Machine Learning Approach to Predict the Illite Weight Percent of Unconventional Reservoirs from Well-Log Data: An Example from Montney Formation, NE British Columbia, Canada
Abstract
:1. Introduction
2. Geological Background
3. ANN Conception and Benefits
4. Methodology
4.1. Workflow for Network Design
4.2. Data Acquisition
4.3. Statistical Processing
4.4. Input Data Selection and Division
4.5. Data Scaling
4.6. ANN Architecture
5. Results and Discussion
5.1. Statistical Analysis
5.2. Model Training and Testing
6. Conclusions
- (1)
- PCA is an excellent method for reducing the number of input parameters since it focuses on the parameters that mainly influence the output and provides a high level of matching predictivity.
- (2)
- The utilization of artificial intelligence methods, specifically FF-ANNs, in calculating illite wt.%, along with integrating petrophysical log data, proved highly advantageous. This approach yielded results that exhibited a remarkable level of accuracy, as seen by the excellent match rate observed during both the training and testing stages, with an R2 value of 92%. This strategy conferred a notable advantage.
- (3)
- The tests conducted on a data set kept hidden from the testers for three wells demonstrate that the developed model had an exceptional capacity to forecast, giving R2 = 88.5% for illite wt.% in test wells. These findings demonstrate the exceptional efficacy of the designed model.
- (4)
- The findings indicate that ANNs have the potential to be a practical, speedy, and low-cost method for calculating the illite weight percentage in the absence of core samples.
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wüst, R.A.; Nassichuk, B.R.; Bustin, R.M. 9 Porosity Characterization of Various Organic-Rich Shales from the Western Canadian Sedimentary Basin, Alberta and British Columbia, Canadal; AAPG: Tulsa, OK, USA, 2013. [Google Scholar]
- Alexander, T.; Baihly, J.; Boyer, C.; Clark, B.; Waters, G.; Jochen, V.; Le Calvez, J.; Lewis, R.; Miller, C.K.; Thaeler, J. Shale gas revolution. Oilfield Rev. 2011, 23, 40–55. [Google Scholar]
- Luffel, D.L.; Herrington, K.L.; Harrison, C.W. Fibrous illite controls productivity in frontier gas sandstones, Moxa Arch, Wyoming. SPE Form. Eval. 1992, 7, 345–351. [Google Scholar] [CrossRef]
- Kennedy, R.L.; Knecht, W.N.; Georgi, D.T. Comparisons and contrasts of shale gas and tight gas developments, North American experience and trends. In Proceedings of the SPE Kingdom of Saudi Arabia Annual Technical Symposium and Exhibition, Dammam, Saudi Arabia, 24–27 April 2017; p. SPE–160855-MS. [Google Scholar]
- Grim, R.E.; Bray, R.H.; Bradley, W.F. The mica in argillaceous sediments. Am. Mineral. J. Earth Planet. Mater. 1937, 22, 813–829. [Google Scholar]
- Srodon, J. Illite, In Micas. Rev. Mineral. 1984, 13, 495–539. [Google Scholar]
- Jackson, J.A. Glossary of Geology; American Geological Institute: Alexandria, Egypt, 1997; 769p. [Google Scholar]
- Brindley, G.; Brown, G. Quantitative X-ray mineral analysis of clays. Cryst. Struct. Clay Miner. Their X-ray Identif. 1980, 5, 411–438. [Google Scholar]
- Newman, A.C. Chemistry of Clays and Clay Minerals; Springer: Berlin/Heidelberg, Germany, 1987. [Google Scholar]
- Jeans, C.; Moore, D.M.; Reynolds, R.C., Jr. X-ray Diffraction and the Identification and Analysis of Clay Minerals. Geol. Mag. 1998, 135, 819–842. [Google Scholar] [CrossRef]
- Jeans, C.; Eslinger, E.; Pevear, D. Clay Minerals for Petroleum Geologists and Engineers; SEPM Short Course Notes no. 22; Society of Economic Paleontologists and Mineralogists: Tulsa, OK, USA, 1985; ISBN 0 918985 000. [Google Scholar]
