef]
- Jing, J.; Liu, S.; Wang, G.; Zhang, W.; Sun, C. Recent advances on image edge detection: A comprehensive review. Neurocomputing 2022, 503, 259–271. [Google Scholar] [CrossRef]
- Kittler, J. On the accuracy of the Sobel edge detector. Image Vis. Comput. 1983, 1, 37–42. [Google Scholar] [CrossRef]
- Zhou, R.-G.; Yu, H.; Cheng, Y.; Li, F.-X. Quantum image edge extraction based on improved Prewitt operator. Quantum Inf. Process. 2019, 18, 261. [Google Scholar] [CrossRef]
- Roberts, L.G. Machine Perception of Three-Dimensional Solids. Ph.D. Thesis, Massachusetts Institute of Technology, Cambridge, MA, USA, 1963. [Google Scholar]
- Canny, J. A Computational Approach to Edge Detection. IEEE Trans. Pattern Anal. Mach. Intell. 1986, 8, 679–698. [Google Scholar] [CrossRef]
- Ding, L.; Goshtasby, A. On the Canny edge detector. Pattern Recogn. 2001, 34, 721–725. [Google Scholar] [CrossRef]
- Pratt, W.K. Digital Image Processing; Wiley-Interscience: New York, NY, USA, 2002. [Google Scholar]
- Scharr, H. Optimal filters for extended optical flow. In Proceedings of the 1st International Conference on Complex Motion (IWCM), Günzburg, Germany, 12–14 October 2004; pp. 14–29. [Google Scholar]
- McFadden, D. Conditional Logit Analysis of Qualitative Choice Behavior. Frontiers in Econometrics; Academic Press: New York, NY, USA, 1973; pp. 105–142. [Google Scholar]
- Johnson, R.A.; Wichern, D.W. Applied Multivariate Statistical Analysis; Prentice-Hall: Englewood Cliffs, NJ, USA, 2007. [Google Scholar]
Logit 1 (Class 2/Class 1) | Coefficient | Std. Error | -Value | p-Value | 95% Conf. Interval | |
Constant | −47.089 | 14.562 | −3.234 | 0.001 | −75.630 | −18.548 |
Area | −119.993 | 34.415 | −3.487 | 0.000 | −187.446 | −52.541 |
Perimeter | 117.116 | 35.142 | 3.333 | 0.001 | 48.239 | 185.992 |
Rectangle | 16.981 | 5.672 | 2.994 | 0.003 | 5.865 | 28.098 |
Extend | 99.605 | 26.771 | 3.721 | 0.000 | 47.134 | 152.076 |
Solidity | −23.303 | 9.242 | −2.521 | 0.012 | −41.416 | −5.189 |
Logit 2 (Class 3/Class 1) | Coefficient | Std. Error | -Value | p-Value | 95% Conf. Interval | |
Constant | −42.351 | 14.465 | −2.928 | 0.003 | −70.702 | −13.999 |
Area | −102.472 | 34.147 | −3.001 | 0.003 | −169.400 | −35.544 |
Perimeter | 97.804 | 34.683 | 2.820 | 0.005 | 29.827 | 165.781 |
Rectangle | 21.816 | 6.316 | 3.454 | 0.001 | 9.438 | 34.194 |
Extend | 96.730 | 27.277 | 3.546 | 0.000 | 43.267 | 150.192 |
Solidity | −28.523 | 10.313 | −2.766 | 0.006 | −48.736 | −8.309 |
Intercept | Value | Num. DF | Den. DF | F-Value | p-Value |
Wilks’ Lambda | 0.002 | 5 | 112 | 10,117.102 | 0.000 |
Pillai’s trace | 0.998 | 5 | 112 | 10,117.102 | 0.000 |
Hotelling–Lawely trace | 451.656 | 5 | 112 | 10,117.102 | 0.000 |
Roy’s largest root | 451.656 | 5 | 112 | 10,117.102 | 0.000 |
EMI Level | Value | Num. DF | Den. DF | F-Value | p-Value |
Wilks’ Lambda | 0.588 | 10 | 224 | 6.821 | 0.000 |
Pillai’s trace | 0.429 | 10 | 226 | 6.169 | 0.000 |
Hotelling–Lawely trace | 0.674 | 10 | 165.274 | 7.501 | 0.000 |
Roy’s largest root | 0.429 | 10 | 226 | 6.169 | 0.000 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Park, Y.-J.; Pan, R.; Montgomery, D.C. Analysis of Electromagnetic Interference Effect on Semiconductor Scanning Electron Microscope Image Distortion. Appl. Sci. 2024, 14, 223. https://doi.org/10.3390/app14010223
Park Y-J, Pan R, Montgomery DC. Analysis of Electromagnetic Interference Effect on Semiconductor Scanning Electron Microscope Image Distortion. Applied Sciences. 2024; 14(1):223. https://doi.org/10.3390/app14010223
Chicago/Turabian StylePark, You-Jin, Rong Pan, and Douglas C. Montgomery. 2024. "Analysis of Electromagnetic Interference Effect on Semiconductor Scanning Electron Microscope Image Distortion" Applied Sciences 14, no. 1: 223. https://doi.org/10.3390/app14010223
APA StylePark, Y. -J., Pan, R., & Montgomery, D. C. (2024). Analysis of Electromagnetic Interference Effect on Semiconductor Scanning Electron Microscope Image Distortion. Applied Sciences, 14(1), 223. https://doi.org/10.3390/app14010223