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Abstract: Federated learning is a distributed learning method that seeks to train a shared global
model by aggregating contributions from multiple clients. This method ensures that each client’s local
data are not shared with others. However, research has revealed that federated learning is vulnerable
to poisoning attacks launched by compromised or malicious clients. Many defense mechanisms
have been proposed to mitigate the impact of poisoning attacks, but there are still some limitations
and challenges. The defense methods are either performing malicious model removal from the
geometric perspective to measure the geometric direction of the model or adding an additional
dataset to the server for verifying local models. The former is prone to failure when facing advanced
poisoning attacks, while the latter goes against the original intention of federated learning as it
requires an independent dataset; thus, both of these defense methods have some limitations. To
solve the above problems, we propose a robust federated learning method based on geometric and
qualitative metrics (FLGQM). Specifically, FLGOM aims to metricize local models in both geometric
and qualitative aspects for comprehensive defense. Firstly, FLGQM evaluates all local models from
both direction and size aspects based on similarity calculated by cosine and the Euclidean distance,
which we refer to as geometric metrics. Next, we introduce a union client set to assess the quality
of all local models by utilizing the union client’s local dataset, referred to as quality metrics. By
combining the results of these two metrics, FLGQM is able to use information from multiple views
for accurate poisoning attack identification. We conducted experimental evaluations of FLGQM
using the MNIST and CIFAR-10 datasets. The experimental results demonstrate that, under different
kinds of poisoning attacks, FLGQM can achieve similar performance to FedAvg in non-adversarial
environments. Therefore, FLGQM has better robustness and poisoning attack defense performance.

Keywords: federated learning; poisoning attack; robust defense

1. Introduction

With the continuous increase in data scale and the growing importance of data privacy,
new machine learning paradigms have been proposed, such as federated learning (FL) [1].
Federated learning allows multiple distributed clients to jointly train a global model without
sharing their privacy data. Federated learning can summarize the three main steps of model
distribution, local training, and aggregation. Compared to traditional machine learning,
federated learning offers a compelling advantage by effectively safeguarding user privacy
while maintaining the high accuracy of the global model. Consequently, it has garnered
significant research interest in recent years.

However, the inherent distributed nature of federated learning renders it particularly
susceptible to attacks orchestrated by malicious clients. Attackers can exploit this vul-
nerability by launching poisoning attacks through client control, thereby impeding the
convergence of the global model. Finally, it will destroy the performance of federated
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learning. Based on the attacker’s objectives, poisoning attacks in federated learning can be
categorized into two distinct types: untargeted poisoning attacks and targeted poisoning
attacks. In an untargeted poisoning attack, the goal is to diminish the performance of the
global model, resulting in low accuracy across all classes of test inputs. For example, in
data poisoning attacks [2-5], malicious clients can compromise the integrity of the global
model by poisoning local data. Another example is the local model poisoning attack [6-13],
where the attacker compromises the integrity of the global model by uploading a locally
corrupted model. The objective of a target poisoning attack [7,11,14] is to diminish the
global model’s accuracy, particularly for specific test inputs. For example, in backdoor
attacks [14], attackers can compromise a subset of clients and exploit the compromised
client to embed a backdoor within the global model, thereby posing a threat to the integrity
of the entire global model.

Researchers have proposed a large number of robust federated learning methods [6,15-20]
to address the above problems. Most of the works assume that malicious local models are
geometrically distant from other benign models. Therefore, they would exclude malicious
local models by detecting anomalies through statistical analysis before aggregation. An-
other approach is to maintain a clean dataset on the server and utilize it to perform anomaly
detection on all local models. It is evident that the existing methods possess certain limi-
tations. Firstly, in the first scheme, some advanced poisoning attacks have the capability
to construct malicious local model updates that exhibit geometric similarity to benign
local model updates, enabling them to evade existing defense mechanisms. Secondly, the
alternative approach necessitates directly collecting clean datasets from individual clients,
a practice that contradicts the privacy principles of federated learning.

To tackle the aforementioned challenges, we propose a novel and robust federated
learning method called FLGOQM. It measures local models from two aspects: quality and
geometry, and assigns metric scores to different local models. Table 1 lists the main differ-
ences between the current mainstream defense approach and the approach we propose.
As evident from Table 1, the current mainstream defense methods either detect malicious
attacks geometrically or utilize a small, clean dataset to evaluate the quality of a local model.
It is evident that certain methods fail to effectively resist all attacks using only Euclidean
distance or the median method, and they are also prone to failure under non-IID data [21].
Moreover, the use of a centralized dataset contradicts the principle of federated learning,
which aims to avoid data collection. In contrast, our approach leverages cosine similarity
and Euclidean distance to defend against malicious attacks from a geometric perspective.
Additionally, we introduce a distributed set of union clients to assess the quality of the
local model, eliminating the need for a central dataset. Thus, our method demonstrates
significant advantages in defending against malicious attacks from multiple angles. The
main innovations of this work are as follows:

(1) We propose a novel and robust federated learning method that considers each
uploaded local model from both geometric and quality aspects. It can use information from
multiple views to perform a robust defense.

(2) We propose a geometric metric mechanism that considers each local model from a
geometric perspective. The similarity is calculated by cosine and the Euclidean distance to
constrain the direction and size of all local models.

(3) We propose a quality metric mechanism that introduces a union client set to send
all local models to the union client for evaluation and finally measures the quality of all
local models based on the trimmed mean.

(4) We conducted a comprehensive experimental evaluation of FLGOM on MNIST and
CIFAR-10. The results indicate that the algorithm outperforms existing robust federated
learning methods in terms of its effectiveness against state-of-the-art poisoning attacks.
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Table 1. The current defenses against poisoning attacks.

