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Abstract: The maintenance strategies commonly employed in industrial settings primarily rely on
theoretical models that often overlook the actual operating conditions. To address this limitation,
the present paper introduces a novel selective predictive maintenance approach based on a machine
learning model for a multi-parallel series system, which involves executing multiple missions with
breaks between them. For this purpose, the proposed selective maintenance approach consists of
finding, at each breakdown, the optimal structure of maintenance activities that provide the desired
reliability level of the system for each mission. This decision is based on a component’s actual age, as
determined by the prediction model. In addition, an optimization model with the Extended Great
Deluge (EGD) algorithm uses these predictions as input data to identify the best maintenance level
for each component considering the constrained maintenance resources. Finally, the numerical results
of the proposed idea applied to the Flexible Manufacturing System (FMS) data are presented to show
the robustness of the model.

Keywords: clustering algorithm; selective maintenance; artificial neural network; support vector
machine; multi-level maintenance; reliability; metaheuristic algorithm

1. Introduction

System reliability and performance are considered one of the central interests in
Industry 4.0, given the huge economic losses due to unexpected machine breakdowns. In
this case, several maintenance strategies are adopted to avoid these failures and to maintain
a system in working order such as preventive, corrective, predictive maintenance activities,
and reliability. These strategies aim to ensure a given level of system reliability that allows
it to complete the remaining operations with maximum availability [1–3]. Moreover, most
multi-component systems in industrial applications execute consecutive missions with
planned breaks. During these breaks, several maintenance actions can be performed on
the various components to improve their lifetime. However, maintaining all components
seems very expensive and sometimes unnecessary; thus, selective maintenance aims to
determine the optimal number of components and the type of maintenance actions to be
performed on the system to successfully achieve the next operation [4]. Such a system
may contain manufacturing equipment, aircraft, computer systems, power generation
systems, etc. Industrial equipment can operate through the week and be maintained during
the weekends or on breaks, the use of the aircraft can be planned, and its maintenance
activities between flights and military equipment can be applied to its maintenance actions
between missions. In these different cases, maintenance actions should be selected to
achieve the desired level of system reliability. At certain maintenance time points, there
could be some possibility to plan maintenance actions during the break, e.g., minimal repair,
“as bad as old”; different preventive maintenance actions, “a certain level of imperfect
maintenance”; or machine overhaul, “as good as new”. After maintenance action, the
system should operate with the desired reliability level over the next mission until the next
programmed break [5]. Since each of the available maintenance options expends some
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maintenance means (time, budget, availability of repairman, etc.), it is necessary to allocate
resources optimally.

In addition, the selective maintenance strategy has been widely studied in the lit-
erature; most existing research has focused on a model where the system degradation
follows a stochastic process. However, these proposed maintenance selective strategies
are mainly based on theoretical studies and estimated parameters [6]. Furthermore, even
if a theoretical or analytical model is created, it is not easy to apply directly in industrial
practice with multiple operational variables that exist and can impact the validity of the
model over time. To overcome these limitations, artificial intelligence (AI) and machine
learning (ML) methods have recently been implemented in several industrial environments
to address challenges encountered in model-based approaches. One of the applications
of AI is the integration of ML and maintenance, in which companies rely on new types of
maintenance for their machines. Such methodology uses predictive tools to estimate when
maintenance is necessary. It continuously monitors machine conditions over time and
allows for early detection of failures based on historical data. This maintenance strategy is
known as predictive maintenance [7]. Therefore, it is possible to collect enormous amounts
of real data generated from the various system components, and then learn pertinent infor-
mation models from these data to use the unhidden designs for decision making in selecting
the necessary components that need to be maintained and performing an automatic fault
detection to minimize the downtime and related costs and increase the use the components
rate [8]. However, in some classical ML models, feature engineering is a necessary tech-
nique used to manually manipulate data and create new features to find the best model
representing the problem. Since it requires such human experts, artificial neural networks
(ANN) show superior performance compared to other machine learning approaches in the
automatic extraction of more complex data illustrations and dependencies at high levels of
concept, which can also be used in predictive maintenance [9].

This study proposes a new multi-level selective maintenance approach based on a pre-
dictive model of a multi-component system by applying supervised ML tools, unsupervised
ML methods and metaheuristic optimization methods. Our methodology aims to establish
an efficient selective maintenance policy exploiting historical maintenance data. Firstly, a
clustering algorithm is used to identify similar components having the same degradation
behavior and then to determine the actual age for each component. Therefore, the ANN
regression model was exploited to build the actual behavior model capable of predicting
the real age of the component system based on the operational and real-world conditions
such as number and type of maintenance actions and mean time between failures, etc. The
predicted component age is further used in the proposed optimization model to create
an optimal maintenance plan. Several intermediate maintenance strategies ki (ki = {1, 2,
. . . Ki}) between minimal repair—As Bad As Old (ABAO)—and perfect maintenance—As
Good As New (AGAN)—can be applied for each component i. Thus, each maintenance
policy has an age improvement value, a known maintenance cost and a duration. The
resolution method adopted is based on the EDA approach (Extended Deluge Algorithm).

