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Abstract: The number of defect samples on the surface of aluminum profiles is small, and the
distribution of abnormal visual features is dispersed, such that the existing supervised detection
methods cannot effectively detect undefined defects. At the same time, the normal texture of
the aluminum profile surface presents non-uniform and non-periodic features, and this irregular
distribution makes it difficult for classical reconstruction networks to accurately reconstruct the
normal features, resulting in low performance of related unsupervised detection methods. Aiming at
such problems, a feature-oriented reconstruction method of unsupervised surface-defect detection
method for aluminum profiles is proposed. The aluminum profile image preprocessing stage uses
techniques such as boundary extraction, background removal, and data normalization to process the
original image and extract the image of the main part of the aluminum profile, which reduces the
influence of irrelevant data features on the algorithm. The essential features learning stage precedes
the feature-optimization module to eliminate the texture interference of the irregular distribution
of the aluminum profile surface, and image blocks of the area images are reconstructed one by
one to extract the features through the mask. The defect-detection stage compares the structural
similarity of the feature images before and after the reconstruction, and comprehensively determines
the detection results. The experimental results improve detection precision by 1.4% and the F1 value
by 1.2% over the existing unsupervised methods, proving the effectiveness and superiority of the
proposed method.

Keywords: defect detection; aluminum profile; unsupervised learning; complex texture processing

1. Introduction

In recent years, with the intensification of global economic competition, many coun-
tries have been actively promoting the “Industry 4.0” strategy, which aims to accelerate the
development of digitalization, intelligence, and automation in the manufacturing industry
in order to improve the competitiveness of national manufacturing industries. As an in-
dustrial base material, aluminum profiles are widely used in many fields such as power
equipment, mechanical equipment, aerospace, infrastructure construction, and transporta-
tion, and are favored for their design flexibility, hardness, light weight, and wear resistance.
However, constrained by production equipment and environmental conditions, aluminum
profiles can hardly avoid surface defects, such as coating cracking, orange peel, bumping,
convex powder, bubbles, and dirty spots, during the manufacturing process. These defects
directly affect the quality, appearance, and safety of aluminum profiles. Especially in high-
risk industries (e.g., aerospace and transportation), surface defects of aluminum profiles
may lead to equipment failures and accidents, posing a serious threat to the safety of life
and property. Therefore, determining how to efficiently and accurately detect defects on
the surface of aluminum profiles is of great academic and practical significance. Currently,
manual inspection is still the main method for the detection of aluminum profile surface
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defects. Although the method has a certain accuracy, it takes a lot of time and manpower
and is easily affected by the subjective judgment and fatigue of staff, such that efficiency and
reliability are limited. In addition, as the production speed of aluminum profiles increases,
manual inspection can no longer meet the production line’s demand for inspection speed.
Therefore, there is an urgent need to replace inefficient manual work by intelligent means.

With the development of computer image-processing technology, the use of machine
vision detection methods [1,2] to determine the surface-defect information in images has
emerged. However, surface-defect detection methods based on traditional machine learning
models need to extract features manually; have relatively harsh imaging environment
requirements; are sensitive to changes in light and viewing angle; find it difficult to detect
undefined defects; and are not suitable for complex defect detection. For aluminum
profiles with complex surface textures and large differences in defect scales, it is difficult
for current models to be effective in practical engineering applications and they cannot
meet industrial demands.

In recent years, the rise of deep learning techniques has had a wide impact in the
field of image processing [3–6], especially for the tasks of natural image classification,
target detection, and localization, which have made significant progress. Compared to
traditional machine vision methods, deep learning methods achieve automatic feature
extraction through neural networks, which map the original image by layer-by-layer
feature transformations, transforming it from the original feature space to a new one, and
this method makes target detection easier. However, the convolutional neural network
(CNN) method [7,8] is inefficient in capturing global contextual information and also
fails to provide a holistic perception and macroscopic understanding of the image due to
the limitation of the sensory field size, which results in limited local information being
extracted by the shallow network. Moreover, supervised deep learning methods rely
on labeled data in the training phase, which usually needs to cover suitable diversity
and complexity to accommodate various defect situations in real application scenarios.
However, different defect types may vary depending on factors such as shape, size, color,
and lighting conditions, etc., which makes it difficult for supervised methods to effectively
generalize to unseen defect samples. In addition, in real industrial environments, factors
such as the captured background, image resolution, and light reflections may negatively
affect the image quality, resulting in poor detection accuracy.

In view of these problems, this paper proposes a feature-oriented reconstruction
method for unsupervised surface-defect detection on aluminum profiles. In the preprocess-
ing stage, the original image is processed through techniques such as boundary extraction,
background removal, and data normalization to extract the main part of the image of the
aluminum profile and reduce the influence of irrelevant data features. In the model-training
stage, the image of the main part of the aluminum profile is cropped into an area image
with uniform specifications as input, and the interference of complex texture is removed
by the feature-optimization module on the premise of retaining its surface features, and
the body features of the aluminum profile are extracted by mask reconstruction. In the
detection stage, a specific mask is used to reconstruct the area-feature image, the average
similarity of the reconstructed area-feature images before and after the reconstruction is
determined, and a comprehensive evaluation of the detection results determines whether
there are defects. The main contributions of this paper are the following two points:

(a) A new unsupervised surface-defect detection method for aluminum profiles is pro-
posed. It solves the problems of the existing supervised learning surface-defect
detection methods for aluminum profiles, which require a large number of manually
labeled defect features in advance, and a small number of aluminum profile samples
and incomplete defect types lead to the insufficient detection capability of undefined
defect categories.

