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Abstract: Complex and high-computational-cost algorithms are usually the state-of-the-art solution
for autonomous driving cases in which non-holonomic robots must be controlled in scenarios with
spatial restrictions and interaction with dynamic obstacles while fulfilling at all times safety, comfort,
and legal requirements. These highly complex software solutions must cover the high variability of
use cases that might appear in traffic conditions, especially when involving scenarios with dynamic
obstacles. Reinforcement learning algorithms are seen as a powerful tool in autonomous driving
scenarios since the complexity of the algorithm is automatically learned by trial and error with the
help of simple reward functions. This paper proposes a methodology to properly define simple
reward functions and come up automatically with a complex and successful autonomous driving
policy. The proposed methodology has no motion planning module so that the computational
power can be limited like in the reactive robotic paradigm. Reactions are learned based on the
maximization of the cumulative reward obtained during the learning process. Since the motion is
based on the cumulative reward, the proposed algorithm is not bound to any embedded model of the
robot and is not being affected by uncertainties of these models or estimators, making it possible to
generate trajectories with the consideration of non-holonomic constrains. This paper explains the
proposed methodology and discusses the setup of experiments and the results for the validation of the
methodology in scenarios with dynamic obstacles. A comparison between the reinforcement learning
algorithm and state-of-the-art approaches is also carried out to highlight how the methodology
proposed outperforms state-of-the-art algorithms.

Keywords: autonomous robots; deep reinforcement learning; dynamic environment; comfort driving;
self-learning

1. Introduction

Autonomous driving is a very wide field of research that gathers many different
methodologies. These methodologies are usually targeted to a very specific problem within
the autonomous driving domain. The methodology presented in this work proposes
a solution for a robot driving in a scenario with spatial restrictions (limited drivable
space), interacting with static and dynamic obstacles, and fulfilling at all times safety, legal,
and comfort requirements. The safety requirements ensure that the robot moves within
the drivable space, avoiding collision with any other obstacle and always fulfilling the
non-holonomic constrains that the robot might have. The legal requirements define the
maximum speed limit and the comfort requirements establish limitations on the robot’s
acceleration and jerk to maximize comfort. The state-of-the-art solutions that attempt to
solve this autonomous driving problem are characterized by overly complicated algorithms
that demand a lot of computational resources. This article uses deep reinforcement learning
techniques to overcome these issues. Specifically, the proposed methodology contains the
following contributions:
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(1) The methodology relies on the definition of simple, multiple, and intuitive reward
functions. The reward functions are closely related to the feeling of pain or pleasure
that we might receive after performing a series of actions. In contrast to a cost function,
the reward function does not evaluate how good or bad it is to take a specific action
in a given state.

(2) The perception, motion planning, and motion control software modules are not
embedded in a complex deep neural network architecture. Only the motion plan-
ning software module is implemented using a deep neural network model, making
training easier.

(3) A continuous multi-action space is defined to solve complex dynamic scenarios.

(4) The comfort requirements are easily included through the definition of simple reward
functions. Since all reward functions are normalized between —1 and 0, a weighted
sum of the reward functions is performed to prioritize safety requirements over legal
or comfort requirements.

The rest of the paper is structured as follows. The Materials and Methods section re-
views the relevant literature and gives a detailed explanation of the proposed methodology.
The design of experiments for validation of the methodology and the simulation results
are also discussed in the Discussion section and compared with state-of-the-art algorithms.
Finally, the main conclusions and advantages of the proposed methodology are listed in
the Conclusions section.

2. Materials and Methods

To review the related work, we went through all robotic paradigms, always keeping in
mind the autonomous driving problem that we were attempting to solve. The definition of
this autonomous driving problem has basically 4 challenging points: first, the accomplish-
ment of the safety and legal requirements under dynamic scenarios, i.e., avoiding dynamic
obstacles and driving the robot within the drivable space, controlling its maximum linear
speed. Some methods in the literature struggle to accomplish these requirements under dy-
namic scenarios. Second, the fulfillment of comfort requirements. Some robotic paradigms
are less suitable than others to fulfill comfort requirements. Third, the generation of feasible
trajectories, i.e., the generation of trajectories that are capable of being realized by the
motion control. This point represents a headache for many state-of-the-art algorithms,
specifically when facing driving situations close to the limit (grip limit). Finally, the pro-
posed algorithm must have a reasonable computational load. State-of-the-art algorithms
are well known for demanding very high computational resources, making them hard to
run on microcontrollers.

A. Reactive Paradigm

Methods based on the reactive paradigm perform well with holonomic robots in spa-
tially restricted scenarios with static obstacles while fulfilling safety and legal requirements.
Common methods are the potential field method [1], velocity obstacle method [2], dynamic
window approach [3], or partial center of area method [4]. However, non-holonomic robots
might be difficult to integrate with the reactive paradigm since they need to plan their
movement ahead in order to avoid collision with obstacles. Moreover, the control based
on reactions to certain sensorial inputs (behaviors) without any local planning can lead to
aggressive and long trajectories [5], making it difficult to integrate comfort requirements.
On the other hand, the reactive paradigm demands low computational resources, which
enables the usage of non-expensive microcontrollers.

