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Abstract: The topology optimization of dynamic stress constraints is highly nonlinear and singular
and has been little studied. Dynamic stress based on progressive structural optimization is only
available by applying the modal iteration method, but due to the nonlinear limitations of the modal
superposition method, there is an urgent need to develop a progressive structural optimization
method based on dynamic stress sensitivity under direct integration. This method is for the dynamic
stresses under non-periodic loading with iterative cycle updating variations. This article proposes a
topological optimization method of continuum structures with stress constraints under an aperiodic
load based on the Bi-directional Evolutionary Structural Optimization Method (BESO). First, the
P-norm condensation function was used to obtain the global stress to approximate maximum stress.
By introducing the Lagrange multiplier, the design goal was to increase the P-norm stress on the
basis of the smallest volume. After that, based on the dynamic finite element theory, the sensitivity
of each cell formula of the objective function and the constraint conditions of the design variables
were strictly derived. Then, the performance evaluation index was put forward based on volume and
stress, and the convergence criterion based on the performance evaluation index was defined. This
method solves the topology optimization problem of stress constraints under a non-periodic load
and the topology optimization problem of stress constraints under a periodic load, such as a simple
harmonic load.

Keywords: dynamic stress constraint; bi-directional evolutionary; topological optimization structural
optimization method; Lagrange multiplier; finite element analysis

1. Introduction

With the increasing demand for lightweight structure and performance improvement
in automotive, marine, aerospace, and other fields, structural optimization technology
has been widely used in the past two decades. Topology optimization can lead to better
performance designs in the conceptual design stage; so, many scholars and designers use
this technique widely. In the traditional topology optimization field, the research mainly
focuses on the minimization of structural flexibility [1–3]. Structural stiffness is increased
by optimizing the material distribution. The topology optimization design technology
based on structural flexibility minimization is mature, but topology optimization based on
dynamic stress correlation is still in the development stage. At the same time, the stress of
the structure under a static load and the stress under a dynamic load are very different, and
the important criteria for measuring the strength failure of the structure are also different.
Therefore, stress-constrained topology optimization is a hot spot in current research, but
most of the current research focuses on static stress, and this paper mainly focuses on
topology optimization under dynamic stress.

Compared with the minimum flexibility design, there are three challenging prob-
lems in the stress-constrained topological optimization problem [4], namely the singular

Appl. Sci. 2024, 14, 322. https://doi.org/10.3390/app14010322 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app14010322
https://doi.org/10.3390/app14010322
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://doi.org/10.3390/app14010322
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app14010322?type=check_update&version=3


Appl. Sci. 2024, 14, 322 2 of 17

phenomenon of stress, the localization of the stress constraint, and the highly nonlinear
nature of stress behavior. Firstly, the stress singular phenomenon mainly appears in the
method based on variable density, because the stress value of the low-density element
always behaves as a high stress value; so, it cannot be completely eliminated by the opti-
mization algorithm. Rozvany [5] proposed a smooth boundary function, namely the K-S
(Kresselmeier Steinhauser) function. The smooth boundary function is used to relax the
stress constraint to solve the stress singular value problem. Cheng Gengdong et al. [6]
proposed an ε-relaxation method that can effectively search the global optimal solution
in the feasible design domain. Matteo et al. [7,8] proposed a stress relaxation method
based on the ε-relaxation method to deal with the stress singular value problem. Duysinx
et al. [9] applied the ε-relaxation method to the topology optimization problem with local
stress constraints.

Secondly, in the process of topology optimization, the position of maximum stress may
shift due to the change in structural configuration in the different iterations. To constrain
the maximum stress of the structure, the stress of each element must be constrained, and
the optimization process needs to calculate the sensitivity of each constraint with respect
to the density of the element, which causes a huge amount of calculation. To solve this
problem, we can use a condensation function method, such as the P-norm method and
the K-S function method. This method condenses multiple local stress constraints into a
global stress function and only needs to constrain the global stress function to constrain
the stress of the whole structure. Yang [10,11] used the K-S condensation function method
to deal with the topology optimization problem of local stress constraints, condensing
multiple local stress constraints into an overall stress function; then, it was only necessary
to constrain this overall stress function to constrain the stress of the entire structure. This
algorithm solves the topology optimization to minimize the volume of the structure under
stress constraints. Rong [12] established a topology optimization method for a continuum
structure with stress gradient constraints, solved the problem of stress concentration, and
proposed a topology optimization algorithm through P-norm and Lagrange multipliers.
Fan Zhao [13] and others proposed the following. Using the BESO method [14,15], they
adopted the global stress measure based on P-norm to deal with the flexibility minimization
problem under volume and stress constraints.