The rest of the paper is structured as follows. In Section 2, we present a literature
review on machine learning methods and mathematical models used for predictive main-
tenance. Problem statements and the optimization model are present in Section 3 which
comprises details and notations used in this paper. A description of the proposed ap-
proach is provided in Section 4. An illustrative numerical example and results are given in
Section 5. In Section 6, we summarize this work in the conclusion and we propose some
future axis of research and perspectives.

2. Literature Review

The main bodies of literature related to our study are selective maintenance (SM) and
predictive maintenance (PdM). In the literature, the SM problem for multi-component
systems was introduced by Rice et al. [10]. The authors studied a serial–parallel system
with identical components, the only maintenance strategy available is a replacement and
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the age of each piece of equipment is exponentially distributed. In addition, to solve the
SM problem, the system degradation process is modeled stochastically following an expo-
nential or Weibull distribution which is nearer to reality. Cassady et al. [11] supposed that
system component life follows probability Weibull distributions and the decision making
is given three maintenance types on failed components: minimal repair, replacement of
failed components, and preventive maintenance. Otherwise, in many practical industrial
conditions, the system health status and the lifetime distribution parameters of the com-
ponents after the execution of such missions are uncertain [12,13] and the resources (such
as the time allotted to the break and budget) required to achieve maintenance actions
are limited. So, the selective maintenance models have been used to increase the system
performance and reduce life-cycle cost. Since most of the above works focused on binary
systems, Chen et al. [14,15] proposed a new optimization approach to solve the SM prob-
lem for a multi-state serial–parallel system. The components as well as the system are
considered multi-state, which is more realistic by considering the assumption of binary
components. The objective is to minimize the total cost of maintenance by transiting from
one state to another for each component and the system. Other SM studies proposed several
maintenance options that can be performed to restore the component between AGAN and
ABAO is known as imperfect maintenance. These approaches are essentially based on age-
reduction models that combine an age-reduction approach with hazard adjustment [16,17].
In this work, the authors developed an age reduction model with an imperfect maintenance
action for selective maintenance. They proposed that the age reduction factor depends
on the maintenance cost to reflect whether a component is comparatively young or old.
So, the component effective age depends on this characteristic constant which helps to
establish a relationship between the age reduction factor and component effective age and
maintenance cost.

We can notice that all the above-mentioned works propose a model-based approach,
with the maintenance model based on theoretical parameters. More recently, with the
emergence of new tools such as computer science and the Things Industrial Internet, the
maintenance strategies adopted in industrial fields are evolving towards a new PdM policy
and condition-based maintenance [7,18,19]. The concept of PdM is to predict the system’s
future state early enough based on its actual conditions. Several PdM approaches have
been developed in the different production sectors in recent years. Han et al. [20] proposed
a new approach for predictive health management of manufacturing systems based on
the component’s function. The concept of the predictive strategy involves, as a first step,
determining the degradation instrument, functional dependence and remaining useful
life (RUL) for the machine system. Then, an operation reliability-focused RUL prediction
technique for production systems is established based on the functional dependency of the
components. The selected maintenance strategy is based on dynamic RUL prediction, and
the functional importance is performed to order the predictive maintenance of component
sets. The proposed approach can guarantee the manufacturing system’s ability to complete
production operations with high-quality products as well as minimize the maintenance cost
in the manufacturing cycle. Thus, the traditional maintenance policy and RUL prediction
of manufacturing systems are restricted to the manufacturing components’ performance
dependence. In another way, based on the age prediction model that takes into account
the dependence of components for product quality necessities, a predictive maintenance
approach with the functional importance of components is proposed.

In addition, there are two key models of PdM—data-driven and model-based
approaches—and the predicted maintenance structure involves two parts: system age
prediction and maintenance plan determination. Several approaches from the research on
the topic of selective maintenance strategy for multi-component systems have been studied.
A set of operational constraints in selective maintenance optimization is considered, taking
into account system and maintenance characteristics and mission profile. Based on these
criteria, a general procedure for selective maintenance optimization is developed [4]. The
data-based approach shows superior performance compared to the model-based method
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since the latter requires prior information on the system degradation mechanism; otherwise,
the data-based model uses real data to predict the age of the system without knowing the
environment of the system degradation process [21].

Generally, a data-driven approach requires several processing methods to extract
features from the collected data and to build the best model; such types of requirements
involve manual data processing and analysis [22]. Data-driven approaches have the
capability to autonomously acquire features that would otherwise demand considerable
expertise, time, and experience. Li et al. [23] adopted an advanced fusion technique based
on deep random forests to optimize the fault diagnosis performance for gearboxes. This
enhancement was achieved by utilizing signals from both acoustic and vibration sensors.
He et al. [24] suggested an innovative approach involving a modified deep auto-encoder
driven by multi-source parameters. This method was applied to analyze performance
degradation parameters from simulation data of aero-engines at the system level and
experimental run-to-failure bearing datasets at the component level. Chen et al. [25]
introduced an innovative maintenance policy, utilizing a data-driven PdM approach. The
decision making for performing maintenance for joint optimization of production and
predictive maintenance is determined by introducing a hybrid deep learning technique
based on a combination of a long short-term memory (LSTM) and convolutional neural
network (CNN) to improve the prediction accuracy of the remaining useful life [26], and
by combining the (LSTM) and Markov decision process to provide specific maintenance
strategies in different degradation stages of the system [27]. Zonta et al. [28] proposed
a model aimed at predictively optimizing maintenance and production schedules using
available data. This model generates crucial information empowering decision-makers to
minimize production costs.