- Hower, J. Shale Diagenesis. Clays and the Resource Geologist; Cambridge University Press: Cambridge, UK, 1981. [Google Scholar]
- Nadeau, P. The physical dimensions of fundamental clay particles. Clay Miner. 1985, 20, 499–514. [Google Scholar] [CrossRef]
- Pevear, D.R. Illite and hydrocarbon exploration. Proc. Natl. Acad. Sci. USA 1999, 96, 3440–3446. [Google Scholar] [CrossRef]
- Yin, Q.; Yang, J.; Hou, X.; Tyagi, M.; Zhou, X.; Cao, B.; Sun, T.; Li, L.; Xu, D. Drilling performance improvement in offshore batch wells based on rig state classification using machine learning. J. Pet. Sci. Eng. 2020, 192, 107306. [Google Scholar] [CrossRef]
- Mustafa, A.; Tariq, Z.; Mahmoud, M.; Radwan, A.E.; Abdulraheem, A.; Abouelresh, M.O. Data-driven machine learning approach to predict mineralogy of organic-rich shales: An example from Qusaiba Shale, Rub’al Khali Basin, Saudi Arabia. Mar. Pet. Geol. 2022, 137, 105495. [Google Scholar] [CrossRef]
- Kim, D.; Choi, J.; Kim, D.; Byun, J. Predicting mineralogy by integrating core and well log data using a deep neural network. J. Pet. Sci. Eng. 2020, 195, 107838. [Google Scholar] [CrossRef]
- Park, S.Y.; Son, B.-K.; Choi, J.; Jin, H.; Lee, K. Application of machine learning to quantification of mineral composition on gas hydrate-bearing sediments, Ulleung Basin, Korea. J. Pet. Sci. Eng. 2022, 209, 109840. [Google Scholar] [CrossRef]
- Huang, Z.; Williamson, M.A. Artificial neural network modelling as an aid to source rock characterization. Mar. Pet. Geol. 1996, 13, 277–290. [Google Scholar] [CrossRef]
- Haykin, S. Neural Networks: A Comprehensive Foundation; Prentice-Hall, Inc.: Hoboken, NJ, USA, 2007. [Google Scholar]
- Cranganu, C.; Luchian, H.; Breaban, M.E. Artificial Intelligent Approaches in Petroleum Geosciences; Springer: Berlin/Heidelberg, Germany, 2015. [Google Scholar]
- Mohaghegh, S. Virtual-intelligence applications in petroleum engineering: Part 1—Artificial neural networks. J. Pet. Technol. 2000, 52, 64–73. [Google Scholar] [CrossRef]
- Vaisblat, N.; Harris, N.B.; Bish, D.L. Origin and Evolution of Clay Mineralogy in the Montney Formation; University of Calgary: Calgary, AB, Canada, 2019. [Google Scholar]
- Vaisblat, N.; Harris, N.; DeBhur, C.; Euzen, T.; Gasparrini, M.; Crombez, V.; Rohais, S.; Krause, F.; Ayranci, K. Diagenetic model for the deep Montney Formation, northeastern British Columbia. Geosci. BC Rep. 2017, 1, 37–48. [Google Scholar]
- Mahmoud, A.A.A.; Elkatatny, S.; Mahmoud, M.; Abouelresh, M.; Abdulraheem, A.; Ali, A. Determination of the total organic carbon (TOC) based on conventional well logs using artificial neural network. Int. J. Coal Geol. 2017, 179, 72–80. [Google Scholar] [CrossRef]
- Ouadfeul, S.-A.; Doghmane, M.Z.; Aliouane, L. Wellbore Stability in Shale Gas Reservoirs with a Case Study from the Barnett Shale. In Unconventional Hydrocarbon Resources: Prediction and Modeling Using Artificial Intelligence Approaches; Wiley Online Library: Hoboken, NJ, USA, 2023; p. 21. [Google Scholar]
- Luger, G.F. Artificial Intelligence: Structures and Strategies for Complex Problem Solving; Pearson Education: London, UK, 2005. [Google Scholar]
- Hoskin, T. Parametric and Nonparametric: Demystifying the Terms; InMayo Clinic: Rochester, MN, USA, 2012; pp. 1–5. [Google Scholar]
- Hush, D.R.; Horne, B.G. Progress in supervised neural networks. IEEE Signal Process. Mag. 1993, 10, 8–39. [Google Scholar] [CrossRef]
- Bowden, G.J.; Maier, H.R.; Dandy, G.C. Optimal division of data for neural network models in water resources applications. Water Resour. Res. 2002, 38, 2-1–2-11. [Google Scholar] [CrossRef]