Thirdly, the highly nonlinear stress behavior and the stress value of any point on
the structure are closely related to the topological configuration of the whole structure,
especially in some areas with high stress concentration. The high stress distribution is
extremely sensitive to subtle topological changes. The addition and deletion of elements
will lead to strong stress constraint discontinuity, making the calculation convergence
more difficult. There are intermediate density elements that appear in the topological
structure, particularly in the framework of the variable density method; so, it is difficult to
accurately calculate the stress of the boundary elements. To solve this problem, the current
common solution is to use cell density filtering [16] to smooth the density of each cell and
its surrounding cells, so as to reduce the instability of the optimization process.

When the structure is subjected to transient dynamic load or periodic dynamic load,
the stress of the structure changes with time. Therefore, there is the problem of slow
convergence, in addition to the above three problems. Due to these problems, there are few
studies on the dynamic stress constraint under dynamic response [17]. Long [18] and others
studied the topology optimization of stress constraints under simple harmonic loads based
on the variable density method and the P-norm stress aggregation function. Pingyao [19]
and others converted the dynamic stress response of the manipulator into a static load based
on the equivalent static load method and combined this with the variable density method
to carry out topological optimization. Lei Zhao [20,21] and others proposed the following.
Based on the BESO method, they proposed a topological optimization method using a
continuum structure constrained by a dynamic stress response under a random load and
used a P-norm aggregation function instead of a dynamic stress response constraint. Lei
Zhao [22] and others used the constraint limitation variational method to obtain a stable and
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convergent topology and derived the sensitivity of the dynamic fatigue constraint based
on design variables to form an approximate function of the dynamic fatigue constraint
function and objective function, thus realizing topology optimization.

The rest of the article is arranged as follows. The second section expounds the stress-
constrained topology optimization of continuum structures under an aperiodic load. The
third section derives the expression of element sensitivity based on the Newmark method.
The fourth section defines the performance index by considering the changes in structural
stress and overall volume, and it improves the convergence criterion. The fifth section
gives several typical numerical examples to verify the effectiveness of this method. The
sixth part summarizes the main conclusions of this article.

2. Topological Optimization Problem with Stress Constraints under Aperiodic Load
2.1. Transient Dynamics Analysis

In the actual engineering problems, the load form borne by the structure is often
dynamic. The general motion control equation expressed in terms of time is as follows:

M
..
u(t) + C

.
u(t) + Ku(t) = F(t) (1)

where M is the structural mass matrix, C is the structural damping matrix, K is the structural
stiffness matrix, F(t) is the node load vector varying with time, and

..
u,

.
u, and u are the

node acceleration, node velocity, and node displacement vector, respectively.
There are two methods to solve the dynamic finite element equations, namely the

direct integration method and the modal superposition method. The basic idea of the direct
integration method is to divide the time domain into a series of time points, which divides
the time domain into several time intervals and then solves the solution that can satisfy
Formula (1) at the discrete time points. The modal superposition method is to superimpose
the responses of the system under various modes, but the proportion of the weight factors
of each order is different. In this article, the birth–death element method is used to realize
the addition and deletion of elements in the process of topological optimization. This
process is a nonlinear analysis; so, it can only use the direct integration method but not
the mode superposition method. The common direct integration methods include the
Newmark method, Wilson method, Houbolt method, central difference method, etc. This
section focuses on the Newmark method.

The Newmark method assumption:

.
ut+∆t

=
.
ut

+ [(1 − β)]
..
ut

+ β
..
ut+∆t∆t (2)

ut+∆t = ut + ∆t
.
ut

+

[(
1
2
− γ

)
..
ut

+ γ
..
ut+∆t

]
∆t2 (3)

where γ and β are the Newmark integral parameters. When β ≥ 0.5 and γ ≥ 0.25(0.5 + β)2,
the Newmark method has unconditional stability.

..
u,

.
u, and u represent, respectively, the

node displacement vector, velocity vector, and acceleration vector at time t; ut+∆t,
.
ut+∆t, and

..
ut+∆t represent, respectively, the node displacement vector, velocity vector, and acceleration
vector at time t + ∆t.