(b) Incorporating the feature-optimization module into the Masked Auto-Encoders (MAE)
model eliminates the complex texture randomly distributed on the surface of alu-
minum profiles and retains its surface feature information, which excludes the inter-
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ference of irregular texture on the generated model and improves the performance of
the model.

This article is organized structurally as follows.
Section 2 describes deep learning detection methods as well as transformer models.

Section 3 presents a feature-oriented reconstruction method for unsupervised detection
of surface defects on aluminum profiles. Section 4 describes the datasets, training details,
and evaluation indicators used and discusses the results of each experiment. Section 5
summarizes the experimental results and looks at future research directions.

2. Related Works
2.1. Deep Learning Detection Methods

In surface-defect detection, the earliest manual visual method consumes a lot of man-
power and material resources, and it has the problems of low efficiency and poor accuracy.
In recent years, machine vision has attracted much attention in surface-defect detection.

Some scholars have proposed different methods for object-surface-defect detection
using supervised deep learning methods. For example, Dahai Liao et al. [9] proposed a
non-destructive identification and classification method for surface defects based on the im-
proved YOLOv5 algorithm, and they applied a new mobile network attention mechanism,
coordinate attention, to the backbone of the YOLOv5 algorithm, giving better detection
results. Kechen Song et al. [10] proposed a cross-layer semantic guidance network (CS-
GNet) based on the YOLOv6 algorithm, which introduces a cross-layer semantic guidance
module (CSGM) that uses deeper semantic information to guide the shallower feature layer
and improves performance for detecting tiny defects. Shenqi Guan et al. [11] proposed
a new method to detect fabric surface defects by target-driven features, Compared with
the classical defect algorithm, the algorithm is able to realize accurate segmentation of
surface defects, has better noise resistance, higher detection accuracy, and has strong appli-
cability to fabric defect detection. Chenglong Wang et al. [12] proposed a defect-detection
model, MeDERT, for aluminum profiles based on the improvement of the classical detector
YOLOv4, which is suitable for dealing with the image features of aluminum profiles, and
the experimental results show that MeDERT is superior to the models such as YOLOv5 and
DERT, which effectively improves the defect detection performance. The above methods
can more efficiently use the model to automatically extract good features and defective
features, and the detection results are more accurate, but the model-training process re-
quires the labeling of a large amount of data and defective samples in advance, and it is
very difficult to collect complete defective samples.

Several scholars have proposed different methods for object-surface-defect detection
using unsupervised methods. For example, Sizhe Xiao et al. [13] proposed a gradient-based
unsupervised model, Grad MobileNet, based on MobileNetV3, in which the model the
model can be trained using only a few normal images, extracting the feature gradient
of the input image, classifying welding defects through the gradient distribution, and
achieving 99% accuracy on the welding defect dataset RIAM, which was constructed by
the authors. Qunying Zhou et al. [14] proposed a knowledge-distillation model based
on attention mechanism and feature fusion, which enhances the ability of the model to
extract features through attention, improves the pixel-level localization of the model, and
provides better detection results in the MVTecAD dataset. Jin Rui et al. [15] proposed
a fabric-defect-detection method based on an improved generative adversarial network,
introducing a center loss constraint to improve the recognition performance of the method,
which was evaluated on the publicly available Tianchi dataset with good results. Yijing Guo
et al. [16] proposed a new unsupervised small-sample-defect-detection model based on the
DAGM2007 dataset that performs well with a small number of training samples. Although
the above methods are more effective on specific detection targets, their reconstruction
networks are difficult to accurately reconstruct irregularly distributed images, and their
detection results are susceptible to various factors such as the color, size, and illumination
of the detection target.
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Differing from the above method, this paper integrates the feature-optimization mod-
ule into the MAE model, which on the one hand reduces the redundant data, reduces
the model reconstruction time, and makes the model reconstruction faster and more ac-
curate, and, on the other hand, eliminates the negative impact of the complex texture of
the aluminum profile’s surface that is irregularly distributed for the reconstruction pro-
cess. Through the above method, we can improve the Structural Similarity Index Measure
(SSIM) of the aluminum profile image before and after reconstruction, and then effectively
determine whether the input image has defects.

2.2. Transformer

Transformer [17] is an attention-based structure originally proposed as a sequence-to-
sequence model for machine translation tasks. In recent years, by virtue of its outstanding
results in the field of Natural Language Processing (NLP) [18–21], it has attracted a wide
range of attention from researchers in the field of computer vision [22], and more and more
researchers are migrating its application to computer vision tasks such as target detection,
video processing, image processing.

Image restoration algorithms based on the transformer structure perform well in terms
of image global structure understanding, generalization ability of generalized datasets,
etc., with results comparable to or even surpassing contemporaneous convolutional neural
network-based algorithmic models. For example, Nicolas Carion et al. [23] innovatively
applied the transformer to the field of target detection, and they proposed a new frame-
work, DEtection TRansformer (DETR), based on the transformer and the dichotomous
matching loss of direct set prediction. Haitao Yu et al. [24] proposed a dynamic transformer
network for surface-defect detection, which utilizes the transformer’s ability to extract
global contextual features and achieves accurate and fast defect detection on steel surface
images by fusing it with a dynamic network. Junpu Wang et al. [25] proposed an efficient
hybrid transformer architecture for surface-defect detection with better detection results on
the SD-saliency-900 dataset, the Fabric defect dataset, and NRSD-MN dataset. Hongbing
Shang et al. [26] proposed a method for intelligent visual surface-defect detection using the
Defect-aware transformer network (DATN) for industrial inspection, which works better
on the publicly available dataset MVTec. Alexey Dosovitskiy et al. [27] proposed the Vision
Transformer (ViT), using transformer instead of standard convolution, and applied it to
image classification tasks, achieving state-of-the-art classification results at that time.