B. Deliberative Paradigm

The robotic paradigm with a local planification stage is the deliberative paradigm.
The state-of-the-art solutions that attempt to solve the previously described autonomous
driving problem are mainly grouped in this robotic paradigm. The methods within the
deliberative paradigm can be divided into three different subgroups: graph-based methods,
sampling-based methods, and model predictive control methods.



Appl. Sci. 2024, 14, 366

3o0f21

Within the graph-based methods group, the Dijkstra algorithm [6] performs very well
at avoiding obstacles and finding the shortest path. However, it is difficult to use with
large grids because it is computationally very expensive. The A* algorithm [7] followed the
Dijkstra algorithm to reduce the computational load by including heuristic functions to
find the solution faster. However, the Dijkstra and A* algorithms have also an additional
and very important disadvantage: they do not consider the robot dynamics in the motion
planning, making the method invalid for non-holonomic robots. Kinematic or dynamic
embedded models can be considered to make the method valid for non-holonomic robots.
A good example is the hybrid A* algorithm [8]. However, these methods rely on embedded
models that are affected by uncertainties, producing trajectories that might be unfeasible to
control, specifically if the robot faces driving situations close to the limit.

With the aim of reducing the computational cost, sampling-based methods were
created. Sampling-based methods can work on a continuous space where only specific
discrete waypoints are sampled. Common methods are rapidly exploring random trees
(RRTs) [9] or the probabilistic roadmap method (PRM) [10]. Once the sampling process
is completed, a path considering non-holonomic constrains can be generated: [11] used
maximum and minimum limitations of a path’s curvature and the momentum of the
vehicle and [12] used an embedded dynamic model of the robot. Eventually, the final
trajectory was selected based on the score given by a cost function. Since non-holonomic
constrains were considered, the cost function only needed to evaluate aspects such as robot
collisions, comfort, or total travel time. However, [11] did not consider all non-holonomic
constrains and [12] relied on embedded models that could differ from reality. Driving
situations close to the limit are also challenging, even when using complex embedded
robot dynamic models. Feasible trajectories can be easily generated under scenarios of low
velocity, such as parking [13] or scenarios with moderate accelerations [14]. But, scenarios
close to the limit are difficult to consider in this approach. Some other approaches based
on pure mathematical functions can be applied to connect the sampled waypoints with a
smooth path profile, such as Bezier curves [15], splines curves [16], or the lattice planner
with polynomial curves for the path’s curvature [17]. These approaches can have the
advantage of not embedding a dynamic model of the robot into the logic, which can simplify
the implementation. However, since some of the trajectories generated might not fulfill
the non-holonomic constrains, the cost function must consider these constrains to reject
non-feasible trajectories.

The predictive control model attempts to generate feasible trajectories considering
all non-holonomic constrains, without having to completely discretize (graph-based) or
partially sample (sampling-based) the continuous space. An embedded dynamic model
of the robot is included in the logic. A cost function defines the goals of the autonomous
driving problem and an optimizer iteratively solves this problem, minimizing the cost
function and generating the corresponding control actions over a future horizon. The
predictive control model also addresses the problem of planning feasible trajectories under
driving situations close to the limit. In [18], the parameters of the embedded model were
updated over the horizon in situations close to the limit based on a predictive friction
estimate to obtain even more reliable and feasible trajectories. However, there was still a
reliance on models or estimators that could have differences with respect to reality and the
computational consumption was still very high due to the usage of an iterative optimizer.

In general, the main problems of the deliberative paradigm are the challenging design
of the cost function, the high computational cost, and the uncertainties of embedded
dynamic models, no matter whether the algorithm falls under a graph-based, sampling-
based, or predictive control model. In [8], the challenges of designing an effective cost
function for the hybrid A* algorithm were addressed. In [19], a comparison of motion
planning algorithms was performed in terms of computational cost, highlighting the high
computational cost of graph-based and sampling-based methods.
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C. Sense-Think-Act Paradigm

The problem of the uncertainties of embedded models, which eventually compromises
the feasibility of the generated trajectory, is addressed by the robotic paradigm sense—
think—act. In this paradigm, a model, usually a deep neural network, is trained with real
trajectories (supervised learning) to create a path planner algorithm based on artificial
intelligence [20]. Thus, it avoids the usage of embedded dynamic models. However, the
main drawbacks of this paradigm are the need for big databases and the labeling of these
databases. The labeling of databases is not only a very time-consuming task, but it can also
introduce bias to the results, specifically if the labeling task is done manually.

D. Sense-Explore-Act-Learn Paradigm

The methods based on reinforcement learning techniques attempt to bring a solution
to the previously mentioned drawbacks. The drawbacks and the solution proposed by the
reinforcement learning approach are summarized in Table 1.

Table 1. Strengths of reinforcement learning-based algorithms for autonomous driving navigation.