To calculate the structural displacement vector ut+∆t, the equation of motion at time
t + ∆t can be expressed as:

M
..
ut+∆t

+ C
.
ut+∆t

+ Kut+∆t = Ft+∆t (4)

The effective stiffness matrix and effective load at time tn+1 can be expressed as:

K = K +
1

α0∆t2 M +
β

α1∆t2 C (5)
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Ft+∆t
= Ft+∆t + M

(
α0ut + α2

.
ut

+ α3
..
ut
)
+

C
(

α1ut + α4
.
ut

+ α5
..
ut
) (6)

where α0 = 1
γ∆t2 , α1 = β

γ∆t , α2 = 1
γ∆t , α3 = 1

2γ − 1, α4 = β
γ − 1, α5 = ∆t

2

(
β
γ − 2

)
,

α6 = ∆t(1 − β), α7 = β∆t.
The equation of displacement at time t + ∆t can be expressed as:

Kut+∆t = Ft+∆t (7)

The velocity and acceleration at time t + ∆t can be expressed as:

..
ut+∆t

= α0

(
ut+∆t − ut

)
− α2

.
ut − α3

..
ut (8)

.
ut+∆t

=
.
ut

+ α6
..
ut

+ α7
..
ut (9)

2.2. Topology Optimization Model Design

The stress level of the structure is an important criterion to measure whether the
structure will have strength failure, and it is also a design factor that the structural designer
must consider at the early stage of the design stage.

Based on the BESO method, the discrete topology optimization design variables can
solve the stress singular value problem in essence, which has certain advantages for solving
the stress-constrained topology optimization problem. With the minimum volume of the
structure as the objective, the maximum stress as the constraint, and the presence or absence
of materials as the design variable, the optimization model is as follows:

find : x = [x1, x2, · · · , xn]

min : V =
n
∑

i=1
Vixi

s.t. : M
..
U + C

.
U + KU = F

σmax
vm ≤ σ∗

vm
xi = 0 or 1

(10)

Where x is the design variable and xi represents the design variable value corresponding
to the ith element. The design variables can be understood as the relative density of the
element and, more directly, as an indicator of the presence or absence of the element
material. When xi equals 1, it indicates that element i is a solid element with material.
When xi equals 0, it indicates that cell i is an empty element without material. n is the total
number of finite elements in the design domain, V is the overall volume of the structure, Vi
is the volume of ith element, σmax

vm is the maximum Mises stress of the structure, and σ∗
vm is

the artificial allowable stress.
The above optimization model means that the structure with the smallest volume can

be obtained by updating the design variables under the conditions necessary to satisfy the
given load, boundary conditions, and stress constraints.

2.3. Topology Optimization Model after Coalescing Stress Replacement

The design domain is divided into n finite element meshes, and each element corre-
sponds to a design variable. The design variable can be described as:

xi ∈ {0, 1} , i = 1, 2, · · · n (11)

The design variable can be understood as the relative density of the element, and
more directly, it can be considered as an indicator of the presence or absence of the element
material. When xi = 1, it indicates that the ith element is a solid element with material.
Conversely, it indicates that the ith element is an empty element without material. The
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interpolation model between the design variables and the elastic matrix of the element
material is established.

Di = xiD0 (12)

where Di represents the material elastic matrix corresponding to the ith element.D0 repre-
sents the elastic matrix of the solid materials, which is only related to the material properties
and is a constant matrix.

According to the elastic mechanics theory, the stress at a point a of the solid structure
is as follows:

σa = [σax, σay, σaz, τaxy, τayz, τazx]
T (13)

In the finite element analysis, the following formula can be described as:

σa = DBau (14)

where Ba is the strain matrix of point a, and u is the displacement vector of point a.
Therefore, the equivalent stress model of the element can be described as:

σi =
DiBiu(x)

xi
= D0Biui (15)

where σi is the stress vector of the ith element, Bi is the strain matrix of the centroid of the
ith element, and ui(x) is the node displacement matrix of the ith element. The von Mises
stress can be described as:

σvm = (σTVσ)1/2 (16)

where σvm is the von Mises stress, σ is the element stress vector, and V is the stress
coefficient matrix.