Defense Technique Geometric  Qualitative Central Dataset Non-IID Data
Krum/Multi-Krum Euclidean distance v X Not needed X
Bulyan Krum + trimmed median v X Not needed X
RFA Geometric median v X Not needed X
FoolsGold Contribution similarity v X Not needed v
Zeno Calculates score by clean small dataset X v Needed v
Fltrust Cosine similarity + Clean small dataset v v Needed v
MAB-RFL Similarity + Graph theory v X Not needed v
FLGQM (ours) Cosine similarity + Euclidean distance v v Not needed v

(+ Distributed score calculation)

2. Materials and Methods
2.1. Related Work
2.1.1. Federated Learning

There is a set of nodes/clients C = cy,...,c¢y, ..., ck in federated learning, where each
client has its own data Dy = {(a1,b1),...,(a;,b;), ..., (an, by,)}, where a; is the ith data,
and b; represents the true label. |Dy| = ny. ny is the number of training data owned by cy.
n =Y recx N represents the cumulative number of samples owned by all clients, while the
server is denoted as S. Specifically, all clients train a classifier f(w), where w is the global
model obtained by aggregation, and this model is expected to have good results on the test
set Dyest. The objective of the server is as follows.

K

minl(w) = ) %lk(w) 1)

w k=1

where [ (w) = nlk Yie, li(w). 1:(8) = I(b;, fw(a;) is the loss predicted with model parame-
ter w for data (a;, b;).

2.1.2. Poisoning Attacks in Federated Learning

In recent studies [15], it has been revealed that non-adversarial federated learning is
highly susceptible to poisoning attacks initiated by malicious clients. These attacks can
result in significant performance degradation of the global model. In summarizing, we
categorize these poisoning attacks based on the objectives and capability of the malicious
poisoning adversary. Firstly, we can categorize poisoning attacks into targeted [7,11,14] and
untargeted attacks [6,8,9,12,22] based on the objectives of the adversary. The untargeted
attack seeks to maximize the global model’s inaccuracy across any test input, whereas the
targeted attack seeks to minimize the accuracy specifically on certain test inputs without
significantly impacting the accuracy of other test inputs.

Secondly, we can categorize poisoning attacks into two main types: data poisoning
attacks [2-5] and model poisoning attacks [6-13], depending on the adversary’s capabilities.
Data poisoning attacks leverage corrupted data of the client to indirectly manipulate the
gradient or model parameters uploaded by the client. Model poisoning attacks directly
change the gradient or model parameters of a malicious client to manipulate the global
model. For example, Fang et al. [8] formulated an attack to change the local model of the
maligned client. Its objective is to maximize the divergence between the global model after
the attack and the pre-attack global model. Shejwalkar et al. [13] introduced a comprehen-
sive framework for model poisoning attacks in federated learning, which enables a more
comprehensive model poisoning attack.
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2.1.3. Existing Robust Federated Learning

Many defense mechanisms have been proposed to relieve the effects of poisoning
attacks. They are mainly divided into two ideas. One type of defense method is to as-
sume that all malicious models are geometrically far from benign models. For example, In
Krum [15], the Euclidean distance is employed to score the local models, and subsequently,
the highest-rated model is chosen as the global model. In Fast Aggregation algorithm
against Byzantine Attacks (FABA) [23], local gradients that deviate significantly from the
average gradient are discarded. However, both of these methods necessitate prior knowl-
edge of malicious clients’ number, which imposes certain limitations on their applicability.
To overcome this limitation, FoolsGold [24] utilize cosine similarity to assign a low score to
malicious clients, thereby minimizing malicious clients” impact. Wan et al. [25] propose
MAB-RFL, which employs graph theory to eliminate models that exhibit excessive similar-
ity and then extracts key parameters from the models using principal component analysis
as a way to distinguish benign and malicious clients. The median and trimmed mean [18]
compute the trimmed mean and median of each dimension of the local model to circum-
vent models from malicious clients. Robust Federated Aggregation (RFA) [26] employs
alternating minimization methods to calculate the geometric median. Bulyan [6] trims
the mean on the basis of Multi-Krum. Adaptive Federated Aggregation (AFA) [27] first
calculates the similarity between the local model and the global model. It then identifies
and removes underperforming local models according to the mean and median of these
similarities. Xu et al. [28] proposed SignGuard, which first processes the received gradients
to generate relevant statistics related to similarity, sign, and magnitude. The malicious
gradients are then eliminated by the filters utilized collaboratively before final aggregation.
Geng et al. [29] proposed FLEST. It proposes a trust synthesis mechanism that aggregates
confidence scores and trust scores into a composite trust score (STS) through dynamic
trust ratios, and uses the score as a weight for updating the aggregated local parameters.
Wang et al. [30] proposed FLForest. Its primary focus is to assess the occurrence of an
attack according to the magnitude of change in the global model update, accomplished by
incorporating Isolation Forest.

Another defense method involves maintaining a clean, small dataset on the server to
filter out poorly performing local models. For example, Zeno [20] has a small dataset on
the server and calculates a score for local models. Then, these scores are aggregated into a
global model. Cao et al. [31] proposed a distributed gradient algorithm that reduces the
effect of malicious clients by computing noise gradients using a clean dataset. FLTrust [19]
maintains a small training dataset on the server, trains a bootstrap model based on this
dataset, and then utilizes cosine similarity between this model and the local model as a score
for the local model. Rodr “1iguez-Barroso et al. [32] proposed Dynamic Defense Against
Byzantine Attacks (DDaBA). The main idea is to judge the quality of individual clients
by the clean dataset on the server and then score each client with a linguistic quantifier.
Cao et al. [33] proposed FLCert, which first groups all the clients and trains a global model
separately. The method also needs to keep a clean dataset on the server to validate all the
local models, and then an optimal global model is selected by a voting mechanism.