State-of-the-Art Drawbacks Reinforcement Learning Strengths

Cost function design

Cost function is automatically learned

Performance under dynamic environments Agent learns from dynamic environments

Uncertainties of embedded dynamic models Agent free from embedded dynamic models

High computational cost

Low computational cost avoiding iterative motion planning modules

Integration of comfort requirements Easy integration with simple reward functions

Databases must be available and labeled

Data are generated on-the-go and automatically labeled based on a
reward value

Due to the advantages summarized in the previous table, reinforcement learning
techniques have been the subject of extensive study within the autonomous driving do-
main. In [21], Q-learning was used to find the shortest path from the starting pose to the
destination pose. Reinforcement learning techniques with continuous actions and states
were introduced in [22], with very promising results. A deep deterministic policy gradient
(DDPG) was introduced in [23] to learn from a real scenario how to drive and keep the ve-
hicle inside the road boundaries by providing just a single camera image of the road as the
input. However, this work only implemented partial safety requirements (driving within
the drivable space without obstacle avoidance) and did not consider any comfort or legal
requirements. Additionally, the perception, motion planning, and motion control modules
were embedded in the deep neural networks of the deep reinforcement learning algorithm.
In [24], the autonomous driving algorithm relied not only on input images of the cameras
as in [23] but also on post-processed data as velocities or relative distances. In [25], comfort
requirements were included for lane change maneuvers as a simple reward function. In
contrast to [23], it separated the perception module from the reinforcement learning task,
and the agent consumed already post-processed signals from the perception module, such
as robot velocities or relative distances, instead of images. The algorithm presented in
this work keeps the perception, motion planning, and motion control modules separated
from each other. Images are not directly provided to the agent. Instead, all the relevant
post-processed information from the perception module is provided to the agent so that it
can learn the best possible trajectory based only on variables that have an important impact
on motion planning. Regarding the definition of reward functions, [26] included positively
and negatively weighted rewards. The methodology proposed only included negatively
weighted rewards to exclude policies that end up in endless loops of collecting permanently
positive rewards instead of reaching the destination. In terms of requirements, ref. [26]
included vehicle speed (legal requirements), collisions (safety requirements), and travel
distance towards the destination (task-oriented requirements), but comfort requirements
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were not included. In [27], comfort, legal, and task-oriented requirements (lane keeping)
were included, but safety requirements were not, which are needed for, for example, over-
taking maneuvers in dynamic scenarios. In [28], all requirements were included. However,
the comfort requirements were not expressed in terms of acceleration and jerk but in terms
of limiting the steering wheel angle (thus only penalizing lateral acceleration but excluding
lateral jerk and longitudinal acceleration and jerk). In [28], a mix of sparse and continuous
reward functions was used. The methodology proposed only used continuous reward
functions to better guide the reinforcement learning algorithm to find the most valuable
rewards.

The methodology proposed is based on the deep deterministic policy gradient (DDPG)
algorithm. The DDPG method, like the Q-learning method, is a model-free algorithm. That
is, it does not use any embedded model of the robot inside the agent logic. Instead, it
learns the optimal policy directly from the environment. The DDPG method is intended
for environments with continuous states and actions. This is possible by approximating the
actor model (which computes the action a;) with deep neural network y of weights 6 as a
function of state s at time ¢ (1).

ar = p(st|0) = pg(st) 1)

The DDPG algorithm is an actor—critic method and, therefore, the critic function is
also approximated with another deep neural network Q of weight ¢ as a function of state s
and the action a at time ¢ (2).

Qp(st,ar) = Qgp(st, po(st)) 2)

Actor—critic methods combine the benefits of policy-based and value-based methods.
They benefit from the good convergence properties of policy-based methods and they also
benefit from the sample efficiency of value-based methods, which tend to find an optimal
solution faster.

The deterministic policy gradient theorem (3) updates the weight 0 of the actor model
pe in the direction of the maximum value of the critic model Qy:

Vo (o) = Beup | VaQp(5,0)] o, o Voria(s)] ©)

On the other hand, the Bellman equation is used to iteratively update the weight ¢ of
the critic network Qy (4) and eventually learn the optimal critic and actor networks.

Qp(st,ar) = Esop [V(St/at) + 7Q¢(St+1,V9(St+1))] (4)

Additionally, this actor—critic method uses the replay buffer and target networks
to bring more stability to the learning process. Random observations are selected from
the replay buffer to avoid training the neural networks with consecutive and correlated
observations. The weights ¢’ and 6’ of the target networks 4’y (s) and Q' (s, a) are updated
after the weights of the actor and critic networks with a soft factor 7 (5). This lag brings
stability to the learning.

0 =10+ (1—1)¢

¢'=1¢+(1-1)¢
The neural network architecture of actor and critic models considers several hidden
layers (Figure 1). The variables in brackets denote the number of neurons for that layer.

®)
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Figure 1. Actor and critic deep neural network architecture.

Finally, the exploration is essential to find the optimal policy. For that purpose, a white
noise signal of zero mean value is added to the actor—network output (6). The amplitude of
the exploration is controlled with the variance ¢ of the normal distribution N.

ar = "l/lg(St) +N(0,0') 6)

As the learning process progresses and the actor and critic networks learn the optimal
values, less exploration is needed. Therefore, a decay of the exploration was programmed.
This decay also helped to stabilize the learning process. The DDPG pseudocode is shown
in Algorithm 1:

Algorithm 1. Deep Deterministic Policy Gradient

Init pig(s) and p'y (s) with weights 6 and ' = 0
Init Qy (s, a) and Q' (s, @) with weights ¢ and ¢' = ¢
Init discount factor -y and soft update T
for episode € {1...episode,,, } do
St = 5o
while True
ay = }le(St) +N(O,(T)
Execute a; and observe next state s;1, reward r¢,
and termination flag T;
Record transition (s, at,7t,5¢41) in the buffer
Sample a batch of transitions D from the buffer
Compute y; = 1; + Q' g (si11, iy (Si41))
Update ¢ by minimizing the loss function L:
L=% ¥ (vi— Qplsipo(si))’
i€D
Update 6:
Vol (o) = Esp | VaQp(5,0)],_,, (o) VoHo(s)]
Update ¢’ and ¢':
=10+ (1—-1)0
¢ =1+ (1-1)¢
if T} == True
break
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Before reaching the maximum number of learning episodes, the learning process can
be terminated if some specific conditions are met. When reaching these conditions, it is
considered that the policy is mature enough to fulfill the requirements. There are mainly
2 conditions: first, the number of total episodes must be greater than the minimum number.
With this condition, we ensured that the exploration rate decayed until almost 0 to avoid
very noisy and unstable policies. Secondly, no termination due to non-compliance of the
safety, legal, or comfort requirements must be detected for a minimum number of episodes
to ensure proper learning. In order words, the termination of the learning episode must be
only related to task-oriented requirements, such as if the robot reaches the destination pose.
If the episode gets terminated because the robot crashes into an obstacle, the counter to
consider that the policy is mature enough gets reset to 0.

The agent, which is based on the DDPG algorithm, interacts with the environment.
Important concepts of the environment are the state variables, reward functions, and
motion control.

A. State Variables

The state variables S are essential during the reinforcement learning process (7). One
important property is that the state variables must be capable of generalization so that
the policy obtained after the learning process can solve unseen scenarios. Therefore,
absolute variables like the absolute distance traveled by the robot are avoided. A set of
relative distances (d1, . . ., d,) with respect to the robot’s position, the relative orientation to
the destination (6,.s¢), and dynamic variables such as robot linear and angular velocities
(0105, Wrop) and accelerations (v,,p, W,,;) are selected. The relative distances come from a
lidar sensor, which covers 180 degrees of the robot’s front view. To smoothly reduce the
linear velocity before reaching the destination, the relative distance between the robot and
the destination (d ) is also included.

S = {dll ooy dn, Urobs Wrobs Urobs Wrops Oftests ddest} (7)

Figure 2 shows an image of the previously mentioned state variables:

Destination pose

dy

Vrob» 1'77“01/"

Wrob)Wrob

v

Figure 2. State variables.

For the learning process to be stable, the state variables must fulfill the Markov
property. The Markov property is formulated in (8):

p(st+1lst) = p(sivils1 82, ..., 8t) (8)

According to (8), the future state s; 1 only depends on the current state s;. This means
that all the information from the history (sq,sy,...,s;—1) is irrelevant for computing the
future state s;;1. To make it possible for the state variables to fulfill the Markov property,
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they must include not only relative distances but also dynamic variables like the linear
and angular velocities and accelerations. Therefore, they are included in the list of state
variables in (7).

Finally, it is necessary to make sure that all states variables can be measured with
sensors. The relative distances come from a lidar sensor mounted on the top of the robot,
covering 180 degrees of the front view. The linear and angular velocities and accelerations
of the robot can be measured with encoders mounted on the driven wheels and IMU
sensors. The distance and orientation to the destination pose can be calculated based on
camera images. The destination pose can be recognized by using some special color that
the camera recognizes. Based on that recognition and after proper calibration of the camera
parameters, the distance to the destination pose and the relative orientation of the robot to
the destination pose can be calculated.

B. Reward Functions

The reward functions are the key to the reinforcement learning algorithm. The reward
function does not define which action to take. Instead, the reward functions are a mea-
surement of how good or bad it is to end up in a new state after an action is taken. This
measurement of good or bad is closely related to the sensation of pain or pleasure. Based on
the reward functions, the reinforcement learning algorithm automatically learns a complex
critic function to navigate the robot autonomously. In contrast to the reward function, the
critic function defines, for a given state, how good an action is, before the robot performs
such an action. Comparing the critic function with the state-of-the-art algorithms like the
lattice planner or the predictive control model, the critic function is equivalent to the cost
function. In these state-of-the-art algorithms, the cost function is usually a single and very
complex function, which needs to be manually designed to fulfill the requirements of the
autonomous driving problem. On the other hand, the reinforcement learning algorithm
automatically learns this cost function (critic function) based on simple, multiple, and
very intuitive reward functions. Therefore, the critic function gathers all the experience
seen during the learning process to build a complex function that fulfills all requirements.
To learn this complexity, usually, deep neural networks are selected as policy and critic
approximation functions.

There are some important rules to follow before the definition of the reward functions:

e In problems with continuous actions and states, or in case of too large discrete spaces,
it is very convenient to shape the reward functions instead of using sparse rewards.
The reason behind this is that the robot learns by means of exploration. If the robot
starts randomly exploring, the probability of the robot seeing this sparse reward can
be very low, leading to either an unsuccessful learning process because the robot does
not find the reward or to an extremely long learning process. On the other hand, in
case of shaped rewards (rewards with a smooth continuous gradient), the robot can
adapt its actions in the direction of maximizing the cumulative reward right from
the beginning.

e [tis better to avoid purely negative rewards. If the reward functions are always nega-
tive, excluding the 0, the reinforcement learning might find a solution by terminating
the learning episode as soon as possible rather than keeping on driving and therefore
accumulating more negative rewards.

e  Positive rewards are also tricky, and they must be treated carefully. If the robot finds a
positive reward, the logic might end up in a loop solution.

e  The learning scenarios must always be carefully designed to facilitate finding rewards
from a beneficial starting situation.