Because the constraint condition in this optimization problem model is the maximum
Mises stress, which has the local attribute of the stress constraint, its size cannot be described
by a clear mathematical analytical formula, and the stress sensitivity of each element needs
to be calculated in the optimization process. In order to reduce the calculation cost caused
by the local stress constraint, the aggregation function is usually used to obtain a global
stress measure to approximate the maximum Mises stress of the structure. In this article,
the P-norm condensation function is adopted, and it can be described specifically as:

σPN = (
n

∑
j=1

σ
p
vm,j)

1
p

(17)

where σPN is the cohesion stress value of the structure and p is the stress norm value
considered to be set; σvm,i is the Mises stress value at the center of the ith element. From the
expression form of this expression, when p = 1, σPN is the sum of the Mises stress values
of all the elements. When p approaches infinity, σPN is the exact Mises stress value of the
structure.

After the maximum Mises stress is replaced by the condensed stress, the new topologi-
cal optimization mathematical model can be described as:

find : xi = [x1, x2, · · · , xn]

min : V =
n
∑

i=1
Vixi

s.t. : M
..
U + C

.
U + KU = F

σPN ≤ σ∗
vm

xi = 0 or 1

(18)
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3. Cell Sensitivity Analysis

In order to solve the problem that the local properties of the constraints that appear
in the optimization problem model cannot be described by a clear mathematical analytic
formula, this chapter derives the element sensitivity and analyzes and calculates BESO as
the basic method.

In order to solve this problem using BESO method, the Lagrange multiplier needs
to be introduced, namely λ. The stress constraint and volume constraint are added to the
objective function, while the BESO method takes the structural volume as the evolution
parameter. So, the volume constraint is easy to meet. So, the objective function justly
introduces a Lagrange multiplier, and the objective function can be described as:

f1 = V + λ(σPN − σ∗
vm) (19)

σ∗
vm is considered to be a given stress constraint value and is a constant value. There-

fore, the derivative of this term is 0 during the sensitivity analysis. In sensitivity analysis,
the objective function f1 is equivalent to the following formula:

f = V + λσPN (20)

The element sensitivity calculation formula is derived. The partial derivative of the
objective function f to the design variable xi is obtained as follows:

∂ f
∂xi

=
∂C
∂xi

+ λ
∂σPN
∂xi

(21)

According to the chain rule, it is easy to obtain σPN with respect to the design variables
in Formula (21). The sensitivity can be described as:

∂σPN
∂xi

=
∂σPN
∂σvm,i

∂σvm,i

∂σi

∂σi
∂xi

(22)

It can be seen from the above formula that to calculate the sensitivity of the global
stress cohesion function, the derivative of the stress cohesion function to the Mises stress,
the derivative of the Mises stress to the stress component, and the derivative of the stress
component to the design variable must be calculated first. The following three items are
calculated separately.

(1) The derivative of the stress condensation function to the Mises stress

For the Mises stress of the P-norm in Formula (22) with respect to each element, we
should strive to derive:

∂σPN
∂σvm,i

= (
n

∑
j=1

σ
p
vm,j)

( 1
p −1)

·(σvm,i)
p−1 (23)

(2) The derivative of the Mises stress to the stress component

The Mises stress in Formula (22) is derived from the stress vector of each element:

∂σvm,i

∂σi
= σ−1

vm,iσ
T
i V (24)

(3) The derivative of the stress vector to the design variable

The stress vector in Formula (22) is derived from the design variable xi, as follows:

∂σi
∂xi

= D0Bi
∂ui
∂xi

(25)
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In the structural dynamics analysis, the stress produced varies with time. The dynamic
stress is calculated according to the element, which is the same as the stress in the static
finite element analysis. That is, the stress at the node of the element or the stress at any
point on the element can be calculated through the element stress calculation formula. The
dynamic sensitivity can also be calculated according to the element; that is, the element
stress sensitivity can be obtained by calculating the partial derivative of the design variable
with the element stress calculation formula. As the dynamic stress changes with time,
the dynamic stress sensitivity also changes with time. If the solution time step is n in the
dynamic finite element analysis, the stress at n time points can be obtained, and the stress
sensitivity at n time points can also be obtained.

It can be seen from Formula (15) that the dynamic stress sensitivity calculation formula
at time t + ∆t is:

∂σt+∆t
i

∂xi
= D0B

∂ut+∆t
i

∂xi
(26)

where σt+∆t
i is element stress. It can be seen from the above formula that as long as the

dynamic displacement sensitivity is obtained, the dynamic stress sensitivity can be obtained
according to the above formula.