Existing robust federated learning methods have a significant limitation: some poi-
soning attacks can simulate malicious models that are geometrically similar to benign
models, thereby breaking this defense mechanism. At the same time, the method of keep-
ing small datasets on the server is problematic as it goes against the idea of federated
learning. In contrast, this paper proposes a robust federated learning method based on
geometric and qualitative metrics to defend against advanced poisoning attacks and avoid
a centralized dataset.

2.2. FLGOM
2.2.1. Overview

In this paper, we design a new federated learning method: robust federated learning
based on geometric and qualitative metrics. The adversary can control the malicious client’s
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model in an arbitrary manner. When we calculate the global model, we consider two
aspects, the intuitive model quality and the geometric direction and size of the uploaded
models, and use them to assign a metric score (MS) to the local model. A high metric score
represents better local models.

Specifically, we first consider a scenario where the adversary has arbitrary control over
the geometric direction and size of the local model and therefore performs geometric metrics
on all uploaded local models from this perspective. Formally, we use similarity based on
cosine and the Euclidean distance. To guide the global model’s direction, we ensure that
each global iteration aligns with the trajectory of the previous round’s global model. First,
the server retains a collection of models uploaded by the clients who participated in the
previous round of training. Considering that the uploaded model in the current round of
benign clients cannot deviate from the uploaded model in the previous round, we quantify
the similarity between the uploaded model in the current round and the model uploaded in
the previous round using cosine similarity. This process allows us to identify and eliminate
some of the malicious clients. Next, we utilize cosine similarity to quantify the alignment in
direction between the local model and the global model from the previous round. We then
identify and exclude malicious clients whose behavior deviates significantly from the global
model using the ReLU function. Subsequently, we quantify the similarity in size between
the local model and the global model from the previous round using Euclidean distance.

The similarity based on Euclidean distance can identify the difference in malicious
models and then assign geometric metric scores (GMSs) to different clients. Also, consid-
ering that certain advanced poisoning attacks can geometrically make malicious updates
similar to benign ones, we perform quality metrics on all uploaded local models from this
perspective. Specifically, we randomly select some of the clients that do not participate in
this round of federated learning as union clients. They verify the models uploaded by all
local clients separately using their own local data, evaluate the models for different clients
based on the trimmed mean, and then evaluate the model quality for all uploaded models
as a way to assign quality metric scores (QMSs) to different clients. Finally, the global
model is updated by taking a weighted average of the combined quality and geometric
metric scores.

2.2.2. Aggregation Rule

Our proposed FLGQM is shown in Figure 1. It is considered in two aspects simulta-
neously: model quality and model geometry aspects. Firstly, the server receives all the
local models. It will use cosine similarity and Euclidean distance to perform the geometric
metric on each local model to obtain the geometric metric score (GMS). Then, the server
will send the received local models down to the union client set for quality metrics to obtain
the quality metric score (QMS), and finally, a new round of global models is obtained by
weighted average of the two scores. Next, we describe each step of the algorithm in detail.

Geometric Metric Score (GMS). The adversary can arbitrarily control the direction
and size of the malicious client’s local model. Therefore, we consider constraining the
behavior of all uploaded local models prior to aggregation. The whole process is shown in
Figure 2. For each uploaded model weight, we vectorize it to the vector space, and it is easy
to know that each model corresponds to a vector in the vector space, i.e., it has a size and
direction. Obviously, the more similar two vectors are, the more similar their corresponding
sizes and directions should be. Based on this, we distinguish benign local models from
malicious local models. A malicious local model should be far from a benign model in terms
of direction and size. And we know that cosine similarity can be used to determine whether
two vectors are similar in direction and Euclidean distance can be used to determine
whether two vectors are similar in size, so we use cosine similarity and Euclidean distance
for geometric metrics. The specific steps of the algorithm will be described in detail below.
Under the federal learning framework, we assume that the current set of clients selected to
participate in this round of training is Ct=¢,..., Cp,---,cp € C.



Appl. Sci. 2024, 14, 351

6 of 18

p Client - — — — — . Server -—— — — — — ———
s o A

/ LocalSGD,_ 8 O O, 0 \\

> = o) 8 o —»/ 3.4 —» / 36 7.0 8 o 0 |
o
G | Benign local GMS, QMS,; CMS, © 2 o

| client ‘ model o |

: N ° ® Metric on + :

| Local SGD : o0 | direction , 26 L, 27 53 ° |
— i o3/ GMS QMs 3 @ 8 e Federated

|  Benign L 2 2 CMS L 05 i |

|  Client ‘ Benign local ) : OQ Averaging |

del a —>

| \ me + @ |

| o Global model at the

I g Local SGD : : :i previousround  |—» 3.8 —» 4.7 O L
> " | o GMS QMS 85 ® o0

| Benign o @ Metric on 8 3 CMS. & © © |

| Client ‘ Benign local - s @ o Global Model |

size

| ‘ model |

: Local SGD —» 0.08 — 0.01 + [
—>| = GMS, QMS |

| Malicious \ ¢ 81812 |

| Client ‘ Malicious local 4 |

| model Geometric Quality Comp_rehensive |

| ‘9 S‘End local model sets Metric Score Metric Score Metric Score |

= | _ . |

\ Union ==Yalidate local Union client score set Train client score set /

\\client model c ‘ llections (UCS) (TCS) _ 4

/ | \
;
| w W[’ | ) W, |
| , | v wy |
I W, e \ , |
| | I it s I
| | 2 |
: W, | s Cos(w/™",wi)=1  cs,=Cos(w",w)=0  cs;=Cos(wi",wi)=1 :
| | |
|
| w | W |
w | w |

| w |
| | X |
| | |
| W o :

cg, =relu(Cos(w/,w ")) >0 Wy |
: : cg, = relu(Cos(w;,w™))=0 :
| |
| , | W |
| viooow | w x |
| | |
| | |
| | —_—, —> wé —_— W; .