Different ML techniques have been used by different researchers for building predic-
tive maintenance models from maintenance data. Since the relationship between features
is not linear, the techniques used were also nonlinear. The ANN and SVR (Support Vector
Machine) are those that have been the most used. However, deep learning approaches have
provided an interesting opportunity to develop advanced prediction methods for main-
tenance data [29]. These models can automatically learn features and extract information
despite high levels of abstraction in system data. Recently, artificial neural networks have
usually become used in prediction system age and machine failure detection [30,31].

3. Problem Formulation

This section presents a description of the considered problem and the used notations.

Problem Description

The problem studied in this work concerns the multi-series parallel system with
n independent components (i = {1, 2, . . . , n}), which is required to perform successive
missions alternating with intermission breaks devoted to carrying out selective maintenance
actions. The overall aim consists of selecting the best maintenance strategy (also called
level) ki (ki ∈ {1, 2, . . . , Ki}) to perform on component i (i = 1, . . . , n) according to
the prediction model, while minimizing the total maintenance cost and maintaining a
minimum system reliability. Each component i has a set of maintenance strategy ki, ranging
from doing nothing (ki = 1) to perfect repair (AGAN with ki = Ki), in which each ki is
associated with a defined cost. Obviously, the level of component replacement maintenance
(ki = Ki) is the most expensive of the other levels.

Furthermore, the system state components can degrade due to a number of factors,
either functional or environmental, or both, which can lead to a complete system failure and
result in its unavailability. As the multi-component system is required to achieve successive
missions under a reliability threshold, the actual degradation coefficients of components
should be predicted at each break according to the real conditions. These predictions will
be used in order to select the best maintenance strategy ki that ensures a desired reliability
level and successfully completes the next mission. Figure 1 illustrates the proposed selective
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maintenance approach. Actually, the component age provided by the manufacturer does
not accurately count the real operational and environmental conditions such as activity
frequency, operating time, wear, etc. The real age of a component can be accurately
established by predicting its degradation factor according to the real conditions. So, firstly,
the proposed approach aims to determine the components real age γ∗

i by computing the age
reduction factor bi using a k-means clustering algorithm, so that the collected data during
the operating time can be represented as a matrix form Xi = [x1, x2, . . . , xc, . . . , xn],
Xi ∈ Rs × n, where xc = [x1

c , x2
c , . . . , xs

c] is an s-dimensional vector of the component c
features. Then, the system data collected during previous missions will be used to train the
regression model. The model is evaluated with a new dataset in order to be used during the
break in building the real system behavior and predicting the actual age components. The
ultimate goal is to determine, at each break, the appropriate maintenance strategy ki for
each component based on their actual predicted age. This aims to establish an economical
maintenance plan that prevents breakdowns and ensures the system’s reliability.
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In addition, the following assumptions are considered to solve the proposed problem:

• Maintenance actions are performed only during the intermission breaks;
• The duration of missions and breaks are assumed known and fixed;
• A minimum threshold of system reliability should be ensured throughout the

operating period.

4. Proposed Methodology
4.1. Estimation of Actual Age and System Reliability Function

As the first step, the proposed methodology aims to determine the actual age by
calculating the age acceleration factor using the K-means algorithm and then calculating
the reliability of the manufacturing system based on a new model that is closely related to
the determined actual age [32,33].

The algorithm of k-means clustering allows us to regroup system maintenance data
into clusters according to certain features such as number of preventive and corrective
maintenance, mean time between failures, etc. Each cluster k is represented by a centroid
denoted by Ok and a set of components {C1, C2, . . . , Cs}. Indeed, to extract similarity
between different components, each element i is associated with a distance between it
and the centroid of the group to which it belongs. Thus, the farthest element from the
centroid of the class it belongs to is the “bad-representative-component”, while the “best-
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representative-component” OM is the average of all clusters calculated by the mean of
all centroids.

So, the component degradation degree can be considered as its deviation from the
“most representative component”. Consider Li is the distance from the “best-representative-
component” to the element i and li is the distance between the best and the bad component.
The degradation coefficient is calculated by using Equation (1).

bi(ki, m) = min(
Li
li

,
li
Li

, ), 0 ≤ bi ≤ 1 (1)

Note that bi = 0 when the component i does not deteriorate, and its actual age is as
provided by the manufacturer. Otherwise, if bi is very close to 1, indicating a maximum
degradation, maintenance of the component is necessary to prevent a system breakdown.

Then, the actual age of the components γ∗
i (m) at the end of mission m is calculated by

Equation (2).
γ∗

i (ki, m) = A∗
i (m)·e−bi(ki ,m) (2)

where the theoretical age A∗
i (m) at the end of mission m can be formulated by Equation (3).

A∗
i (m) = A∗

i − ∑m
j=1 dj (3)

To account for the genuine impact of component age on its failure rate, we present a
novel formula crafted by amalgamating insights from Ben-salem et al. [34] and
Bouslah et al. [35]. The primary goal is to scrutinize system availability, which dimin-
ishes with degradation. To achieve this, the authors model the system’s failure rate as a
function that grows with the component’s age. In our proposed formula, represented by
Equation (4), we define the failure rate of a specific component i as a function of its current
age, denoted as γ∗

i (ki, m)).