Based on the finite analysis, the displacement at each time can be obtained according
to Equation (7); then, the velocity and acceleration at each time can be obtained according
to Equations (8) and (9). The dynamic displacement sensitivity analysis is carried out
according to the Newmark method.

The partial derivative of the design variable xi on both sides of Equation (7) is obtained
as follows:

∂
–
K

∂xi
ut+∆t +

–
K

∂ut+∆t

∂xi
=

∂
–
F

t+∆t

∂xi
(27)

So,
–
K

∂ut+∆t

∂xi
=

∂
–
F

t+∆t

∂xi
− ∂

–
K

∂xi
ut+∆t (28)

wherein –
K = K + α0M + α1C (29)

∂
–
K

∂xi
=

∂K
∂xi

+ α0
∂M
∂xi

+ α1
∂C
∂xi

(30)

∂
–
F

t+∆t

∂xi
= ∂Ft+∆t

∂xi
+ ∂M

∂xi
(α0ut + α2

.
ut

+ α3
..
ut
) + ∂C

∂xi
(α1ut + α4

.
ut

+ α5
..
ut
)a

+M(α0
∂ut

∂xi
+ α2

∂
.
ut

∂xi
+ α3

∂
..
ut

∂xi
) + C(α1

∂ut

∂xi
+ α4

∂
.
ut

∂xi
+ α5

∂
..
ut

∂xi
)

(31)

Equations (28)–(31) constitute the calculation formula of dynamic displacement sen-
sitivity. The calculation formula of dynamic displacement sensitivity can be obtained by
synthesizing (28)–(31):

∂ut+∆t

∂xi
= (K + α0M + α1C)−1



∂Ft+∆t

∂xi
+ ∂M

∂xi
(α0ut + α2

.
ut

+ α3
..
ut
)

+ ∂C
∂xi

(α1ut + α4
.
ut

+ α5
..
ut
)

+M(α0
∂ut

∂xi
+ α2

∂
.
ut

∂xi
+ α3

∂
..
ut

∂xi
)

+C(α1
∂ut

∂xi
+ α4

∂
.
ut

∂xi
+ α5

∂
..
ut

∂xi
)

−( ∂K
∂xi

+ α0
∂M
∂xi

+ α1
∂C
∂xi

)ut+∆t


(32)

When calculating the displacement sensitivity at time t + ∆t, in addition to the dis-
placement at time t + ∆t, the displacement, velocity, and acceleration sensitivity at time t
are also used. It can be seen from the formula that the dynamic displacement sensitivity
analysis based on finite element analysis is used to solve the displacement sensitivity at
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the current time by solving the dynamic displacement response at the current time and
combining the displacement, velocity, and acceleration sensitivity at the previous time. The
displacement sensitivity of the whole time domain can be obtained by iteration. According
to the initial conditions, it is easy to determine that the sensitivity of displacement, velocity,
and acceleration at time t = 0 is 0; F is the external load vector, independent of the design
variable xi; so, the partial derivative of this term is 0. Therefore, the displacement sensitivity
at time ∆t is:

∂u∆t

∂xi
= −(K + α0M + α1C)−1(

∂K
∂xi

+ α0
∂M
∂xi

+ α1
∂C
∂xi

)u∆t
i (33)

Finally, the expression of dynamic stress sensitivity at time t can be obtained by
introducing Equations (23), (24), (26) and (33) into Equation (22), as shown in Equation (34):

∂ f
∂xi

= Vi − λ
n

∑
j=1

[
(σ∆t

vm,j)
p]( 1

p −1)

(σ∆t
vm,i

)
p−2

(σ∆t
i )

T
VD0BiLi

–
K
−1

(
∂K
∂xi

+ α0
∂M
∂xi

+ α1
∂C
∂xi

)u∆t
i (34)

When a uniform grid is used (i.e., the cells have the same volume), the relative ranking
of the sensitivities of each cell can be defined by the following sensitivities:

αi =
n

∑
j=1

[
(σ∆t

vm,j)
p]( 1

p −1)

(σ∆t
vm,i

)
p−2

(σ∆t
i )

T
VD0BiLi

–
K
−1

(
∂K
∂xi

+ α0
∂M
∂xi

+ α1
∂C
∂xi

)u∆t
i (35)

In the whole process of structural optimization, a series of displacement values in the
time domain will be output in detail after each finite element analysis. If these displacement
values are processed in parallel, the whole calculation will be more complicated and
difficult, and the time cost will increase. Moreover, in the optimization iteration step under
a fixed mode determined by the structure, even if the displacement is always changing, the
displacement is only related to the time history of the load; so, the series of displacement
values is the same in the physical sense. Therefore, the element sensitivity at only one time
point is sufficient to meet the requirements.