GMS, = cg, - EDAS(w!,w'™) - 2 L |

1 1 1 w

| | | wh W, |
N _

Figure 2. Geometric metrics score calculation process. The right is the detailed GMS calculation
process, and the left is the spatial state of the model after each calculation.

First, we constrain the direction of the local model using cosine similarity, which is
reflected in two similarity measures. Here, we use the pth client, i.e., cpeC tasan example.
The first measure is a cosine similarity measure between the local model uploaded in
this round w; and its local model uploaded in the previous round w;_l, and the second
measure is a cosine similarity measure between the local model uploaded in this round w;

and the global model in the previous round w'~!. Based on the results obtained from the
first measure, we will reject the local models with negative similarity, i.e., rejecting their
participation in this aggregation because their models in this upload are too different from
their models in the last upload. Based on the results obtained from the second measure, we
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further eliminate the local models with negative similarity because their uploaded model
in this current round wi, is too different from the global model w!~1. Then, we score the
remaining local models using the second measure.

Specifically, the server stores a model set V = {wi’l, eeey wlt[,’l, eeey w?l} containing

the local models for round t — 1 of the clients that participate in training. Considering the
arbitrary nature of the malicious local model, we first use the cosine similarity to detect the
clients that have the model w; far removed from the model w;_l in the direction, and then
eliminate the detected clients. This process is formally as follows.

0, Cos(wt ™ wt) <o,
csp—{ W ) @)

1, Cos(w;_l,w;) >0

where cs, indicates whether to reject the model uploaded by the c;, to participate in ag-

gretgellti(f)n, with 0 representing rejection and 1 representing no rejection. Cos(w;_l, w;) =
%. The set of local models after this round of exclusion is formalized as
p P

Ct] =C1,---,C1y...,CL Q Ct,L S p.

Based on the set C'1, we further use cosine similarity to quantify the similarity of
direction between the local models w}, ..., w!, ..., w! and the global model w'~!, where
a bigger similarity represents a better local model. It is evident that, when the cosine
similarity between the local model and the global model is negative, indicating a contrary
direction, the corresponding client can be identified as a malicious client. In such cases,
the client should be excluded from the aggregation process. Formally, we use the ReLU
function commonly used in deep learning to eliminate malicious clients with negative
cosine similarity between the local model and the global model. Then, we use the cosine
similarity to score the remaining local models with positive similarity, thus constraining
the local model direction as follows.

cg = ReLU(Cos(wf, wtfl)) 3)

where cg; denotes the metric of w] from the aspect of direction by the ¢;. For ReLU(x),
ReLU is equal to 0 when x < 0, and ReLU is equal to x when x > 0. The set of local models
after this round of elimination is formally C2 = {cy,...,cm,...,cp} € CH, M < L.

Since an attacker can also control the global model by uploading damaged local mod-
els from a malicious client, it is insufficient to solely constrain the local model from a
directional perspective. The Euclidean distance can be used as a measure of the distance
between two models. The Euclidean distance is defined as ED = |la — b||'/2. There-
fore, we propose a difference amplifying similarity based on Euclidean distance, i.e.,
EDAS(a,b) = 1+H|a—b|\"—1vLl\a—bIH"W’ We introduce three parameters y, w, 7y and make
the similarity range from 0 to 1; j, w are used to amplify the more subtle differences be-
tween the local model and the global model. <y is used to control the weight of the difference.
The geometric metric scores that specifically constrain the local model direction and size
are as follows.

GMS,, = cgm - EDAS(w!,, w'™1) (4)

where GMS,;, denotes the geometric metric score of the model uploaded by the c;,. Our
proposed method constrains the local models in terms of direction, eliminating the local
models with reverse backwardness while giving higher weights to the local models that are
close to the global model. And we constrain the local model in terms of size. The farther the
local model is from the global model in size, the lower the score it receives, thus ensuring
that more participants are from non-malicious clients when aggregating.

By doing the above, our method has a better geometric advantage over the existing
geometry-based defense methods. Through the introduction and related work, it is easy to
see that the current geometry-based defense methods are not comprehensive in identifying
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poisoning attacks from one perspective alone. In contrast, in our approach, we first
eliminate all the directionally anomalous malicious clients from the direction using cosine
similarity. Then, we propose a difference amplifying similarity based on Euclidean distance
to eliminate all malicious clients that are principle benign clients in terms of size. Thus, our
geometric metric approach has a greater advantage.

Quality Metric Score (QMS). Here, we consider that an attacker can exploit more
advanced attacks such that the model uploaded by the malicious client has the same
geometric direction and size as the benign client’s updated model to affect the global model.
Thus, defending from a geometric perspective alone is not enough. Therefore, we consider
a quality metric for the uploaded local model so as to remove the effect of this kind of
malicious client on the global model. Existing defense methods typically maintain a small,
clean dataset on the server for quality assessment. The datasets under this approach are
usually particularly small and not yet fully representative of the entire data distribution,
while also violating the highly problematic principle that federated learning does not collect
data. Therefore, we consider delegating server privileges to each client in order to ensure a
reliable measure of the quality of the local model, eliminating the influence of the central
dataset for distributed quality metrics. Specifically, a certain number of clients are selected
to form a union set to participate in the evaluation of the uploaded local models in each
round. Then, the generated quality measure score is assigned to the uploaded local models
based on the trimmed mean. Figure 3 shows an example of how to calculate the quality
metric score. The approximate process is that there are a total of eight training clients and
four union clients. After each training client uploads the model weight, the server will send
the weights to the union clients, and each union client will use its own local dataset to score
the model weights for all the training clients. Then, the server will obtain the final score by
trimming the mean for each model weight after collecting all the scores.

p
8 local models: w,, w,, w,, w,, wg, ws, w,, wg

Union clients score all local models

UCs:

[0.98, 0.99, 0.58, 0.84, 0.84, 0.96, 0.57, 0.84]
[0.95, 0.75, 0.45, 0.78, 0.46, 0.78, 0.45, 0.78]
[0.86, 0.67, 0.52, 0.62, 0.58, 0.46, 0.36, 0.97]
[0.92,0.94, 0.79, 0.89, 0.90, 0.88, 0.94, 0.35]

Each local model was scored

TCS:

[0.98, 0.95, 0.86, 0.92]
Take 8 local models [0.99, 0.75, 0.67, 0.94]
with 4 union clients [0.58, 0.45, 0.52, 0.79]
as an example. [0.84,0.78, 0.62, 0.89]

[0.84, 0.46, 0.58, 0.90]

[0.96, 0.78, 0.46, 0.88]

[0.57, 0.45, 0.36, 0.94]

[0.84, 0.78, 0.97, 0.35]

trimmed mean

QMS:[0.965, 0.965, 0.685, 0.865, 0.87, 0.92, 0.755, 0.905]

Figure 3. An example of calculating the quality metric score.
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In particular, we randomly elect a union client set U' = u},...,ul,... ul;, with
H < K — P local clients from the set C"" = C — C!, which do not participate in round . Af-

ter the geometric metric, the server sends the local models W, wﬁ, o, wfw

goodlnGeo
uploaded by the client in C*> where some malicious clients have been excluded to the union
set U' for quality evaluation. After a union client u} receives the local models Wgo odInGeor 1t
uses its local dataset D, to score that local model set for evaluation. Then, the union client

u;l will form a set, called the union client score set (UCS), which is described as follows.
UCS;, = [sv}l,...,svﬁ,. ..,sv,]fl] )]

where sv]" represents the evaluation score of the union client u}, for the local model w},
After the union client finishes evaluating all local models, it sends the evaluation results
UCSj, back to the server.

After receiving the evaluation results from all union clients, the server evaluates the
quality of the local models. Specifically, each model w!, will have a set called a train client
score set (TCS).

TCSm = [SZJT, o 15021’ te ,SZJ%] (6)

After the above process, each local model will have H scores, and then each local
model will have a single score based on the trimmed mean.

so™ = Y o« 7)

1-— 2
(1-28H xeTcsh,

where sv™ is the final score of the local model w!, by the H union clients. g is the percentage
factor that will be eliminated. TC Sﬁ, C TCS;; denotes the set that eliminates the largest
scores with the number of Bm and the smallest scores with the number of Bm.

Then, according to [34], we quantified the local model quality, and the quality metric
score of the ith local model is described as follows.

_ ¥
QMS,, = log (%) 8)

where 1 is the number of local model iterations. Our quality metrics have a good advantage
over current defense approaches that directly utilize small datasets from the server for
quality metrics of local models. Firstly, we abandon the practice of centralizing the data
in the server and delegate the quality metrics to the clients, which better satisfies the
principle of federated learning. Secondly, our quality metrics are distributed across multiple
clients, which provides better fault tolerance and accuracy than utilizing a central dataset
for evaluation.

Aggregation. We first define the composite metric score (CMS) of the local model w!,,
which is a combination of the geometry and quality metric scores.

CMS,, = GMS,, + QMS,, 9)

Then, we calculate the global model by weighted averaging the local model, where
the weights are determined based on the composite metric scores.

1
L — CMS; - w 10
£, CMS; 5 Z (o
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Algorithm 1 describes the complete FLGQM algorithm. Through the above process,

we can obtain a more robust global model.

Algorithm 1 FLGQM.

1:

—_
—

12:

24:
25:
26:
27:
28:
29:
30:
31:
32:
33:
34:

35:
36:

37:
38:

39:

R A

—_
i

Input: Clients’ total number K, the client set C, train clients” total number P, union
clients’ total number H, communication rounds’ total number T, local epochs’ total
number E, the minibatch size b.

: Onput: Global model w
: Server executes:
:forte{1,2,---,T} do

// The server randomly selects clients and distributes the gobal model.
client(C') executes:
forp € {1,2,---, P} in paralled do
w}, < ClientUpdate(p,w' )
send w}, to server
end
forpe {1,2,---,P} do
s, = {O, Cos(w, 11,w;) <0,
1, Cos(w;_ ,w;) >0
end
// Reject models with a value of 0. The remaining client set is C't =
C1,-.-,C1,...CL g Ct,L S p.
forl € {1,2,---,L} do
cg1 = ReLU(Cos(w!, w'1))
end
// Reject models with a value of 0. The remaining client set is C2 =
{c1,---,cmy--.,cpmp CCH,M < L.
forme {1,2,--- ,M} do
GMS,, = cg,, - EDAS(wl, w'1)
end
// The server randomly samples H clients from C"" = C — C!, and forms a union
set U'.
// The server sends the set WeoodrnGeo = W}, - - -, Wy, - - -, W} to union clients.
client(U’) executes:
forh € {1,2,--- ,H} in paralled do
forme {1,2,--- ,M} do
svy! <—accuracy in dataset D,
end
UCS} «+ [svi,...,sv}’f,...,svly]
send UCS!, to server
end
forme {1,2,--- ,M} do
TCS;, = [svf, ..., 50, .., soft]
sy = (1*;13)H Loerest X

Ms!, = L~
OMSin = fog(30)
MS!, = MMS!, + QMS!,
end

: t_ 1 M ot
aggregation w' = M Y21 MS; - w;

end
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3. Results and Discussion
3.1. Experimental Setup
3.1.1. Datasets

In our experiments, we utilize two publicly available classification datasets.

MINST [35]: A widely used dataset in machine learning, it serves as the standard bench-
mark for digit recognition tasks. It comprises 60,000 training images and 10,000 test images,
with each grayscale image representing a handwritten digit (ranging from 0 to 9) in a
28 x 28 pixel format.