Regarding the type of rewards, they are divided into safety, legal, comfort, and task-
oriented requirements. The safety, legal, and comfort requirements are based on the pain
that the robot might suffer if they are not fulfilled. On the other hand, task-oriented
requirements are based on the sensation of pleasure that is obtained by fulfilling the
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proposed tasks. Therefore, depending on the robot’s mission, task-oriented requirements
can be built following different criteria.

(1) Safety requirements

Safety requirements implement a penalization or negative reward if the robot crashes
into obstacles. Situations where the robot drives too close to an obstacle are also penalized
even when no contact between the robot and the obstacle happens. For that reason, a safety
margin around the obstacle footprint of distance dj;,;; is defined, as represented in Figure 3.
A very simple reward function (9) is therefore defined: 0 if the robot drives outside the
safety margin, and a linear interpolation between 0 and —1 if the robot drives inside the
safety margin. The variable d is the relative distance from the robot to the obstacle.

0 ;A > dii
)

r =
safety d—djimit d < dijmir

limit ’

dlimit

Lidar’s view

Obstacle /

4

\

Robot

Figure 3. Safety margin around the obstacle footprint. If the robot enters the area delimited by the
safety margin, a negative reward will be forwarded to the agent during the learning process.

(2) Legal requirements

Legal requirements limit the maximum speed that the robot can travel. The robot
must control its linear speed v,,, so that it does not exceed this maximum value. The
implementation of this reward function is very simple as well (10). There are two speed
thresholds (v; and v;). If the speed does not exceed the lower threshold v;, the reward
will be 0. The reward will be linearly interpolated between 0 and —1 between the first and
second thresholds.

0 7 Orob < 11
Vyoh —0
Tlegal = _;;bfyll ;01 S Upop S 02 (10)
-1 ; Urop > 02

If the legal maximum velocity is vjeg,, v1 can be equal to vjeg, and v, can be set a little
bit higher than v}eg,.
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(3) Comfort requirements

Comfort can be defined as the pleasant feeling of the people traveling inside the robot.
Feelings of discomfort can come from different sources. The three main sources that can
decrease the feeling of comfort are listed below:

High acceleration values (longitudinal and lateral /angular)
High jerk values (longitudinal and lateral /angular)
Low-frequency acceleration over long periods of time (feeling of sickness)

In this work, the first source of discomfort is implemented. The reward function (11)
defines a window given two acceleration values, w; and w,. Accelerations below w; are
not penalized. Accelerations within w; and w, are penalized using linear interpolation.
The maximum penalization value is clipped to —1 if the acceleration is higher than w,.

0 ’ Z'Urob < wl

D=y e :
Tcomfort = \ — ﬁ , W1 < Wyop < Wo (11)
-1 , meh > sz

Reward functions for longitudinal and angular accelerations are added together to
build the final comfort function.

(4) Task-oriented requirements

It is possible to define multiple and specific tasks to be accomplished during au-
tonomous navigation. In this work, the robot is intended to reach a specific destination
pose. For that purpose, the robot is rewarded when facing the right direction towards
the destination pose. The robot will be also rewarded when traveling at the maximum
legal speed.

For the first task, if the direction to the destination pose 84/¢et (determined by visual
sensors) is not the same as the robot’s heading 0,,;, the robot is penalized according to (12).

. yetarget - erob‘

- (12)

Tdestination =

If the destination cannot be detected by visual sensors, the destination reward is set to
0 and the robot moves forward within the drivable space.

For the second task, the robot is penalized if the linear speed is not the maximum legal
one (13). Since legal requirements are also implemented, if the robot exceeds the maximum
legal speed, it is penalized according to (10).

Otarget —Urob
R Vpop < 0
Vtar ’ rob target
Tspeed = st (13)
0 ’ Urob = Otarget

In the previous reward function, the target linear velocity varget is equal to vjegq).
Finally, the reward due to the task-oriented requirements is obtained by adding the
single functions (14):
Ttask = Tdestination T Vspeed (14)

(5) Final reward function

The final reward function can be simply built by adding the single reward functions
(15). Each reward function is normalized between —1 and 0. A weighted addition of the
single reward functions is performed to prioritize the requirements:

r= Ksufety *Vsafety + Klegal * rlegul"’ (15)

Kcomfort *Yeomfort + Kiask * T'task
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In general, the order of importance within the requirements is as follows: safety, legal,
comfort, and task-oriented (16):

Ksafety > Klegal > Kcomfort > Kigsk (16)

C. Motion Control

The motion control strategy depends on the type of robot to be controlled. The
commanded signals from the agent are the linear and angular velocities. The motion
control takes care of the actuator control to fulfill the commanded velocities. In this work, a
differential robot was used for the validation. Considering that a differential robot traveling
at a constant linear speed must fulfill non-holonomic constrains as well, the differential
robot is a simple but valid approach to validate the methodology.