λ(γ∗
i (ki, m)) = si1 + si2·e−gi×(γ∗

i (ki ,m))3
(4)

where si1, si2 and gi are system settings depending on the equipment characteristics and
its age degradation. Indeed, for such components that have been maintained recently,
the failure rate is close to si1. Otherwise, when the actual age decreases, the failure rate
becomes higher until it reaches the sum si1 + si2. In addition, the positive parameter gi is
introduced due to significant variations of the maintenance data and the real conditions
that may occur during the period of operation such that the system age degrades when the
gi is important however the system has a low failure rate when the gi is less significant.

Therefore, the system reliability function is considered closely related to the failure rate
and takes into account the degradation of the system lifetime, so that it can be expressed
as follows:

R(γ∗
i (m)) = e

∫ dm
0 λ(γ∗

i (m))dm ∀ m ∈ [0, Dm] (5)

4.2. Predictive Model for Multi-Level Selective Maintenance Using ANN and SVR
4.2.1. The General Concept of the ANN Model

The Artificial Neural Network (ANN) is inspired by the architecture of neurons in the
brain. To simplify the mathematical modeling, an ANN is composed of a single hidden
layer, an input layer and an output layer. Nodes in one layer are linked to nodes in the next
layer through weights. Initially, the weights and biases are randomly generated [36,37].
The ANN model is based on the following equations:

hj,inp = ∑n
i=1 wi,j·xi + binp (6)

hj,out = g
(
hj,inp

)
(7)

yp = ∑m
j=1 hj,out + bhid (8)
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where:

- xi: the ith input node
- h j,out: the output of the jth hidden node
- wi,j: the weight connecting the input node xi to the hidden node j
- g(·): the activation function of the model
- binp: the input layer bias
- bhid: the hidden layer bias
- yp: the model output: the estimated target value.

In a neural network, an activation function (g(·)) is used to choose how the weighted
sum of the input is transformed into an output from nodes in another layer of the network.
The selection of activation function has a big impact on the neural network performance,
and several activation functions may be used in different parts of the model [38,39].

In general, four common functions used in hidden layers are considered as the activa-
tion function for the ANN algorithm:

• Identity function
g(x) = x (9)

• Logistic Sigmoid function

g(x) =
1

1 + e−x (10)

• Rectified linear unit function
g(x) = max(0, x) (11)

• Hyperbolic tangent function

g(x) =
ex − e−x

e−x + e−x (12)

4.2.2. The General Concept of SVR Model

The Support Vector Regression (SVR) model is a Kernel-based nonlinear learning
technique used for regression as well as classification. It consists of defining or creating
hyperplanes to discriminate predictions from training data. SVR approximates predictions
using a function f (·) that has a fixed deviation threshold from the actual targets [40], which
is formulated by Equation (13).

f (x) = w·∅(x) + b (13)

where ∅(·) is the transfer function, x is an input data point and the parameters w and b are
estimated by solving the following optimization problem stated by Cortes and Vapnik [41].

min
(

1
2 ·∥w∥2 + C ∑n

i=1 ψi + ψ∗
i

)
s.t.
yi −∅(xi)− b ≤ ψi + ε
∅(xi) + b − yi ≤ ε + ψ∗

i
ψi, ψ∗

i ≥ 0 i = 1, 2, . . . , n

where ∥w∥2 is the regulation, yi is the ith target, n is the size of the training data, ε is the
deviation threshold of the function f (·), C is the penalty parameter and ψ is the relaxed
error that guarantees the existence of a solution under these constraints.

Note that Equation (13) is useful for solving linear problems, but for nonlinear prob-
lems a transformation to a high-dimensional space is necessary. For this, a Kernel function
is used which maps the original input data to a higher nonlinear feature space. The
Lagrangian form equivalent is given by

f (x) = ∑n
i=1(αi − α∗i )·K

(
xi, xj

)
+ b (14)
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where K
(

xi, xj
)

is the Kernel function and αi, α∗i are the Lagrangian multiplier. Four usual
Kernel functions are generally used which are linear function, polynomial function, Radial
Basis Function (RBF) and Hyperbolic Tangent Function (HTF). In this paper, we will use
SVR with linear Kernel function and SVR with RBF Kernel in which their explicit functions
are defined by Equation (15) and Equation (16), respectively.

K
(
xi, xj

)
= xT

i · xj + c (15)

K
(

xi, xj
)
= exp

∥xi − xj∥
γ

(16)

where c and γ are adjustable parameters.

4.2.3. Hyperparameter and Model Evaluation

The model training process involves selecting the optimal hyperparameters that the
learning algorithm will use to learn the optimal parameters and properly map the input
features (independent variables) to the labels (dependent variables). Hyperparameters are
used to control the process of learning and determine the model parameter values that
a learning algorithm ends up learning. There are several training techniques introduced
into machine learning to find these optimal hyperparameters, and the most widely used
method is random search. Indeed, this technique uses a random combination of parameters
at each iteration to find the best solution for the built model. In addition, it has been
shown theoretically and empirically that a randomized search is computationally efficient,
especially when it comes to ANN models [42]. In fact, hyperparameter values should be
settled before the training of the model begins. Then, a backpropagation algorithm (BP) is
applied to the model in order to find the optimal values of the weights wi,j.