CIFAR-10 [36]: Curated by the Canadian Institute for Advanced Research (CIFAR), it is a
widely used dataset in machine learning. It consists of 60,000 32 x 32 pixel color images
categorized into 10 distinct classes. These classes represent objects such as airplanes, cars,
birds, cats, deer, dogs, frogs, horses, ships, and trucks.

To simulate the distribution of non-IID data among clients, we follow previous
work [5] and assign a random dominant label ! to each client, i.e., the number of la-
bels I dominates within the client and the number of other labels is uniformly distributed.
Specifically, we group all clients according to the number of classes within the dataset, i.e.,
if there are Y classes in the dataset, the clients are divided into Y groups. Then, for label /,
it is assigned to group ! with a probability of q; otherwise, it is assigned to other groups.

Each client within the same group receives an equal and balanced distribution of
the data. g controls differences in the distribution of training data across clients. When
g = 1/Y, it indicates that the client’s local training data follow an independent and
identically distributed (IID) pattern. Conversely, if 4 takes any other value, the client’s
local training data are considered non-IID. Moreover, as the value of g increases, the degree
of non-IIDness in the client’s local training data also escalates. In our experiments, we
deliberately set g to 0.5 for both MNIST and CIFAR-10, resulting in a higher degree of
non-IID characteristics in the data.

3.1.2. Poisoning Attack

In our experiment, for data poisoning attacks, we focus on the label flipping attack.
Regarding local model poisoning attacks, we focus on the LIE attack, Fang attack, and
AGRT attack.

Label flipping attack [37]: For each sample of each malicious client, we cyclically shift the
corresponding label I to (I + 1)modY, where Y represents the total number of labels (e.g.,
Y = 10 in the MNIST dataset) [ € 1, 2,...,Y.

LIE attack [9]: The Little Is Enough (LIE) attack adds a little noise on the model that is the
average of all uploaded local models in the non-adversarial setting. The perturbation used
in the attack is carefully chosen to be large enough to significantly impact the global model
but small enough to avoid detection by the Byzantine Robust Aggregation algorithm.
Fang attack [8]: The malicious client crafts poisoned local model updates that are inten-
tionally opposite to the benign updates, allowing them to bypass the defense mechanism
of Krum.

AGRT attack [13]: The goal of the aggregation algorithm tailored (AGRT) attack is to
maximize the effect on the global model in an optimization problem during each round
of FL, i.e., to find the best malicious update that is not easily detected by the defense
mechanism, while also achieving the maximum attack effect. Formally, the attacker builds
a malicious update using the following optimization problem.

argmin||V* — A(7E 1Y) Viepmr 1|2
! (11)
Vit = V0 +7v"; VP = Fed Avg(Vic )

where A is the defense method deployed by the server (e.g., Krum, etc.). V[, is the benign
update known to the attacker. FedAvg is a benign aggregation method that averages the
updates from all clients. V7 is a perturbation variable. 7 is a scaling factor and the
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AGRT attack, i.e., solving for the optimal y value. V;’é[m] is then the final malicious
update obtained.

3.1.3. Baseline Aggregation Rules
We consider the following aggregation rules as our baseline for comparison.

FedAvg [1]: The new global model is obtained by calculating the average of all local models.
Median [18]: The median directly takes the median of the coordinates of each dimension of
all local models to obtain the new global model.

Krum [15]: In Krum, the Euclidean distance is employed to score the local models, and
subsequently, the highest-rated model is chosen as the global model. For the ith client,
assuming the existence of f malicious clients, the local model’s score can be determined
as follows.

si= ). llwj—will3 (12)
ZUjGFi’K,f,Z
where I'; g 5 is the set of K — f — 2 local models, and this K — f — 2 local model is the
K — f — 2 model with the smallest Euclidean distance from w;.

Trimmed Mean [18]: The trimmed mean is an aggregation rule that takes into account each
model parameter and operates based on coordinates. For every model parameter, the server
gathers all values from local models and arranges them in ascending order. Subsequently,
it excludes the largest and smallest K values, computes their average, and utilizes this
average as the corresponding parameter value in the global model.

3.1.4. Performance Metrics and Federated Learning System Setup

Given that this work primarily centers around countering data poisoning attacks
and model poisoning attacks, both of which intend to undermine the global classification
accuracy of the model, we have chosen the model’s accuracy as our evaluation metric.
A higher accuracy for the global model signifies the effectiveness of the corresponding
defense method. By default, in the case of MNIST, we consider a federated learning (FL)
system comprising 100 clients. For CIFAR-10, the FL system consists of 40 clients. Unless
specifically stated, we assume that 20% of the clients in each dataset are malicious.

3.1.5. Global Model

In the case of MNIST, we employ a straightforward CNN architecture comprising two
convolutional layers and two fully connected layers as the global model. For CIFAR-10,
our choice for the global model is ResNet18.

3.1.6. Federated Learning Method Parameter Setting

We compared FLGQM with Fed Avg, median, Krum, and trimmed mean. Among them,
FedAvg is the most popular method in non-adversarial environments. The median, Krum,
and trimmed mean are three Byzantine robust federated learning methods. These methods
all satisfy the general framework. Hence, all of them share the following parameters:
K, 7, R;, Rg, b, and B. The specific definitions and explanations of these parameters can
be found in Table 2. Specifically, based on previous work [16], we set T = K, i.e., all clients
participate in the federated learning process in each round. Also, we set the local iteration
round R; = 5 and the global iteration round E¢ = 300. We set b = 16 for MNIST and b = 64
for CIFAR-10.

In addition to the common parameters mentioned above, different methods have
different additional parameters. Krum has the parameter f and the trimmed mean has the
parameter K, which represents the upper limit of malicious clients. We set f = K = M,
i.e., giving them enough advantage in both algorithms to let them know the number of
all malicious clients. For the FLGOM method proposed in this paper, we set 7, = 0.8 and
7, = 0.2. In the geometric metric score stage, for MNIST, we set the hyperparameters to
u=1w=0,v7 =2, and for CIFAR-10, we set the hyperparameterstoy =2, w =1,y = 4.
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Table 2. Federated learning parameter settings in our experiment.