- Shahin, M.A.; Maier, H.R.; Jaksa, M.B. Predicting settlement of shallow foundations using neural networks. J. Geotech. Geoenviron. Eng. 2002, 128, 785–793. [Google Scholar] [CrossRef]
- Goda, H.M.; Maier, H.; Behrenbruch, P. The development of an optimal artificial neural network model for estimating initial water saturation-Australian reservoir. In Proceedings of the SPE Asia Pacific Oil and Gas Conference and Exhibition, Jakarta, Indonesia, 5–7 April 2005. [Google Scholar]
- Al-Bulushi, N. Predicting Reservoir Properties Using Artificial Neural Networks (ANNs); Imperial College London: London, UK, 2008. [Google Scholar]
- Guillod, T.; Papamanolis, P.; Kolar, J.W. Artificial neural network (ANN) based fast and accurate inductor modeling and design. IEEE Open J. Power Electron. 2020, 1, 284–299. [Google Scholar] [CrossRef]
- Fertl, W.H. Gamma ray spectral data assists in complex formation evaluation. Log Anal. 1979, 20. [Google Scholar]
- Da Fonseca, J.; Gnoatto, A.; Grasselli, M. A flexible matrix Libor model with smiles. J. Econ. Dyn. Control 2013, 37, 774–793. [Google Scholar] [CrossRef]
- Landau, S. A Handbook of Statistical Analyses Using SPSS; CRC: Boca Raton, FL, USA, 2004. [Google Scholar]
- Fausett, L.; Elwasif, W. Predicting performance from test scores using backpropagation and counterpropagation. In Proceedings of the 1994 IEEE International Conference on Neural Networks (ICNN’94), Orlando, FL, USA, 28 June–2 July 1994; pp. 3398–3402. [Google Scholar]
- Masood, I.; Hassan, A. Issues in development of artificial neural network-based control chart pattern recognition schemes. Eur. J. Sci. Res. 2010, 39, 336–355. [Google Scholar]
- Ataie-Ashtiani, B.; Hassanizadeh, S.M.; Oung, O.; Weststrate, F.; Bezuijen, A. Numerical modelling of two-phase flow in a geocentrifuge. Environ. Model. Softw. 2003, 18, 231–241. [Google Scholar] [CrossRef]
- Lachtermacher, G.; Fuller, J.D. Back propagation in time-series forecasting. J. Forecast. 1995, 14, 381–393. [Google Scholar] [CrossRef]
- Assidjo, E.; Yao, B.; Kisselmina, K.; Amané, D. Modeling of an industrial drying process by artificial neural networks. Braz. J. Chem. Eng. 2008, 25, 515–522. [Google Scholar] [CrossRef]
- Han, J.; Kamber, M.; Pei, J. Data mining concepts and techniques third edition. Morgan Kaufmann Ser. Data Manag. Syst. 2011, 5, 83–124. [Google Scholar]
- Rumelhart, D.; Hinton, G.; Williams, R. Learning Internal Representations by Error Propagation, Parallel Distributed Processing; Foundations; MIT Press: Cambridge, MA, USA, 1986; Volume 1. [Google Scholar]
- Jiang, Y.; Zur, R.M.; Pesce, L.L.; Drukker, K. A study of the effect of noise injection on the training of artificial neural networks. In Proceedings of the 2009 International Joint Conference on Neural Networks, Atlanta, GA, USA, 14–19 June 2009; pp. 1428–1432. [Google Scholar]
- Okut, H. Bayesian regularized neural networks for small n big p data. Artif. Neural Netw. Models Appl. 2016, 28–48. [Google Scholar]
- Hagan, M.T.; Demuth, H.B.; Beale, M. Neural Network Design; PWS Publishing Co.: Boston, MA, USA, 1997. [Google Scholar]
- Barham, A.; Ismail, M.S.; Hermana, M.; Padmanabhan, E.; Baashar, Y.; Sabir, O. Predicting the maturity and organic richness using artificial neural networks (ANNs): A case study of Montney Formation, NE British Columbia, Canada. Alex. Eng. J. 2021, 60, 3253–3264. [Google Scholar] [CrossRef]
- Diamantaras, K.I.; Kung, S.Y. Principal Component Neural Networks: Theory and Applications; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 1996. [Google Scholar]