In this study, the hyperparameters considered for the ANN model are the number of
hidden layers, the number of nodes for each layer and the learning rate of the optimization
algorithm used to fit the model. So, defining the network configuration is the first step in
developing the model.

Therefore, the second step is to compile and fit the network to build our model. To
train the model, the compilation applied an optimization algorithm and a loss function to
evaluate the network. As we studied a regression problem, an adaptive optimizer called
Adam updates the network weights iteratively, and a mean squared error loss function
is implemented to calculate the average differences between the actual and predicted
labels [43].

Therefore, in order to evaluate the predictive performances and the accuracy of the
model based on ANN or SVR, certain evaluation indices have been used. These indices are
explained below and are among the most commonly used performance measures with ym,i
as the ith actual value and yp,i as the ith predicted value.

Absolute error (ei): the absolute error is given by the absolute value of the difference
between the measured (actual) value and the predictive value

ei =
∣∣ym,i − yp,i

∣∣ (17)

Mean Absolute Error (MAE): measures the average of absolute errors of predictions
and observations

MAE =
∑n

i=1 ei

n
(18)

Mean Squared Error (MSE): measures the average squared difference between the
observed and predicted values

MSE =

√
∑n

i=1 ei
2

n
(19)
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Mean Absolute Percentage Error (MAPE): a statistical measure to define the accuracy
of a machine learning algorithm on a particular dataset. It can be considered as a loss
function to define the error termed by the model evaluation

MAPE =
1
n ∑n

i=1 ei (20)

4.2.4. Predictive Model on the FMS Data

Recall that the objective of the proposed predictive model is to estimate at each break
the degradation factor of a multi-component manufacturing system on maintenance history
based on ANN and SVR regression models. In this sub-section, the model built in our
experiments is first presented. Then, we will dive into the optimal hyperparameters of the
ANN model. Next, a comparative study is presented between ANN and SVR models based
on the performance indices.

The dataset used in this experimental study is obtained from a Flexible Maintenance
System (FMS), which contains, after processing, the history of maintenance interventions
that are shown in Table 1. Each station of this FMS is composed of more than 264 electrical
and mechanical components where for each component the intervention date is recorded,
as well as the type of maintenance action either corrective (CM) or preventive (PM), and
the failure type that is defined by a code.

Table 1. Example of FMS data.

Time Component_Name Maintenance_Type Code_Error

2019-01-03 06:41:43 CO PM Rkf

2019-02-24 16:33:06 PK CM Ther

2019-03-07 16:05:40 BD PM Chel

. . . . . . . . . . . .

2022-04-04 21:49:32 KZ PM Aron

Therefore, as explained in Section 4.1, after data processing a second operation is
necessary which consists of computing the Mean Time Between Failure (MTBF), Number
of Preventive Maintenance (Nb.PM) and Number of Corrective Maintenance (Nb.CM).
These values are used to determine the component coefficient degradation by using the
k-means clustering algorithm. As the main objective is to build a model able to predict
the component coefficient degradation from their real condition after performing some
operations, these obtained results are fed into the ANN model for forecasting. For this
purpose, this dataset is split into training and evaluation subsets.

The model has been developed in Python with the use of the Keras machine learning
library on top of the open-source machine learning framework called TensorFlow. The data
has been partitioned by an 8020 splitting rule, i.e., 80% of data is used for the training step
while 20% is employed to evaluate the model. Then, the info has been scaled to the interval
of (0, 1), which is understood to assist the neural network in learning underlying patterns,
both more accurately and more efficiently.

To reach the optimal model hyperparameters, we use the random search method
implemented in the Keras tuner library. So, the best configuration of the model found using
the random search method is as follows:

- An input layer of 3 nodes and an activation function Relu (rectified linear unit);
- A first hidden layer of 40 nodes and an activation function Relu;
- A second hidden layer of 20 nodes and an activation function Relu;
- An output layer of one node (regression problem).

In addition, the optimal hyperparameters obtained for the SVR model with linear
Kernel and with RBF Kernel are c = 3, γ = scale and ε = 0.03.
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To assess the model’s effectiveness in predicting the degradation coefficient of compo-
nents post operation, the ‘evaluate’ function is used. This function provides us with both
training and evaluation scores based on MSE, MAE, and MAPE loss functions. The simu-
lation results are presented in Table 2 and Figures 2–4. Table 2 displays the performance
metrics results for the ANN model on the FMS dataset, juxtaposed with other regression
models (Support Vector Regression SVR).

Table 2. Results of performance metrics comparing ANN and SVR models.

Prediction Model MSE MAE MAPE

SVR with linear Kernel 0.19 0.15 0.3

SVR with RBF Kernel 0.17 0.14 0.28

ANN 0.13 0.1 0.23
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Figures 2 and 3 reveal a significant margin between the actual and predicted values,
particularly evident in the SVR with linear kernel model and SVR with RBF Kernel. In
contrast, Figure 4 illustrates that the ANN model’s predicted values are closely aligned
with the true value, demonstrating a smaller error when compared to the SVR models. This
observation is entirely consistent with the results obtained in Table 2, where all accuracy
evaluation indices are in favor of the ANN model. Thus, the results obtained revealed that
the ANN is more suitable for predicting the degradation coefficient than the different SVR
models. Moreover, the constructed model can be used to predict the system’s actual age
based on its maintenance data.
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4.3. Selective Maintenance with Multi-Strategies