Unlike the local perception property of convolutional neural networks, the learning
process of transformer is based on the interaction of global information, the multi-head
attention mechanism can better focus on global information compared to convolution,
which is more advantageous for detecting occluded targets and can keep the number of
parameters relatively low, in addition to the fact that these methods change the traditional
way of thinking for indirectly solving the problem using classification and regression,
which is usually pre-trained using large-scale unlabeled datasets, and then the learned
features are fine-tuned on the downstream task in an unsupervised manner, which improves
performance and reduces the cost of manual labeling.

3. Proposed Methods

The framework is divided into three parts, which are aluminum profile image adaptive
preprocessing, essential feature learning, and surface-defect detection, as shown in Figure 1.

(a) Adaptive preprocessing of aluminum profile images: Images of aluminum profiles
with different background colors, lighting, and placement angles are extracted by
adaptive boundary extraction, removal of background colors and data normalization
to obtain images with no background, only the main part of aluminum profiles, and
uniform specifications.

(b) Essential Feature Learning: Firstly, the boundary extraction, background removal, and
data normalization operations are performed on the non-defective images aluminum
profile dataset. Then these are cropped to 224 × 224 specifications and input into
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the model one by one. The model performs feature extraction on them, removes the
masked image blocks based on the randomly generated mask image (mask rate of
75%), and inputs 25% of the image blocks that are not removed into the encoder and
decoder for prediction of the removed image blocks. Finally, the loss constraint is uti-
lized to make the reconstructed image as consistent as possible with the input image.

(c) Surface-defect detection: Firstly, the image to be detected is adaptively preprocessed
to get the aluminum profile image with uniform specifications. Then it is cropped to
obtain all of the area images, and the area images are input into the model one by one.
The feature-reconstructed image is then compared with the area-feature image by
mean structural similarity index measure (MSSIM) comparison to determine whether
the input image is a defective image. Finally, the detection results of all area images of
the image to be detected are used to determine the final detection results.
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Figure 1. Architecture of surface-defect detection methods for aluminum profiles.

3.1. Aluminum Profile Image Preprocessing

Aluminum profile image preprocessing is mainly divided into two parts: image
boundary extraction [28] and data normalization. Image boundary extraction is performed
on the original image of the aluminum profile to obtain the upper- and lower-boundary
lines of the main part of the aluminum profile from the aluminum profile image. Data
normalization is performed on the image with the background removed, which is rotated
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and cropped to reduce redundant information. The aluminum profile image preprocessing
algorithm is shown in Figure 2.
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3.1.1. Adaptive Boundary Extraction

Image boundary extraction extracts the upper- and lower-boundary lines of the main
part of the aluminum profile on the aluminum profile image by color channel selection [29],
binarization processing, and extraction of the maximum connectivity domain [30]. The
boundary extraction algorithm is shown in Figure 3.
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The algorithm is specifically described below:
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(a) S-channel image extraction.

The original image of the aluminum profile was segmented on the RGB [31,32] and
HSV [33,34] color spaces to obtain the S-channel image with the most effective color
information of the overall data, as shown in Figure 4.
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(b) Binarization processing.

The S-channel image of the aluminum profile image is processed using binarization
to reduce a large amount of redundant information in the image, thus highlighting the
contour of the main part of the aluminum profile.

(c) Extract the maximum connected domain.

Using the following (a) formula on the binarized image to find out the maximum
contour of the parts with pixel value of 255, the regions with consecutive pixel value of 255
are concatenated over a large area, and the scattered white areas are also filtered out to
reduce their adulterated noise.∮

L
P(x, y)dx + Q(x, y)dy =

x

D

[
∂Q(x, y)

∂x
− ∂P(x, y)

∂y
]dxdy (1)

In Equation (1), L is a segmented smooth closed curve and takes the positive direction,
D is a bounded closed region in the plane enclosed by L, P(x, y) and Q(x, y) has a first-order
continuous partial derivative on D.

(d) Adaptive boundary-line fitting.

On the extracted image of the maximum connectivity domain, the parts with a pixel
value of 255 are searched from the upper and lower ends sequentially towards the middle,
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and the upper and lower two boundary lines of the main part of the aluminum profile on
the image are fitted sequentially; after that the inner part of the outline is filled with white
pixels sufficiently to extract its mask.

3.1.2. Data Normalization

The data normalization process mainly involves adaptive rotation of the input image
without background color and the mask at the same angle, then finding the maximum
internal rectangle on the rotated mask image, which is later cropped with the rotated
background-removed image. The relevant algorithm is shown in Figure 5.
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The algorithm is specifically described below:

(a) Adaptive Rotation.

Using the different slopes of the upper- and lower-boundary lines of the main part of
the aluminum profile fitted in the mask, the main part of the aluminum profile is rotated
adaptively, and the angle of placement of the main part of the aluminum profile is adjusted
so that it can be placed parallel to the upper and lower boundaries of the image and become
more normalized.

tan α =
∆y
∆x

(2)

(b) Finding the maximum internally connected rectangle.