4. Convergence Criterion

The BESO method uses volume evolution to add and delete elements. It is obviously
inappropriate to use the change in the objective function value as the convergence criterion.
Therefore, based on the dimensionless concept, this section defines a performance index,
which can comprehensively consider the changes in structural stress and overall volume at
the same time. With this index, the changes in structural performance with the number of
iterations can be reflected. The performance index is shown in Formula (36):

PI =
σ0

PNV0

σt
PNVt

(36)

where PI is the performance index; σ0
PN and σt

PN represent, respectively, the initial and tth
iteration stress cohesion function values; and V0 and Vt represent, respectively, the initial
and tth iteration structure volumes.

Therefore, the termination criterion of the whole optimization process is as shown in
Formula (37):

error =

∣∣∣∣ N
∑

t=1
(PIk−t+1 − PIk−N−t+1)

∣∣∣∣
N
∑

t=1
PIk−N−t+1

≤ τ (37)
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Generally, N is set to 5, which means that the change range of the performance index
value in the past 10 iterations is small enough to reach convergence when it reaches less
than the convergence factor.

5. Numerical Example
5.1. L-Shaped Two-Dimensional Plate

The zone size and boundary conditions of the L-shaped plate are shown in Figure 1.
It is an L-shaped area with fixed constraints on the upper boundary. The design area
is meshed by a four-node plane element with a side length of 2 mm. In order to avoid
stress concentration at the load position, the load shown in Figure 2 is applied on the right
boundary of the L-shaped beam. The stress constraint threshold is set to 4.5 MPa. In this ar-
ticle, the calculation example uses the same material parameters. Where Young’s modulus,
Poisson’s ratio, and the material density are set as E = 71 Gpa, v = 0.33, and ρ = 2793 Kg/m3.
With the BESO method, the material evolution rate er = 0.2%, the sensitivity filter radius is
set to two times that of the cell grid, and the stress norm parameter p is set to 6.

Figure 1. Initial design area of L-shaped beam structure.

Figure 2. Non − periodic load spectrum.

According to the developed topology optimization program, the change curve of the
structure volume fraction and the performance index is shown in Figure 3. It can be seen
from Figure 4 that the structural volume decreases continuously with the optimization.
When the iteration proceeds to step 90, the change tends to be gentle. After step 45, the
performance index fluctuates violently; this is caused by the highly nonlinear stress. When
the performance index reaches around 1.7, it tends to converge. At this time, the objective
function value is 0.51.
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Figure 3. Changes in structure volume fraction and performance index. The blue shapes are the
optimization result corresponding to a step in the iteration.

Figure 4. The final topology optimization result.

The final topological structure and its stress cloud diagram are shown in Figures 4 and 5.
Due to the high nonlinearity of the dynamic stress, there are fluctuations in the whole
optimization process. The cohesion stress reaches convergence after 105 iterations, and the
final value is 4.33 Mpa. Xia developed the static stress topology optimization program based
on BESO by using P-norm stress condensation and carried out the topology optimization
of an L-shaped plate. Figure 6 shows the topology configuration diagram when P = 6.
The same stress condensation parameters are used in this article. It can be seen from the
comparison that the support bifurcation on the right side in the topology configuration
in the literature makes the support structure on the right side smaller. In addition, the
configuration is basically the same.

Figure 5. Stress cloud diagram of L-shaped plate.
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Figure 6. Topological structure of L-shaped plate [14].

5.2. L-Plate with Notch

The initial design area and boundary conditions of the L-plate with a notch are shown
in Figure 7. The design area is meshed by a four-node plane element with a side length of
2 mm. Fixed constraints are imposed on the left boundary of the L-plate. In order to avoid
stress concentration at the load position, five finite element nodes at the lower vertex of the
right boundary of the L-plate act as shown in Figure 2. The stress constraint value is set to
4.5 MPa.

Figure 7. Initial design area of L-shaped beam structure.