Due to machine degradation, the failure rates increase, and the maintenance operation
plays a crucial role in both eliminating the effects of this degradation and improving the
overall system age. As perfect maintenance incurs significant expenses, in this context, we
consider the possibility of implementing multi-level maintenance activities to effectively
reduce both maintenance costs and time. In this context, we posit that maintenance action
proportionally enhances the component’s age compared to its state before the maintenance
activity. The impact of maintenance actions on the component’s age is expressed by the
following equation:

γ∗
i (m) =

{
γ∗

i (m) + ζ(ki) i f ki ∈ {1, 2, . . . , Ki − 1}
A∗

i i f ki = Ki
(21)

where ζ(ki) ≥ 0 is the age improvement value. ζ(ki) = 0 for ki = 1 or before maintenance
operation and ζ(ki) > 0 is the age after maintenance operation with ki > 1.
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4.3.1. Optimization Model

The decision variables are

δki(m) =

{
1 i f the component i is to be maintained at σm(ki > 1)
0 else

φm =

{
1 i f ∑n

i=1 δki ≥ 1, ∀ ki = 2, . . . , Ki

0 else

The total maintenance cost is the sum of the maintenance costs of individual com-
ponents which depends on the selected maintenance strategy ki. Therefore, the selective
maintenance optimization problem can be formulated as follows:

MC(ki, m) = ∑n
i=1

[
(C(ki) + Ct × d(ki))× δki (m)

]
+ Ca × φm (22)

Subject to:
A∗

i (m) = A∗
i − ∑m

j=1 dj∀ i = 1, 2, . . . , n (23)

γ∗
i (ki, m) = A∗

i (m)·e−bi(ki ,m)∀ i = 1, 2, . . . , n, ki = 1, 2, . . . , Ki (24)

σm ≥ ∑n
i=1 δki (m) · d(ki)∀ i = 1, 2, . . . , n ki = 1, 2, . . . , Ki (25)

∑Ki
ki=1 δki (m) = 1∀ i = 1, 2, . . . , n, ki = 1, 2, . . . , Ki (26)

R(γ∗(ki, m + 1)) ≥ R∗ ∀ i = 1, 2, . . . , n, ki = 1, 2, . . . , Ki (27)

φm, δki
∈ {0, 1}∀ i = 1, 2, . . . , n, ki = 1, 2, . . . , Ki (28)

The objective Function (22) aims to minimize the total maintenance cost. Constraint (23)
calculates the remaining useful life of component i after performing mission m. Constraint (24)
calculates the real age γ∗

i (ki, m) of component i at the end of mission m. Constraint (25)
ensures that the total time of all maintenance actions performed does not exceed the limited
intermission break time. Constraint (26) indicates that only one maintenance strategy can
be performed on component i. Constraint (27) defines that the reliability of the multi-
component system R(γ∗(ki, m + 1)) for the mission m + 1 must be at least equal to a
reliability threshold R∗ fixed by the production stakeholders. Constraint (28) defines that
decision variables are binary.

4.3.2. Resolution Method

To solve the problem by determining an optimal maintenance plan, a metaheuristic
algorithm based on the extended deluge algorithm was implemented. The extended great
deluge is a local search metaheuristic that iteratively repeats the replacement of a current
solution S by a new one S∗, until some stopping condition has been satisfied. The new
solution is selected from a neighborhood N(S) [44]. The concept of accepting or rejecting
the candidate solution from the neighborhood is different from other methods. In the
extended great deluge approach, the algorithm accepts every solution whose objective
function is less or equal to the upper limit C, which is monotonically increased during the
search by dC.

5. Numerical Results

This section showcases the application of the proposed approach in a case study
involving a Flexible Manufacturing System (FMS). Recall that the objective is to establish
the optimal maintenance actions at each breakdown using the ANN regression model
to predict the component’s real age and then apply the extended deluge metaheuristic
algorithm. Also, the selective maintenance decision for the FMS study case involves
selecting the optimal number of components to be maintained, while minimizing the total



Appl. Sci. 2024, 14, 313 13 of 20

maintenance cost MC(ki, m) and adhering to a reliability threshold R∗ (see the optimization
model in Section 5.2).

Hence, the FMS components encompass diverse assembly configurations, with some
arranged in series and others in parallel. The proposed methodology, leveraging machine
learning and optimization techniques, is applicable to any system component structure
(multi-series parallel). In contrast, the assessment of system reliability involves computing
the reliability of these components, considering their respective structures. Equation (29)
is utilized for series structures, while Equation (30) is applied for parallel structures. It is
worth noting that the reliability of component i, denoted as Ri(ki, m).

R(ki, m) = R1(ki, m)× R2(ki, m)× . . . . . . . × Rn(ki, m) = ∏n
i=1 Ri(ki, m) (29)

R(ki, m) = 1 − ((1 − R1(ki, m))× (1 − R2(ki, m))× . . . . . . . × (1 − Rn(ki, m))) = 1 − ∏n
i=1(1 − Ri(ki, m)) (30)

5.1. FMS Study Case and Input Data

The Flexible Manufacturing System situated in the Laboratory of Computer Engi-
neering, Production, and Maintenance (LGIPM) serves the dual purpose of research and
teaching. We assume that the specific maintenance periods throughout the year align
with five educational breaks, as illustrated in Figure 5. The selection of the number of
maintenance actions is primarily influenced by the availability of service technicians. As a
result, a multi-level selective maintenance approach is highly recommended for the FMS
during each scheduled downtime.
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Given the extensive array of components in the FMS, encompassing electrical, elec-
tronic, and mechanical elements totaling around 300,000, we have opted to focus on a multi-
series parallel subsystem. This subsystem of the FMS consists of nine components (n = 9),
as shown in Figure 6, and serves as the basis for developing our proposed methodology.
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Figure 6. The FMS structure.