The mask image after adaptive rotation is utilized to explore its inner rectangular
boundaries.

(c) Cropping and scaling processing.

The rotated background-removed image is cropped for background and redundant
information using (b) to normalize the dataset.
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3.2. Image Essential Feature Learning Model
3.2.1. Transformer Model

The transformer encoder [35] consists of a stack of N transformer layers; each trans-
former layer consists of multi-head attention (MHA) layer [36] and feed-forward neural
network layer. The data output from each layer is then fused with the input data using
residual connections, and the normalization is performed before input to the next layer.
The output dimension of each layer is d-dimensional, as shown in Figure 6.
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12 mdiq ×∈  . Similarly, the obtained key vector 
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  to get 
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Figure 6. Transformer model structure.

The working principle of the multi-head attention mechanism is shown in Figure 7 for
a 2-head attention model.

For a given input character
{

x1, x2, x3}, vectorization (word embedding) yields a1, a2,
a3 ∈ Rdl×1, then for vectors ai, i ∈ {1, 2, 3} yields query vector qi ∈ Rdk×1, key vector
ki ∈ Rdk×1, and value vector vi ∈ Rdl×1 by the first linear transformation through
Wq ∈ Rdk×dl , Wk ∈ Rdk×dl , and Wv ∈ Rdl×dl matrices. Then, the obtained query vec-
tor qi is second linearly transformed through matrices Wq1 ∈ Rdm×dk , Wq2 ∈ Rdm×dk to
get qi1 ∈ Rdm×1, qi2 ∈ Rdm×1. Similarly, the obtained key vector ki is linearly transformed
twice through the matrices Wk1 ∈ Rdm×dk , Wk2 ∈ Rdm×dk to get ki1 ∈ Rdm×1, ki2 ∈ Rdm×1,
the value vector vi is linearly transformed twice through the matrices Wv1 ∈ Rdl /2×dk ,
Wv2 ∈ Rdl /2×dk to get vi1 ∈ Rdl/2×1, vi2 ∈ Rdl/2×1, and the specific computational process
can be expressed as:

qih = Wqh · Wq · ai

kih = Wkh · Wk · ai i = {1, 2, 3}, h = {1, 2}
vih = Wvh · Wv · ai

(3)
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Let the matrix
Q1 =

(
q11, q21, q31) ∈ Rdm×3

K1 =
(
k11, k21, k31) ∈ Rdm×3

V1 =
(
v11, v21, v31) ∈ Rdl/2×3

Q2 =
(
q12, q22, q32) ∈ Rdm×3

K2 =
(
k12, k22, k32) ∈ Rdm×3

V2 =
(
v12, v22, v32) ∈ Rdl/2×3

(4)

Then the following equation is available at this point:

Q1 = Wq1 · Wq · A
K1 = Wk1 · Wk · A
V1 = Wv1 · Wv · A
Q2 = Wq2 · Wq · A
K2 = Wk2 · Wk · A
V2 = Wv2 · Wv · A

(5)
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The corresponding attention scores are computed from the obtained query vector and
key vector, where the αih-th component l of the attention vector can be expressed as:

αi
l =

(
qih

)T
· klh, i, l ∈ {1, 2, 3}, h ∈ {1, 2} (6)

The attention vector is normalized by the Softmax layer to obtain the attention distri-
bution, which can be expressed as equation:

βih
j =

eαih
j

3
∑

n=1
eαih

n

, i, j ∈ {1, 2, 3}, h ∈ {1, 2} (7)

The final output bih ∈ Rdl/2×1 is obtained by dot-multiplying the attention distribution
vector βih obtained from each head with the value matrix Vh, which can be expressed as
equation:

bih =
3

∑
n=1

βih
l · vlh, i ∈ {1, 2, 3}, h ∈ {1, 2} (8)

The bih obtained from the two heads are spliced together to obtain B, which can be
expressed as equation:

B =

(
b11, b21, b31

b12, b22, b32

)
∈ Rdl×3 (9)

Given the parameter matrix Wo ∈ Rdl×dl , the final output can be expressed as:

O = Wo · B ∈ Rdl×3 (10)

In summary, then there are the following:

O = MultiHead(Q, K, V)

= Wo · Concat

 V1 · so f tmax
(
(K1)

T ·Q1
√

dm

)
V2 · so f tmax

(
(K2)

T ·Q2
√

dm

)
 (11)

3.2.2. Feature-Optimization Module

The image of the aluminum profile area is manipulated one by one using feature
optimization [37] so that it attenuates the presence of complex textures on the non-defective
parts of the aluminum profile surface and maintains the defective-feature information
well.The feature-optimization process is shown in Figure 8.

The specific algorithm is as follows:

(a) Convert the image format, then convert the area image to a grayscale image one by
one, using conversion equations as follows:

I =
299
1000

R +
587

1000
G +

144
1000

B (12)

where each pixel is represented by 8 bits, I represents the grayscale to be converted, and R,
G, and B represent red (R), green (G), and blue (B) in the RGB color space, respectively.