Figure 8 shows the change curve of the structural volume fraction and performance
index in the process of the structural optimization of the notched L-shaped beam. It
can be seen from the figure that the structural volume decreases continuously with the
optimization. When the iteration proceeds to step 60, the change tends to be gentle. The
performance index fluctuates sharply after step 45, which is caused by the high nonlinearity
of the stress. When the performance index reaches around 1.80, it tends to converge, and the
objective function value is 0.44. Figure 9 shows the maximum stress value of the structure
and the P-norm condensed stress value change curve in the optimization process. Due to
the high nonlinearity of the stress, there are fluctuations in the whole optimization process.
A total of 83 iterations were performed to achieve convergence.

The final topological structure and its stress cloud diagram are shown in Figures 10 and 11.
The maximum stress of the structure is 3.14 Mpa, and the P-norm cohesion stress is 4.00 Mpa.
Long realized the topology optimization of the dynamic stress constraint under harmonic
excitation by sequential quadratic programming. Figure 12 shows the topological configu-
ration results of the same calculation example. Due to the different load time histories, the
left support leg in the configuration of this article is obviously wider, and in addition, a
fine structure is generated in the middle. The other topological configurations are basically
the same.
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Figure 8. Volume fraction and performance index. The blue shapes are the optimization result
corresponding to a step in the iteration.

Figure 9. Maximum stress value and P-norm stress.

Figure 10. Final topological structure.
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Figure 11. Stress cloud diagram.

Figure 12. Topological structure [18].

5.3. Horizontal Z-Shaped Pipe

The initial design area and boundary conditions are shown in Figure 13. The design
area is divided by a four-node plane element, finite element mesh with a side length of
2 mm. Fixed constraints are imposed on the left boundary of the Z-shaped beam. In order
to avoid stress concentration at the load position, the loads shown in Figure 3 are applied
to five finite element nodes at the right boundary vertex of the Z-shaped beam. The stress
constraint value is set to 4.5 MPa.

Figure 13. Initial design area of Z-shaped pipe structure.

Figure 14 shows the change curve of the structural volume fraction and performance
index during the optimization of the Z-shaped beam structure. It can be seen from the
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figure that the structural volume decreases continuously with the optimization. When
the iteration proceeds to step 155, the change tends to be gentle. The performance index
fluctuates sharply after 50 steps; this is caused by the high nonlinearity of the stress. In
Figure 14, when the performance index reaches around 1.68, it tends to converge, and the
objective function value is 0.52. Figure 15 shows the change curve of the maximum stress
value and P-norm condensed stress value of the structure during the optimization process.
Due to the large size change in the structure, a certain degree of stress concentration will
occur at the corner, and the dynamic stress will fluctuate greatly during the iteration, which
makes it very difficult to converge. A total of 175 iterations were carried out. The final
topological structure and its stress cloud diagram are shown in Figures 16 and 17. The
maximum stress of the structure is 4.07 Mpa, and the P-norm condensed stress is 6.29 Mpa.

Figure 14. Volume fraction and performance index. The blue shapes are the optimization result
corresponding to a step in the iteration.

Figure 15. Maximum stress value and P-norm stress.
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Figure 16. Final topological structure.

Figure 17. Stress cloud diagram.

6. Conclusions

There are three difficult problems in the topology optimization of stress constraints,
and the dynamic stress constraints are highly nonlinear and difficult to converge. In
this article, the topology optimization of dynamic stress constraints is attempted, and
a topology optimization method using a continuum structure based on dynamic stress
response constraints is proposed. A topological optimization model of structural volume
minimization under dynamic stress response constraints is established. At the same time,
the P-norm aggregation function is used to reduce the number of dynamic stress response
constraints, and the stress sensitivity is derived based on the Newmark method. In addition,
the P-normcondensation stress is used to improve the performance evaluation index based
on volume and stress, and the convergence criterion based on the performance evaluation
index is defined. Finally, through three examples of topology optimization constrained by
minimum structural volume and dynamic stress response, the optimal topology obtained
is reasonable and has good material distribution, which verifies the applicability and
rationality of the dynamic stress response-constrained topology optimization method
proposed in this article.

The stability and optimization efficiency of the method need to be further improved.
The structures studied in this paper are all isotropic materials, all of which are in the
linear elastic range. The application of the fatigue-constrained topology optimization
method based on the use of the BESO method in anisotropic materials, functionally graded
materials, and lattice structures needs to be further studied, so as to further expand its
application scope.
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