As explained through this paper, we adopt multi-level selective maintenance in which
each level proportionally improves the component’s age ζ(ki) compared to its value before
maintenance activity as well as its reliability. In addition, each level ki is characterized by its
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cost and time duration, as detailed in Table 3. The theoretical age given by the manufacturer
(A∗

i ) for each component is defined in the second column. Note that, for the illustrative
example, we have opted for a choice among five maintenance levels, starting from the
first level (ki = 1), which involves no action, to the final level (ki = 5), which includes the
replacement of the component. At each breakdown, the maintenance plan must ensure
the fulfillment of the subsequent mission with a reliability level exceeding or equal to 90%
(R∗ = 0.9).

Table 3. Parameters of multi-level maintenance for each component.

i A*
i

(t.u)
ki

ζ(ki)
(t.u)

C(ki)
(m.u)

d(ki)
(t.u)

C1 136

1 0 0 0

2 +5 5 2

3 +17 12 3

4 +30 16 5

5 Replacement 22 7

C2 140

1 0 0 0

2 +10 17 4

3 +15 20 5

4 +22 27 7

5 Replacement 36 9

C3 135

1 0 0 0

2 +6 10 5

3 +19 12 8

4 +21 15 10

5 Replacement 18 12

C4 135

1 0 0 0

2 +6 8 5

3 +19 15 8

4 +21 25 10

5 Replacement 34 12

C5 128

1 0 0 0

2 +7 6 1

3 +12 12 3

4 +25 17 6

5 Replacement 26 8

C6 130

1 0 0 0

2 +5 12 2

3 +20 15 4

4 +25 28 6

5 Replacement 35 8
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Table 3. Cont.

i A*
i

(t.u)
ki

ζ(ki)
(t.u)

C(ki)
(m.u)

d(ki)
(t.u)

C7 129

1 0 0 0

2 +10 13 3

3 +15 18 4

4 +20 25 6

5 Replacement 35 8

C8 139

1 0 0 0

2 +3 7 5

3 +15 15 6

4 +30 26 7

5 Replacement 30 10

C9 140

1 0 0 0

2 +10 10 2

3 +36 25 5

4 +41 30 7

5 Replacement 40 9

5.2. Results

By exploiting the ANN model, we predict, firstly, the degradation factor bi(ki, m) at
every breakdown σm (σm = 1, 2, . . . , 7) for each component (i = 1, 2, . . . , 9). Then, based
on experiment results and utilizing Equation (24), we establish the actual age γ∗

i (ki, 1) for
each component. These results are illustrated in Table 4. We observe a slight degradation
in the components at the end of the first mission (bi(ki, 1) ≤ 0.06), and this increases with
subsequent missions.

Table 4. The obtained actual age and degradation factor for each component i at the end mission m.

C1 C2 C3 C4 C5 C6 C7 C8 C9

γ*
i (ki,1) 127 131 126 126 119 121 120 130 131

bi(ki,1) 0.07 0.07 0.07 0.07 0.13 0.06 0.07 0.07 0.06
γ*

i (ki,2) 115 120 115 115 108 110 109 119 120
bi(ki,2) 0.17 0.15 0.16 0.16 0.22 0.15 0.17 0.16 0.15
γ*

i (ki,3) 102 107 102 102 95 97 96 106 107
bi(ki,3) 0.29 0.27 0.28 0.28 0.35 0.28 0.30 0.27 0.26
γ*

i (ki,4) 80 84 79 79 72 74 73 83 84
bi(ki,4) 0.53 0.51 0.54 0.54 0.63 0.55 0.57 0.52 0.50
γ*

i (ki,5) 72 71 66 66 66 81 60 100 71
bi(ki,5) 0.64 0.68 0.72 0.72 0.72 0.46 0.77 0.33 0.67
γ*

i (ki,6) 65 63 58 69 81 83 52 82 63
bi(ki,6) 0.74 0.80 0.84 0.67 0.51 0.43 0.91 0.53 0.79
γ*

i (ki,7) 65 47 32 59 77 87 26 96 47
bi(ki,7) 0.74 0.90 0.95 0.83 0.56 0.39 0.91 0.37 0.92

Note that the results obtained in Table 4 are raw, i.e., without the implementation
of maintenance strategies and optimization model at each break. Indeed, our predictive
model updates these parameters after each maintenance plan adopted during a given break.
The EDA approach on MATLAB 2022 software to address the challenge of proposing a
maintenance plan that minimizes costs under reliability and time constraints by using the
results of ANN-based predictive model generates the solutions presented in Table 5.
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Table 5. The multi-level maintenance plan obtained for the required reliability level (0.9).