(b) The feature discrimination of the area grayscale image, eliminating the complex tex-
ture features randomly distributed on the surface of the main image of the aluminum
profile and highlighting its essential features, is processed as follows:

min
u∈BV(Ω)

{
E(u) =

∫
Ω|∇u|dxdy +

λ

2

∫
Ω|u(x, y)− u0(x, y)|2dxdy

}
(13)
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u0(x, y) = u(x, y) + η(x, y) (14)

where Ω ⊂ R2 is a bounded region, BV(Ω) is the space consisting of all bounded variance
functions in Ω, λ is a scale parameter that depends on the noise level, u0(x, y) is the input
grayscale image to be manipulated, u(x, y) is the feature-resolved image, η(x, y) is the
noise function of the image, which is an additive Gauss noise with a mean of 0 and a
variance of σ,

∫
Ω|∇u|dxdy is the smoothing term, and

∫
Ω|u(x, y)− u0(x, y)|2dxdy is the

approximation term.
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The Euler equations corresponding to the feature-discrimination model can be ob-
tained using the gradient-descent method as follows:

−∇ ·
(

1
|∇u|∇u

)
+ λ(u − u0) = 0 (15)

The above equation is transformed and integrated over the entire image area Ω to
obtain the following equation:

λ =

∫
Ω∇ · (|∇u|/∇u) · (u − u0)dxdy∫

Ω(u − u0)
2dxdy

=
1
σ2

∫
Ω∇ · (|∇u|/∇u) · (u − u0)dxdy (16)

3.2.3. Essential Features Extraction Network

The structure of the essential features extraction model network, which is asymmetric,
is shown in Figure 9. The encoder part firstly divides the input 224 × 224 3D-area images
into 16 × 16 blocks after the feature-optimization layer and transforms it into a one-
dimensional sequence. Next, it removes 75% of the random blocks by masking and
introduces the Position and Class token encoding, and, finally, it outputs the encoder after
the Transformer Block, which is made up of 24 Transformers stacked on top of each other,
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is used for the feature learning, and is normalized by the Layer Norm. The decoder part
takes the output of the encoder as input, introduces mask tokens and decoder-position-
embedding encoding, which is repaired by a Transformer Block of 8 Transformer stacks,
and finally outputs the same normalized by Layer Norm.
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(a) Feature-Optimization Layer: the image input to the encoder first passes through the
feature-optimization layer, which consists of three parts: the feature-optimization
module, the convolutional layer, and the flatten function. Firstly, the essential features
of the area image are extracted by the full variational image restoration algorithm,
and then the essential features image has its features extracted by the convolutional
layer, which divides the area image X into N blocks as in Equation (17). Next, the
N blocks of the image are transformed into a one-dimensional sequence using the

Flatten function, and the linear transformation of the sequence
{

xi
p

}N

i=1
is performed

as in Equation (18):

N =
H × W

P2 (17)

z0 =
[

x1
pE; x2

pE; . . . ; xn
pE

]
(18)



Appl. Sci. 2024, 14, 386 14 of 27

where X ∈ H × W × C and H and W represent the width and height of X, respectively; C
represents the number of channels; P2 represents the pixel size of the sequence; and P2 · C
represents the dimension of each sequence.

(b) Positional Embedding: The positional encoding Epos is introduced in order to prevent
the loss of sequentiality of the positional information of the accession sequence, as
shown in Equation (19).

z1 =
[

x1
pE; x2

pE; . . . ; xn
pE

]
+ Epos (19)

(c) Class token: The Concat function is utilized to add a learnable category encoding
xclass that is used to represent the global features of the image after encoding:

z =
[

xclass; x1
pE; x2

pE; . . . ; xn
pE

]
+ Epos (20)

(d) Transformer Block: The data Z is encoded through this process as in Equations (21)
and (22).

z′n = MHA(LN(Zn−1)) + Zn−1 (n = 0, 1, 2 · · · , N) (21)

zn = MLP(LN(Z′
n)) + Z′

n (n = 0, 1, 2 · · · , N) (22)

where MHA stands for Multiple Headed Attention, MLP stands for Multi-Layer Perceptual
Machine, and n represents after n layers of transformer.

(e) Layer Norm: The data output from (4) is normalized by this process as in Equation (23):

y =
x − E(x)√
Var(x) + ε

∗ γ + β (23)

where E(x) denotes the mean, Var(x) denotes the variance, ε the auxiliary variable, and
the initial values of γ and β are 1 and 0, respectively.

(f) Decoder: The output vector of the encoder is used as the input for the decoder,
and after the data enters the decoder, it first passes through the Linear layer for
dimensional conversion, and in order to ensure that it can distinguish between the
different positions of mask tokens in the image, it will be added to the data as a whole
with decoder-positional embedding.

(g) Loss: The mean square error (MSE) and SSIM [38] are used as loss functions to
calculate the loss of the original and restored images of the feature-optimization map
as shown in (24), where the MSE expression is shown in (25):

LPMRM = (1 − α)MSEYi ,Ŷi
+ α(1 − SSIMYi ,Ŷi

) (24)

MSE =
1
n

n

∑
i=1

(Yi − Ŷi)
2 (25)

where Yi denotes feature-optimized image original data, Ŷi denotes feature-optimized im-
age reconstruction data, and α denotes a weight factor that balances the relative importance
between pixel and SSIM, and in this paper, we set α = 0.5.

3.3. Aluminum Profiles Surface-Defect Detection
3.3.1. Defect-Detection Process

The flow of the unsupervised surface-defect inspection method for aluminum profiles
is shown in Figure 10.
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Figure 10. Flowchart of the surface-defect detection method.

The aluminum profile surface-defect detection method process is as follows:

(a) Area-feature image acquisition. The main image of the aluminum profile obtained by
the aluminum profile image preprocessing method is cropped to an image of uniform
specification of 224 × 224, i.e., an area image, and then image restoration operations
are performed one by one on the area image to remove its randomly distributed
complex texture, and obtain an area-feature image that effectively maintains the
essential feature information of the aluminum profile surface.