The commanded linear and angular velocities of the robot were converted in wheel
rotational speed by means of the kinematic equations of the differential robot (17) and (18).

w _ 2Z7roh + wrobD (17)
left Zrleft

20,00 — Wyop D
Wright = £Yrob — @rob™” (18)
zrright

The differential robot geometry and kinematic variables are shown in Figure 4:

Viert

Vright

rrighr

Figure 4. Kinematic variables for a differential robot.

Finally, two independent PI controllers control the commanded velocities by adapting
the duty cycles of the electrical motors connected to the driven wheels. Figure 5 shows
the final cascade control of the robot’s motion. An external motion planning loop based
on deep reinforcement learning techniques generates the requested linear and angular
speeds of the robot, depending on the robot’s state measured from the environment. These
requested linear and angular speeds are forwarded to an internal control loop based on
classical PID controllers. The internal loop measures the linear and angular actual speeds
of the robot for closed-loop control.

Linear speed Left wheel speed
Task Angular speed Differential Right wheel speed
—

T (S ) robot equations Pl controllers

7'y 7'y
Measured left wheel speed
Measured right wheel speed

Left wheel motor PWM

State Right wheel motor PWM
Sensors < Robot

Figure 5. Motion control diagram. Cascade control for the position of the robot.
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3. Results

All the experiments were carried out in the simulator CoppeliaSim (Figure 6). A
Python script controlled the connection with the simulation by means of APIs. The main
libraries used to build the reinforcement learning algorithm were TensorFlow and Gym.
Tensorflow and Keras provide the necessary functions to build actor and critic neural net-
work models. Gym provides the necessary tools to implement and compare reinforcement
learning algorithms. The actor neural network (policy) produced linear and angular speed
set points, which were converted into left and right wheel speeds of the differential robot.
These wheel speeds were sent over to the simulator via APIs. The simulator implemented
PID controllers to control in a closed loop these speeds.

Figure 6. CoppeliaSim simulation platform where all experiments were carried out.

The experiments defined within this section can be divided into two main groups. First,
an experiment or set of experiments used for the learning process. Second, an experiment
or set of experiments used for the validation process. It was important to use different
experiments for the validation process to prove that the methodology proposed can be
generalized to new unseen scenarios after the learning process is completed.

For the validation purpose, an experiment including a complex scenario with dynamic
and static obstacles was set up. The scenario (see Figure 7) was carefully chosen to validate
the following maneuvers:

(1) Follow-up

(2) Overtaking
(3) Lane keeping
(4) Lane change

Before the robot could perform in this validation experiment, it needed to learn how
to drive autonomously. For the learning purpose, less complex experiments were set up. In
this case, it was important to carefully select the experiments and scenarios so that the robot
could easily find rewards and learn a policy that would enable the robot to generalize and
drive autonomously in other unseen and more complex scenarios. Therefore, the learning
scenario (Figure 8) was specially adapted to see reward values early in the learning process
and better guide the policy to learn the right strategy.
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0.10 m/s v
A 0.05m/s
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B \ ,

Figure 7. Validation scenario. First dynamic obstacle blocked the way, forcing the robot to follow up

the obstacle. Second and third dynamic obstacles were driving at opposite speeds. The robot was

forced to perform lane change maneuvers to overtake the obstacles.

-

0.10 nvs ¥
A
0.05 nv/s

Destination pose

v

Figure 8. Learning scenario. Left static obstacle reduced the drivable space so that the robot received

rewards right from the beginning of the learning process.

The static obstacle of the left hand reduced the drivable space of the robot. This
allowed the robot to receive a negative reward right from the beginning if it got too close
to the walls, which delimited the boundaries of the circuit. Additionally, the starting pose
of the robot was not too far away from the first dynamic obstacle. This helped the robot
to quickly see negative rewards while approaching the dynamic obstacle and adapt the
policy and critic functions to follow up the obstacle instead of crashing into it. The resulting
robot’s trajectory after the learning process is shown in Figure 9. The robot’s linear velocity
was reduced to follow up the dynamic obstacle at the beginning of the circuit and the
commanded angular velocity was always smooth to maximize comfort (Figure 10).
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Figure 9. Traveled path by the robot in the learning scenario. Same colors indicate instant positions

of the dynamic obstacles and the robot in the traveled path.

06 Sensor signals over time: Linear (blue) and angular (red) velocities
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Figure 10. Top graph: linear (blue) and angular (red) velocities of the robot in the learning scenario.
Bottom graph: linear (blue) and angular (red) accelerations. The maximum and minimum levels of
the linear and angular accelerations were limited to maximize comfort.

Figure 11 shows the episodic reward as a function of the learning episodes. The
episodic reward increased towards 0 after each learning episode. There was even room for
improvement as the episodic reward did not seem to be completely flat after more than
200 learning episodes. It is interesting to note the recovery process in the episodic reward
plot, that is, the episodic reward suddenly went down and then up again in the next
episodes. This was due to two different factors: first, the exploration ratio sometimes
led the robot to collide with the obstacles. In the beginning, when the policy was still
unmature and the exploration ratio was high, the recovery peaks could be seen more
frequently. Second, when updating the policy following the gradient descent approach,
the step or learning rate could be too large, producing a policy that crashes the robot into
the obstacles. For these two reasons, a decay for both exploration and learning rate was
implemented. This is the reason why as the learning process went on, the recovery peaks
were less frequent. The total time needed to automatically learn the policy was 6.57 h. The
system used for the learning process was a desktop computer with an AMD Ryzen 5 2600
Six-Core Processor of 3.40 GHz and 8 Gb RAM installed (no GPU installation).
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Figure 11. Episodic reward versus learning episodes of the learning scenario.