Depth (m) | B.D. (g/cm3) | G.R. (API) | Resist. (Ohm.m) | DT-C (µs/m) | DT-SH (µs/m) | SGR (API) | U (ppm) | Th (ppm) | K (wt.%) | CGR (API) | Illite (wt.%) | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Mean | 2360.93 | 2.604 | 132.4 | 132.87 | 232.120 | 351.11 | 134.41 | 7.46 | 8.26 | 2.75 | 74.55 | 12.62 |
SD | 369.83 | 0.05 | 34.90 | 118.36 | 45.16 | 57.31 | 28.72 | 3.64 | 2.25 | 0.73 | 21.95 | 5.35 |
Min | 1827.3 | 2.46 | 63.04 | 12.78 | 173.66 | 196.73 | 70.86 | 1.83 | 2.67 | 0.87 | 25.88 | 1.00 |
Max | 3085.0 | 2.74 | 309.72 | 498.39 | 367.83 | 485.87 | 271.22 | 23.53 | 14.01 | 4.36 | 145.00 | 28.00 |
Count | 206 | 206 | 206 | 206 | 206 | 206 | 206 | 206 | 206 | 206 | 206 | 206 |
Correlation Matrix | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Depth | B.D. | G.R. | Resist. | DT-C | DT-SH | SGR | U | Th | K | CGR | Illite | |
Depth | 1 | |||||||||||
B.D. | −0.12 | 1 | ||||||||||
GR | 0.12 ** | −0.42 ** | 1 | |||||||||
Resist. | 0.08 | 0.01 | 0.31 ** | 1 | ||||||||
DT-C | −0.45 ** | −0.11 | 0.04 | −0.22 ** | 1 | |||||||
DT-SH | 0.19 ** | −0.27 ** | 0.03 | −0.18 ** | −0.59 ** | 1 | ||||||
SGR | −0.03 | −0.37 ** | 0.71 ** | 0.19 ** | 0.02 | 0.16 * | 1 | |||||
U | 0.24 ** | −0.41 ** | 0.77 ** | 0.22 ** | −0.03 | 0.16 * | 0.79 ** | 1 | ||||
Th | 0.05 | −0.07 | 0.09 | 0.10 | 0.11 | −0.1 | 0.17 * | 0.06 | 1 | |||
K | 0.25 ** | −0.11 | 0.08 | −0.02 | 0.001 | −0.06 | 0.16 * | 0.08 | 0.87 ** | 1 | ||
CGR | 0.26 ** | −0.09 | 0.11 | 0.04 | 0.07 | −0.12 | 0.28 ** | 0.20 ** | 0.87 ** | 0.91 ** | 1 | |
Illite | −0.16 * | 0.26 ** | −0.26 ** | −0.13 | −0.03 | 0.016 | −0.29 ** | −0.49 ** | −0.07 | −0.10 | −0.21 ** | 1 |
Rotated Component Matrix a | |||
---|---|---|---|
Component | |||
1 | 2 | 3 | |
Depth | 0.089 | 0.422 | 0.407 |
BD. | −0.662 | −0.056 | 0.294 |
GR | 0.837 | 0.002 | 0.272 |
Resist. | 0.147 | −0.056 | 0.87 |
SGR | 0.857 | 0.092 | 0.045 |
U | 0.9 | 0.07 | 0.208 |
K | 0.057 | 0.955 | −0.057 |
CGR | 0.149 | 0.947 | 0.012 |
Illite | −0.507 | −0.16 | −0.124 |
Network | Neurons in Hidden Layer 1 | Neurons in Hidden Layer 2 | Training R2 | Testing R2 |
---|---|---|---|---|
1 | 10 | 5 | 0.85 | 0.77 |
2 | 15 | 5 | 0.81 | 0.86 |
3 | 25 | 10 | 0.86 | 0.78 |
4 | 25 | 15 | 0.79 | 0.63 |
5 | 30 | 15 | 0.92 | 0.885 |
6 | 35 | 20 | 0.83 | 0.76 |
7 | 45 | 25 | 0.84 | 0.67 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Barham, A.; Zainal Abidin, N.S. Machine Learning Approach to Predict the Illite Weight Percent of Unconventional Reservoirs from Well-Log Data: An Example from Montney Formation, NE British Columbia, Canada. Appl. Sci. 2024, 14, 318. https://doi.org/10.3390/app14010318
Barham A, Zainal Abidin NS. Machine Learning Approach to Predict the Illite Weight Percent of Unconventional Reservoirs from Well-Log Data: An Example from Montney Formation, NE British Columbia, Canada. Applied Sciences. 2024; 14(1):318. https://doi.org/10.3390/app14010318
Chicago/Turabian StyleBarham, Azzam, and Nor Syazwani Zainal Abidin. 2024. "Machine Learning Approach to Predict the Illite Weight Percent of Unconventional Reservoirs from Well-Log Data: An Example from Montney Formation, NE British Columbia, Canada" Applied Sciences 14, no. 1: 318. https://doi.org/10.3390/app14010318
APA StyleBarham, A., & Zainal Abidin, N. S. (2024). Machine Learning Approach to Predict the Illite Weight Percent of Unconventional Reservoirs from Well-Log Data: An Example from Montney Formation, NE British Columbia, Canada. Applied Sciences, 14(1), 318. https://doi.org/10.3390/app14010318