σm Maintenance Plan ki MC(ki,m) d(ki) R(γ*(ki,m+1))

σ1 « 111 111 111 » Do nothing
(ki = 1) 0 0 0.9898

σ2 « 111 111 111 » Do nothing
(ki = 1) 0 0 0.9896

σ3 « 111 111 111 » Do nothing
(ki = 1) 0 0 0.9868

σ4 « 211 123 131 »

C1 : k1 = 2
C5 : k5 = 2
C6 : k6 = 3
C8 : k8 = 3

116 13 0.9078

σ5 « 321 213 112 »

C1 : k1 = 3
C2 : k2 = 2
C4 : k4 = 2
C6 : k6 = 3
C9 : k9 = 2

132 12 0.9259

σ6 « 311 233 141 »

C1 : k1 = 3
C4 : k4 = 2
C5 : k5 = 3
C6 : k6 = 3
C8 : k8 = 4

178 13 0.912

σ7 « 521 323 111 »

C1 : k1 = 5
C2 : k2 = 2
C4 : k4 = 3
C5 : k5 = 2
C6 : k6 = 3

203 16 0.9087

As shown in the table, the actual predicted age of the components is quite high after
performing the three first missions (until σ3), so the best maintenance strategy selected
for the nine components during the breaks σ1, σ2 and σ3 is « 111 111 111 », which means
doing nothing for all components (ki = 1, i = 1, . . . , 9). After accomplishing the fourth
mission (σ4), some components are deteriorated and, consequently, the reliability system de-
creases. By minimizing the total maintenance cost under reliability and time constraints, the
best maintenance policy recommended involves implementing strategy 2 on component 1
(k1 = 2), strategy 2 on component 5 (k5 = 2), strategy 3 on component 6 (k6 = 3), strategy 3
on component 8 (k8 = 3), and employing strategy 1 for the remaining components. Fol-
lowing this multi-level maintenance plan, the age of component 1 is increased by 10 t.u
(time units), and component 5 is increased by 7 t.u, component 6 by 20 t.u, component 8 by
15 t.u, while no action is performed on the other components. The optimal policy results
in a total maintenance cost of 116 m.u (monetary units), a total maintenance time of 13 t.u,
and aims to achieve a reliability value equal to 0.9078.

The obtained maintenance plan during the considered operating time shows that
the system reliability decreases during each mission. In order to maintain the system
reliability higher than 0.9, the maintenance action selected at the end of the mission allows
us to increase the component’s actual age as well as the reliability system; this increase is
presented in Figure 7 by an increasing line. Otherwise, the system reliability follows an
exponential variation during the operating time. As shown in Figure 7, the maintenance
action suggested by the proposed approach during the intermission break ensures that the
system’s reliability respects the set threshold until the end of the mission.
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6. Conclusions

This paper proposed a predictive model for selective maintenance decision making
using machine learning models and mathematical programming. After conducting tests
and comparing various machine learning methods, we observed that the ANN, SVR with
linear kernel function and SVR with RBF Kernel methods stand out for their reliability in
terms of prediction accuracy for selective maintenance. In this paper, these three machine
learning models were compared on the provided dataset, and the ANN yielded the highest
prediction score. Moreover, at the end of each mission, the constructed model predicts the
real age of each component according to the system data collected during the previous
operations. Then, multi-level maintenance actions can be performed in order to improve
the actual age system and avoid equipment failure, while minimizing the total maintenance
cost under time and reliability constraints. In this study, we considered that the selective
maintenance strategies depend on the actual conditions of each component, i.e., a low
actual age due to degradation phenomena and operating conditions requires a costlier
maintenance strategy that strongly improves the age and compensates the degradation
effect. To illustrate the robustness of the proposed strategy, a historical maintenance
data of the FMS real study was explored to determine a selective maintenance plan. The
obtained results show that the proposed model can be used in several industrial fields
and help decision-makers determine the best maintenance policy to perform during each
intermission break which guarantees the completion of the next operation with a high
system reliability.

For the prediction model, future work can focus on a more complex configuration
system taking into account the factors of time and environmental conditions (temperature,
pressure, humidity, etc.) and implement more ideas using artificial neural networks and
machine learning techniques to estimate the probability of the system failure. Subsequently,
integrate this probability assessment into the optimization problem and maintenance
planning. Also, it is an interesting perspective to integrate other learning methods such as
CMFIRL (completely mode-free integral reinforcement learning) [45] and policy iteration
(PI) algorithm, by using the technique of neural network linear differential inclusion
(LDI) [46] with our joint production and maintenance problem.
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Notations

The following notations:
MC(ki, m) Total maintenance cost during the break between missions m and m + 1
ki Maintenance level (or strategy) for component i with ki ∈ {1, 2, . . . , Ki}
C(ki) Cost of the maintenance level ki
d(ki) Duration of the maintenance level ki of component i
Ct Maintenance cost per time unit
Ca Cost of assembly\disassembly incurred if at least one component is maintained
dm Duration of mission m
σm Break duration between mission m and m + 1
bi(ki, m) Degradation factor of component i at the end of mission m
A∗

i Theoretical component’s age i given by the manufacturer
A∗

i (m) Theoretical remaining useful life of component i after performing mission m
γ∗

i (ki, m) Actual age of component i at the end of the mission
R(γ∗) System reliability related to actual ages γ∗ of multi-components.
R∗ Minimal required reliability
M Total number of missions
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