Finally, the traveled path of the robot in the validation scenario is shown in Figure 12.
The first dynamic obstacle blocked the way, and the robot needed to adapt its linear speed to
follow up the obstacle. Once the robot detected enough free space, it overtook the obstacle.
The second and third obstacles traveled at opposite speeds. Lane change maneuvers were
needed to overtake both obstacles. The linear and angular velocities and accelerations are
shown in Figure 13. The robot safely avoided all static and dynamic obstacles of the circuit
traveling at the maximum legal linear speed of 0.2 m/s (except in the follow-up sector). In
addition, the longitudinal and angular accelerations did not exceed the maximum comfort
levels defined for this scenario (0.5 m/s? and 1’?—2‘1, respectively). Finally, the robot reached
the destination pose and ramped down the linear velocity to a standstill position. All of
this was happening in a scenario never used during a learning process, concluding that the
policy learned during the learning process can be generalized to new and unseen scenarios.

o LT

Figure 12. Traveled path by the robot in the validation scenario. Same colors indicate instant positions
of the dynamic obstacles and the robot in the traveled path. A, D and G marks indicate a preparation
of the robot before the curve to maximize comfort feeling. B mark is the follow up section. C, E and F
marks show the moment when the robot found enough free space to overtake. Finally, mark H is the
destination pose.

There are several key points marked with capital letters in Figures 12 and 13. These
points are explained in detail in Table 2.
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Sensor signals over time: Linear (blue) and angular (red) velocities
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Figure 13. Top graph: linear (blue) and angular (red) velocities of the robot in the validation scenario.
Bottom graph: linear (blue) and angular (red) accelerations. The maximum and minimum levels of
the linear and angular accelerations were limited to maximize comfort. Between marks B and C is
the follow up section, where the robot slowed down its linear speed. Mark H shows the stopping
procedure.

Table 2. Explanation of the key points of the traveled path by the robot in the validation scenario.

Mark Description

A The robot drove outside of the track before entering the curve to reduce angular acceleration and
maximize comfort.

B The robot followed up the dynamic obstacle at a constant linear speed, keeping a fixed distance
between the obstacle and the robot.

c The robot detected enough free space to overtake the dynamic obstacle and increased its linear
speed up to the legal one.

Similar to A, the robot drove outside of the track before entering the curve to reduce angular

b acceleration.

E The robot detected free space and drove to the left (lane change) to overtake the second
dynamic obstacle.

F The robot detected free space and changed lane again to overtake the third dynamic obstacle.
Similar to A and D, the robot drove outside of the track before entering the curve to reduce
angular acceleration.

H The robot ramped down the linear velocity and stopped at the destination pose.

Another interesting autonomous driving use case is a robot exploring inside an open-
world scenario. For this purpose, the experiment depicted in Figure 14 was used as a
validation scenario to test the methodology in open-world scenarios.

e B EH B~=
HE B B B B
HE B B B B
HE B B B B
" B B O

Figure 14. Validation scenario for open-world use cases. The destination pose is marked with a red
spot. The robot was intended to avoid all obstacles under safety, comfort, and legal conditions.
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The scenario used for the learning process was a simplified open-world scenario to
speed up the learning process. The results after the learning process was completed are
shown in Figure 15 for different destination poses.

H EH BN ® B B &=
H EH N .J/. .\ H H BN
H B -_//- | .{ H B B
H B /. H N .) H B BN
)/ ‘/
F mom ome

Figure 15. Traveled path (blue, red and green) by the robot in the validation scenario, considering
different destination poses. The destination pose is marked with a red spot. The green spot shows
the initial position of the robot.

In all three cases from Figure 15, the robot reached the destination pose under safety,
legal, and comfort conditions. Nevertheless, the robot still entered at some points (begin-
ning of blue path) the safety margin and got close to some obstacles. This was because the
termination conditions of the learning process were met while the agent was still learning.
Figure 16 shows precisely that the agent was still learning since the episodic reward was
still not flat after more than 200 learning episodes (red line).

Episodic reward

N W’A il ‘][\ ”I\ﬁf\ﬁ‘ﬂ \,’M(
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|
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. ' ‘ —— Safety+task-oriented req.
Safety+legal+comfort+task-oriented
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Figure 16. Episodic reward versus learning episodes of the learning scenario for the open-world
scenario. The red line represents the case where all requirements (safety, legal, comfort, and task-
oriented) were implemented. The agent was still learning after the termination condition was met
since the slope of the curve was not flat. On the other hand, the blue line, representing the case
where only safety and task-oriented requirements were implemented, was flat after the termination

condition was met, ensuring that the agent had completed the learning process.
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However, since the learning process took a long time, a relax termination condition
needed to be defined to find a trade-off between the performance of the resulting policy and
the total learning time. In this case, the total learning time went up to 6.1 h. In the case of
using of a more powerful system with a server and GPUs, the termination condition could
have been adapted to check that the episodic reward does not increase over the learning
episodes and ensure in that way a complete learning process.