Explanation MNIST CIFAR-10
K Number of clients 100 40
T Number of clients selected per global round K
Ta Proportion of clients selected as training clients each global round 0.8
Ty Proportion of clients selected as union clients each global round 0.2
E Local epoch 5
Eq Global epoch 300
b Batch size 16 64
B Learning rate 0.01 0.001
M Number of malicious clients 20 8
f Parameter of Krum [11] M
K Parameter of trimmed mean [15] M
3.2. Experimental Results
3.2.1. FLGQM Can Achieve Two Defensive Goals.

Table 3 shows the accuracy of different federated learning algorithms on two datasets
under different attacks. The results show that FLGQM can achieve two defense goals:
fidelity and robustness.

Fidelity. As evident from Table 3, FLGQM achieves fidelity as the accuracy in the non-
adversarial setting is comparable to the baseline (FedAvg) on both datasets.
Table 3. Accuracy of compared federated learning algorithms on MNIST and CIFAR-10 with differ-
ent attacks.
Dataset Attacks FedAvg Median Trim_mean Krum FLTrust MAB-RFL FLGOM
No attack 98.51 98.25 98.22 95.01 97.84 97.95 98.39
LF attack - 97.79 97.41 93.51 97.40 96.60 98.03
MNIST LIE attack - 96.25 88.62 94.49 97.14 97.44 98.05
Fang attack - 96.17 95.64 94.75 97.10 97.45 97.97
AGRT attack - 95.18 95.84 74.19 97.03 97.14 97.63
No attack 73.68 72.83 72.58 66.36 73.29 73.70 73.55
LF attack - 69.59 69.35 57.63 73.21 73.66 73.53
CIFAR-10 LIE attack - 48.38 35.77 41.68 72.95 72.62 73.30
Fang attack - 58.73 66.57 42.43 73.19 72.18 73.39
AGRT attack - 23.06 53.77 10.00 72.52 70.55 72.63

However, the existing robust federated learning methods are less accurate in the
absence of attacks. For example, the accuracy of median, Trim_mean, Krum, FLTrust, and
MAB-RFL on MNIST differed from FedAvg by 0.26%, 0.29%, 3.50%, 0.67%, and 0.56%,
respectively. However, the accuracy of FLGQM is close to that of FedAvg, with only
0.12% difference. Compared with FedAvg, the accuracy of median, Trim_mean, and Krum
decreased by 0.20%, 0.45%, and 6.67%, with Krum possessing a lower accuracy. And the
accuracy of FLGQM differs from Fed Avg by only 0.13%. The results show that FLGQM has
high accuracy, i.e., has better fidelity, than the existing robust federated learning method
in a non-adversarial setting. This is due to the fact that the current FL. method discards
some of the parameter updates while aggregating local parameter updates and considers
a single perspective, so the test accuracy will be lower. In contrast, our approach takes
into account model updates from two perspectives and is able to amplify the more subtle
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differences between benign clients and malicious clients, allowing us to effectively leverage
all available local model information.

Robustness. As can be seen from Table 3, FLGQM achieves robustness as its accuracy
under all attacks has very little change compared to the baseline (FedAvg) on both datasets.

Specifically, FLGQM can have comparable accuracy compared to FedAvg on both
datasets, with a maximum difference of only 0.88%. Meanwhile, other existing robust
federated learning methods possess worse accuracy. Especially in the case of untargeted
attacks, their performance drops sharply. For example, on the MNIST dataset, Trim_mean’s
accuracy decreases by 9.6% under LIE attack and Krum’s accuracy decreases by 22.02%
under AGRT attack. Median and Krum fail under AGRT attack on the CIFAR-10 dataset.
On the CIFAR-10 dataset, median, Trim_mean, and Krum all show varying degrees of
performance degradation under other attacks. In comparison to the latest defense methods,
FLTrust and MAB-FL, our method exhibits slightly lower accuracy than MAB-FL solely
on CIFAR-10 under LF attack. However, in all other scenarios, our method demonstrates
higher accuracy than both FLTrust and MAB-FL. This highlights the relative stability
of our defense method and underscores its advantages over existing defense methods.
Therefore, it can be seen that FLGQM achieves the goal of robustness because FLGOM
takes more factors into account and can minimize the impact caused by malicious clients
from different dimensions.

3.2.2. The Variant of FLGQM

FLGQM has two key features: it uses cosine similarity and Euclidean similarity to
constrain the size and direction of the local model, and it uses union clients to perform
quality metrics on the local model. Considering that the union client cannot run alone, we
consider a variant of FLGQM called FLGQM-NoQMS. In this variant, we remove the union
client and only consider the effect of geometric metric scores.

Table 4 shows the accuracy of this variant with median, Trim_mean, Krum, and
FLGQM under different attack methods. It is evident that the accuracy of FLGOM-NoQMS
decreases relative to FLGQM, indicating that the union client has a role in improving the
robustness of federated learning. By incorporating quality metrics alongside geometric
metrics, we can effectively counteract poisoning attacks that may go undetected if relying
solely on geometric metrics. Through distributed quality assessment, we gain additional
insights into the local models, enabling us to implement a comprehensive defense strategy
against poisoning attacks and achieve higher accuracy rates. However, FLGQM-NoQMS
is able to achieve similar results relative to methods such as the median. This shows that
robustness with certain effects can be achieved by using only geometric metric scores.

Table 4. Accuracy of compared federated learning algorithms on MNIST and CIFAR-10 with differ-
ent attacks.