(b) Mask image production. The entire area image obtained from one aluminum profile
image is sequentially masked with two fixed masks each with a removal rate of 75%,
respectively, to obtain two mask images, as shown in Figure 11.
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For mask image 1, the mask region is denoted by
{{

M4i+j
}48

i=0

}2
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. For mask image

2, the mask region is denoted by
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M4i+j
}48

i=0

}3

j=1
.

(c) Feature Reconstruction: The mask image is fed into the detection model, and the
feature-reconstructed image of the corresponding area-feature image is recon-
structed sequentially.

(d) Defective or non-defective judgment: The MSSIM comparison is performed on the
feature-reconstructed image and the regional feature image, and the regional image
whose obtained MSSIM value is less than the judgment threshold is judged to be a
defective image, and the regional image whose obtained MSSIM value is greater than
the judgment threshold is judged to be a non-defective image.

(e) Aluminum profile surface-defect detection results are classified: If all the regional
images cropped out of an aluminum profile image are non-defective images, the
aluminum profile is judged to be a non-defective product, otherwise it is judged to be
a defective product.

3.3.2. Definition of Judgment Thresholds

The MSSIM comparison between the eliminated complex-texture image mentioned in
Section 3.3.1 and its corresponding restored image is performed using the following principle:

MSSIM =
1
N

N

∑
k=1

SSIM(xk, yk) (26)

N in the formula is the number of image division blocks, SSIM is a number from 0 to
1, the larger indicates that the gap between the output image and the distortion-free image
is smaller, i.e., the better the quality of the image, and the principle of SSIM is shown in
Equations (27)–(30):

SSIM(x, y) = [l(x, y)]α[c(x, y)]β[s(x, y)]γ (27)

l(x, y) =
2µxµy + c1

µ2
xµ2

y + c1
(28)

c(x, y) =
2σxσy + c2

σ2
x σ2

y + c2
(29)

s(x, y) =
σx,y + c3

σxσy + c3
(30)

where l(x, y) is the luminance comparison, c(x, y) is the contrast comparison, s(x, y) is the
structural comparison, µx and µy denote the mean of x and y, respectively, σx and σy denote
the standard deviation of x and y, respectively, σxy denotes the covariance of x and y, and
c1, c2, c3 denotes the constants, α > 0, β > 0, and γ > 0, respectively, and in this paper we
take α = β = γ = 1.
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The “3σ criterion” [39] is used to select the judgment threshold, and the selection of
the judgment threshold in this paper can be described as:

T = µ + η ∗ σ (31)

In the formula, µ denotes the mean of the image, σ denotes the standard deviation of
the image, η is the coefficient of the standard deviation σ, and T is the threshold. The mean
and standard deviation used in this paper are defined as:

µ =
∑ ∆x(i,j,k)

n
(32)

σ =

√
∑ ∆x(i,j,k) − µ

n
(33)

where n denotes the number of all pixel points involved in the computation of the image.
After experimentation η finally takes the value of 3.

4. Experimental Results and Discussion
4.1. Experimental Environment

The experimental environment is a 64-bit Win10, Intel(R) Core(TM) i9-12 900H@2.50
GHz processor, and an NVIDIA GeForce RTX 3 07 Laptop’s GPU (NVIDIA Corporation,
San Jose, CA, USA). The test platform comprises Python 3.7, CUDA Toolkit 10.0, and
OpenCV 4.6.0. The hardware and software environment is shown in Table 1.

Table 1. Experimental environment.

Environment Name Model

Hardware
environment

Processor Intel(R) Core(TM) i9-12900H@2.50 GHz
Internal memory 32GB DDR5

GPU NVIDIA GeForce RTX 3070Ti Laptop GPU

Software
environment

CUDA Toolkit 10.0
Pytorch 1.7.1

Data Data

4.2. Data Description

The raw dataset of aluminum profiles used for the experiments was provided by the
Aliyun Tianchi Competition organized by Alibaba (https://tianchi.aliyun.com/competition/
entrance/231682/information, accessed on 12 October 2023) [40], in which the part of the
data with flat surfaces of aluminum profiles is selected for the experiment. Figure 12
shows an illustration of the contrast between defective and non-defective aluminum profile
images with and without flat surfaces.

A total of 330 sheets of non-defective aluminum profile data were selected as the
training set. A total of 217 sheets with ten types of defective aluminum profile data such as
scrape, bruise, crater, coating cracking, orange peel, bumping, pit, convex powder, bubbles,
and dirty spots defects, and the remaining 123 sheets of non-defective aluminum profiles
were selected as the test set. Figure 13 shows an example of some of the types of defects in
an image of an aluminum profile with a flat surface.

For better training, the aluminum profile images are cropped into 224 × 224 uniformly
sized images and the cropped training set is rotated by 90◦, 180◦, and 270◦, and then flipped
horizontally and left and right to get 53,904 aluminum profile images.

https://tianchi.aliyun.com/competition/entrance/231682/information
https://tianchi.aliyun.com/competition/entrance/231682/information
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4.3. Experimental Result

In this paper, experiments were carried out using the test set (tests were conducted
using area images of size 224 × 224), and the detection results are shown in Figure 14.
The vertical coordinate indicates the MSSIM value between the repaired image and the
corresponding area image, and the horizontal black dashed line in the figure indicates the
segmentation threshold, which actually takes the value of 0.99625, the vertical blue dashed
line simply visually distinguishes the three datasets. From Figure 14, it can be seen that
the MSSIM value between the good aluminum profile image and its repaired image is
concentrated above the threshold segmentation line, which tends to be close to 1, while
the MSSIM value between the defective aluminum profile image and its repaired image is
mostly concentrated below the threshold segmentation line, from which it can be seen that
the model is very sensitive to the defective image.