Finally, a comparison was performed between different strategies to create reward
functions. First, a mix of positive (robot driving at desired speed) and negative (collision,
comfort, legal, and direction towards the destination) reward functions was created, such
as the ones used in many algorithms of the literature reviewed in the section Materials
and Methods. Second, a variant with strictly negative reward functions, such as the one
proposed in this paper, was chosen as a reference for comparison. The results are shown
in Figure 17. The variant with positive and negative terms found a suboptimal solution
where the robot keeps driving to collect more rewards.

E B B O

HE B B B/ /BH

HE N I/IJI
L/

| I_//I HE N

/III

Figure 17. Comparison between different strategies when generating reward functions. Dark blue
corresponds to strictly negative reward functions. Light blue corresponds to a mix of positive and
negative reward functions.

These results show the effectiveness of the reinforcement learning techniques in
dynamic scenarios, which are usually the most complex to solve, and open-world scenarios,
which are common for robots whose task is to explore the surroundings. Maneuvers such as
obstacle avoidance, overtaking, follow up, lane keeping, or lane change were successfully
validated in the previous scenarios.

4. Discussion

The results of the previous section were compared with the dynamic window approach
(DWA), which is a state-of-the-art algorithm that belongs to the reactive paradigm group.
The DWA algorithm constructs a set of trajectories based on the velocity space. Only
velocities that produce safe trajectories are used (i.e., velocities that allow the robot to stop
without collision in case of facing a static obstacle). Then, the best trajectory is selected
based on the score produced by a well-designed cost function. The results of the DWA
algorithm in the dynamic environment are shown in Figure 18.

If the robot finds enough free space, the DWA algorithm succeeds in finding the path
to the destination, as shown in mark C. The robot found here enough free space to get
through the obstacles, despite being surrounded by dynamic obstacles. On the other hand,
if the robot gets trapped between static and dynamic obstacles, the robot fails to find a
feasible path and collides with obstacles. Mark A shows when the robot collided with the
dynamic obstacle. As a consequence of that, the robot moved backwards to mark B. From
mark B onwards, the robot moved forward again to reach the destination. The comparison
shows how the reinforcement learning algorithm found a way to adapt the robot’s linear
velocity to follow up the dynamic obstacle until free space was detected again. This way, a
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collision was avoided and the total time to destination was reduced, outperforming the
results obtained with the DWA algorithm.

Figure 18. Traveled path by the robot for the reinforcement learning algorithm (light blue) and DWA
algorithm (dark blue). Mark A shows a collision with the dynamic obstacle in the DWA algorithm,
being forced to move the robot backwards to mark B. Mark C shows a successful overtake of the
dynamic obstacles.

Scenarios with dynamic obstacles are very suitable for use cases involving passenger
vehicles under real traffic conditions. Deep reinforcement learning models can learn the
non-holonomic constrains of a front steering robot, even under conditions close to the
grip limit, and solve complex driving scenarios, such as obstacle avoidance with dynamic
obstacles, lane keeping, lane change, or overtaking maneuvers.

5. Conclusions

If we think of autonomous driving, many requirements need to be considered, making
the development of software a challenging task. Not only do safety requirements need to
be considered (lane keeping or avoiding static and dynamic obstacles) but comfort, legal
(maximum speed limit), and task-oriented requirements are also essential to be fulfilled.
The state-of-the-art solutions produce thousands of possible trajectories to finally select
the best one based on the score of a well-designed cost function. However, there are many
disadvantages with these state-of-the-art solutions. They are not only very computationally
demanding but also very challenging to implement to fulfill all predefined requirements.
The self-learning navigation algorithm introduced in this work comes up automatically with
a policy that fulfills all predefined requirements at a reasonable computational cost. These
requirements are defined by multiple, intuitive, and simple reward functions. Therefore,
a highly mature autonomous driving logic or policy is obtained just by trial and error.
This methodology has been proven by setting up some classical dynamic scenarios for
the autonomous driving domain with maneuvers such as overtaking, following up, lane
keeping, or lane changing. Within this section, Figures 12 and 13 show how the safety,
legal, and comfort requirements were fulfilled along the entire trajectory driven by the
robot. Additionally, the proposed methodology was compared with the dynamic window
approach (DWA) algorithm (Figure 18), which is a classic state-of-the-art algorithm to
drive robots autonomously while avoiding obstacles. The comparison shows how the
reinforcement learning algorithm outperformed the DWA algorithm. Figure 15 also proves
that the methodology works effectively in open-world scenarios, avoiding obstacles and
driving up to the destination pose under safety, legal, and comfort conditions. The results
also show that the learning process can be very time-consuming. However, it can be
automated by simulation, loading multiple and complex dynamic driving scenarios. As the
autonomous driving logic is self-learned, engineering time and costs can be saved through
the software development process. Additionally, the reinforcement learning algorithm
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produces a policy considering the dynamic constrains of the non-holonomic robot. This
is because the agent interacts and learns directly from the environment where the robot
belongs, making it unnecessary to implement embedded models of robot dynamics like in
the predictive control model approach.
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