MAB- FLGOM-

Dataset Attacks FedAvg Median  Trim_mean Krum FLTrust RFL NoQMS FLGQOM
No attack 98.51 98.25 98.22 95.01 97.84 97.95 97.98 98.39
LF attack - 97.79 97.41 93.51 97.40 96.60 95.94 98.03
MNIST LIE attack - 96.25 88.62 94.49 97.14 97.44 96.83 98.05
Fang attack - 96.17 95.64 94.75 97.10 97.45 95.53 97.97
AGRT attack - 95.18 95.84 74.19 97.03 97.14 87.64 97.63
No attack 73.68 72.83 72.58 66.36 73.29 73.70 73.15 73.55
LF attack - 69.59 69.35 57.63 73.21 73.66 65.59 73.53
CIFAR-10 LIE attack - 48.38 35.77 41.68 72.95 72.62 69.28 73.30
Fang attack - 58.73 66.57 42.43 73.19 72.18 67.30 73.39
AGRT attack - 23.06 53.77 10.00 72.52 70.55 56.34 72.63
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3.2.3. Impact of Malicious Clients’ Number

Table 5 presents the accuracy results of various robust federated learning methods on
MNIST, considering different attacks and varying proportions of malicious clients (ranging
from 0% to 50%). Since Trim_mean works by eliminating local model updates with twice
the number of malicious clients, only 0—40% of the results are displayed for Trim_mean.

Table 5. Accuracy of compared federated learning algorithms on MNIST with different attacks.

Attacks Percentage of Malicious Clients FedAvg Median Trim_mean Krum  FLTrust MAB-RFL FLGQM

0% 98.51 98.25 98.22 95.01 97.84 97.95 98.39

10% - 98.04 98.01 94.81 97.69 97.42 98.22

LF attack 20% - 97.79 97.41 93.51 97.40 96.60 98.03
30% . 96.96 96.54 93.27 97.42 97.28 98.01

40% - 94.14 93.71 93.14 95.78 97.12 97.87

50% - 17.44 - 2355 95.23 95.32 97.86

0% 98.51 98.25 98.22 95.01 97.84 97.95 98.39

10% - 98.01 97.95 94.63 97.57 97.42 98.26

LI attack 20% - 96.25 88.62 94.49 97.14 97.44 98.05
30% - 96.06 84.77 94.46 97.25 97.22 98.02

40% - 95.96 79.67 3043 97.04 96.94 97.89

50% . 16.80 . 11.22 97.10 96.86 97.64

0% 98.51 98.25 98.22 95.01 97.84 97.95 98.39

10% . 96.35 96.69 94.79 97.38 97.86 98.33

Fang attack 20% - 96.25 96.54 94.75 97.10 97.45 97.97
30% - 96.17 95.36 94.19 96.27 97.57 97.77

40% . 95.31 9.80 10.00 94.58 97.42 97.68

50% . 10.30 . 9.90 94.20 97.37 97.59

0% 98.51 98.25 98.22 95.01 97.84 97.95 98.39

10% . 96.98 96.77 94.88 97.21 97.23 98.09

20% - 95.18 95.84 74.19 97.03 97.14 97.63

AGRT attack 30% - 95.09 90.03 66.84 96.99 96.12 97.45
40% . 94.98 9.80 10.00 96.37 96.10 97.41

50% - 9.80 - 9.80 95.49 96.00 97.20

It can be observed through Table 5 and Figure 4 that FLGQM is able to defend against
0-50% malicious clients in the presence of untargeted and targeted attacks. When there
are 50% malicious clients, FLGQM is still able to have almost comparable performance to
FedAvg, with a maximum error of only 1.19%. Nevertheless, alternative robust federated
learning methods exhibit lower tolerance toward malicious clients. For example, under
the LF attack, median and Krum almost fail when the malicious client reaches 50%, and
Trim_mean’s performance drops by 4.51% when the malicious client reaches 40%. Under
the LIE attack, Krum fails when the malicious client reaches 40%; median fails when the
malicious client reaches 50%; and the performance of Trim_mean drops by 18.55% when
the malicious client reaches 40%. Under model poisoning attacks, such as Fang and AGRT,
Trim_mean and Krum fail when the malicious clients reach 40%, and median fails when
it reaches 50%. The most recent defense method, FLTrust, exhibits a decrease in accuracy
under LF attack, Fang attack, and AGRT attack, especially when the malicious clients’
proportion reaches 40%. Similarly, the latest defense method, MAB-FL, experiences a
certain degree of accuracy reduction under LF attack when the malicious clients’ proportion
reaches 50% and under AGRT attack when the malicious clients” proportion reaches 30%.
It can be seen that FLGQM is able to tolerate a much larger number of malicious clients.
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Figure 4. Accuracy of compared federated learning algorithms on MNIST with different attacks.

4. Conclusions

We propose a novel federated learning method called FLGQM for defense against
malicious clients. By designing a defense mechanism from geometric metrics, we can
geometrically exclude malicious clients. By incorporating quality metrics in addition to
geometric metrics, we can effectively detect and mitigate poisoning attacks that may go un-
noticed when relying solely on geometric metrics. This comprehensive approach enhances
the robustness of our defense mechanisms. Our approach combines both geometric and
qualitative aspects, thus it can ensure the robustness of federation learning.

Our evaluation on two datasets shows that FLGQM can achieve robustness against
most malicious clients. Moreover, even in scenarios involving a substantial number of
malicious clients, FLGQM can successfully train a global model that performs comparably
to the global model learned by Fed Avg in the absence of attacks.

There are several potential avenues for improvement in future work. One possibility
is to explore the development of an optimal method, potentially utilizing other geometric
statistics, to enhance the accuracy of geometric metrics. We will also explore the design of a
local parameter poisoning attack against FLGOM and subsequently optimize FLGQOM to
enhance its resilience against such attacks. In addition, we consider the introduction of a
reputation mechanism to enable a better approach to union and to coalition client selection.
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