Results for the detection of aluminum profiles are shown in Figure 15. The images
used in the first three rows are defective images and the images used in the last two rows
are non-defective images. The corresponding part of the area image, feature-optimized
image, feature-reconstructed image, and determination results during the detection process
are shown in columns 2, 3, 4, and 5 of Figure 15.



Appl. Sci. 2024, 14, 386 19 of 27

Appl. Sci. 2024, 14, x FOR PEER REVIEW 20 of 30 
 

In this paper, experiments were carried out using the test set (tests were conducted 
using area images of size 224 × 224), and the detection results are shown in Figure 14. The 
vertical coordinate indicates the MSSIM value between the repaired image and the corre-
sponding area image, and the horizontal black dashed line in the figure indicates the seg-
mentation threshold, which actually takes the value of 0.99625, the vertical blue dashed 
line simply visually distinguishes the three datasets. From Figure 14, it can be seen that 
the MSSIM value between the good aluminum profile image and its repaired image is 
concentrated above the threshold segmentation line, which tends to be close to 1, while 
the MSSIM value between the defective aluminum profile image and its repaired image is 
mostly concentrated below the threshold segmentation line, from which it can be seen that 
the model is very sensitive to the defective image. 

 
Figure 14. Detection effect graph. 

Results for the detection of aluminum profiles are shown in Figure 15. The images 
used in the first three rows are defective images and the images used in the last two rows 
are non-defective images. The corresponding part of the area image, feature-optimized 
image, feature-reconstructed image, and determination results during the detection pro-
cess are shown in columns 2, 3, 4, and 5 of Figure 15. 

Figure 14. Detection effect graph.

Appl. Sci. 2024, 14, x FOR PEER REVIEW 21 of 30 
 

Original 
image

outcomeArea-feature image

Reconstructed
Area-feature 

image
Partial 

Area images
defective

 image

non-
defective 

image

defective
 image

defective
 image

non-
defective 

image

 
Figure 15. Diagram of test results. 

4.4. Comparative Experiments 
4.4.1. Experiments Comparing Feature-Optimization Methods 

Aluminum profile surfaces have a large number of complex, irregular texture fea-
tures, and these complex texture features will greatly affect a model’s feature extraction 
effect. In order to reduce data redundancy and enable the model to better extract the es-
sential features of the aluminum profile surface, this paper adopts various feature-optimi-
zation methods to operate on the area image of the aluminum profile, and selects the best 
method for feature optimization through comparison. This process is shown in Figure 16, 
in which the left four columns are the effect diagrams after feature optimization through 
the methods of BIOR, DWTN, and HAR, and the right four columns are the effect dia-
grams after operating on the area image with defects through the same methods. 

Figure 15. Diagram of test results.

4.4. Comparative Experiments
4.4.1. Experiments Comparing Feature-Optimization Methods

Aluminum profile surfaces have a large number of complex, irregular texture features,
and these complex texture features will greatly affect a model’s feature extraction effect.
In order to reduce data redundancy and enable the model to better extract the essential
features of the aluminum profile surface, this paper adopts various feature-optimization
methods to operate on the area image of the aluminum profile, and selects the best method
for feature optimization through comparison. This process is shown in Figure 16, in
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which the left four columns are the effect diagrams after feature optimization through the
methods of BIOR, DWTN, and HAR, and the right four columns are the effect diagrams
after operating on the area image with defects through the same methods.
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Through comparison, it can be seen that the feature-optimization module used in
this paper can effectively eliminate the interference of complex texture features on the
surface of aluminum profiles. At the same time, the method effectively retains the features
of defective parts in the image, while the remaining methods have difficulty eliminating
the interference by complex textures, and can easily to create the model of the surface of
the aluminum profile using good features mistakenly judged as defective features, thus
affecting the later detection results.

The feature-optimized image is binarized and then classified directly according to the
black and white pixel points with an accuracy of 0.83, and its partial binarization results
are shown in Figure 17.

As can be seen in Figure 17, during the process of classifying the feature-optimized
image directly according to the black and white pixel points after binarization, some of the
binarized maps differ greatly from what is expected and affect the detection results so that
their detection accuracy is low, making it necessary to extract the essential features by MAE
so as to achieve accurate classification.
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4.4.2. Model Comparison Experiment

In order to evaluate the performance of the surface-defect detection method for alu-
minum profiles described in this paper, in this section, the detection method is compared
with three unsupervised detection methods, namely, Masked Auto-Encoders (MAE), Varia-
tional Auto-Encoders (VAE) incorporating feature-optimization methods (VAE + ROF), and
the Generative Adversarial Network (GAN) incorporating feature-optimization methods
(GAN + ROF).

In this paper, measures of recall (RC), precision (PR), accuracy (Acc), the F1 value, and
the ROC curve are used as indicators to evaluate the performance of aluminum profile
surface-defect detection. RC, PR, and F1 are defined as follows:

RC =
TP

TP + FN
(34)

PR =
TP

TP + FP
(35)

F1 =
2PR × RC
PR + RC

(36)

where TP denotes the number of non-defective samples detected correctly, FN denotes
the number of defective samples detected incorrectly, and FP denotes the number of non-
defective samples detected incorrectly. PR and RC are used to evaluate the quality of the
model’s detection results, and the F1 value is an index used to reflect the overall detection
results of the model.

The ROC curve is called the Subject Operating Characteristic curve, in which the
horizontal axis is the false-positive rate (FPR) and the vertical axis is the true-positive rate
(TPR). Scholars often use the ROC curve to evaluate the effectiveness of a model, and the
closer the curve is to the upper left corner, the more accurate the work of the subject, that is,
the better the detection effect. FPR, TPR are defined as follows:

FPR =
FP

FP + TN
(37)

TPR =
TP

TP + FN
(38)

where TN denotes the number of pixels that successfully detected a non-defective region.
The three algorithms were experimented with in terms of detection accuracy and ROC

curves, and their reconstruction-comparison diagrams are shown in Figure 18, with the
experimental results shown in Figure 19 (The black dashed line in the figure is the reference
line.) and Tables 1 and 2.
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Table 2. Comparison of model accuracy.

Model PR RC F1

VAE + ROF 0.686 0.603 0.642
GAN + ROF 0.624 0.584 0.598

MAE 0.850 0.751 0.798
Ours 0.974 0.931 0.952

As can be seen from Table 1, the precision of this aluminum profile dataset on MAE,
VAE incorporating feature-optimization methods, and the Generative Adversarial Network
are 0.850, 0.686 and 0.624, respectively. The recall is 0.751, 0.603 and 0.584, respectively,
while the F1 values are 0.798, 0.642, and 0.598, respectively. Compared with other classical
models, the precision rate, recall rate, and F1 value of this paper’s model are improved
by at least 12.4%, 18%, and 15.4%, respectively. The experiments show that the model in
this paper can effectively eliminate the interference of complex textures on the surface of
aluminum profiles and improve the detection accuracy.

The results of comparison with Models from the literature [41] are shown in Table 3:
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Table 3. Model comparison results.

Model PR TPR TNR F1 AUC

AE(L2) 0.78 0.74 0.45 0.76 0.68
AE(SSIM) 0.83 0.64 0.66 0.73 0.67

VAE 0.79 0.64 0.54 0.71 0.63
AnoGAN 0.69 0.68 0.58 0.63 0.64

GANomaly 0.79 0.74 0.49 0.76 0.72
DPAE 0.96 0.92 0.89 0.94 0.92
Ours 0.97 0.93 0.98 0.95 0.95

The DPAE method is the unsupervised detection method for aluminum profiles
proposed in this literature. As can be seen from Table 2, the PR, TPR, TNR, F1, and AUC of
the aluminum profile dataset of the Aliyun Tianchi Competition from this method are 98.2%,
97.6%, 97.9%, 97.9%, and 97.7%, respectively; all of these values are significantly higher
than those detected using the methods of AE(L2), AE(SSIM), VAE, AnoGAN, GANomaly,
and DPAE Results. Also, the detection results for this aluminum profile dataset using
the method proposed in this paper improved PR, TPR, TNR, F1, and AUC by 2.2%, 5.6%,
8.9%, 3.9%, and 5.7%, respectively, when compared with the detection results on the DPAE
method. Experiments have shown that the model proposed in this paper can effectively
detect whether there are defects on the surface of aluminum profiles.

The results using our model are compared with the MA-YOLO method proposed in
the literature [42], and some other mainstream supervised surface-defect detection methods
mentioned in that literature, as shown in Table 4.

Table 4. Comparison results with supervised deep learning models.

Model PR RC F1

SSD300 0.958 0.511 0.672
Faster R-CNN 0.541 0.879 0.658

YOLOv3 0.901 0.787 0.826
YOLOv4 0.928 0.599 0.671
YOLOv5s 0.884 0.792 0.827
YOLOX_s 0.875 0.829 0.847
YOLOv6s 0.769 0.725 0.739
YOLOv7 0.878 0.554 0.639

DETR 0.711 0.837 0.778
MA-YOLO 0.908 0.811 0.849

Ours 0.974 0.931 0.952

As can be seen from Table 4, the PR, RC, and F1 values of our proposed method on this
dataset are significantly higher than those of SSD300, Faster R-CNN, YOLOv3, YOLOv4,
YOLOv5s, YOLOX_s, YOLOv6s, YOLOv7, DETR, and MA-YOLO, and the PR, RC, and F1
values are at least improved by 1.6%, 5.2%, and 10.3%, respectively. Our experiments have
shown that the model in this paper can effectively detect whether there are defects on the
surface of aluminum profiles.

Table 5 shows an example of the identification process for some of the samples, where
the first two rows are correctly identified samples and the last two rows are incorrectly
identified samples, the penultimate column is the actual output and the last column is the
desired output.

As can be seen from Table 5, due to lighting, shooting angle, and other issues resulting
in large differences in the background of aluminum profiles in this dataset, the main part
of the aluminum profiles is affected by varying degrees of exposure, uneven illumination,
strong reflections, and background noise, etc. However, the model proposed in this paper
can effectively remove the interference of the complex textures on the surfaces of the
aluminum profiles while retaining their defective features, and can effectively identify
defective samples. The main reason for the identification error of the third row of samples
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is that the lack of prior features of the sample is too small, and in the process of feature
optimization, the defective features and texture are optimized together, which affects
the detection results. For the last row of samples from the acquisition process using the
shooting angle, the image has part of the aluminum profile side information; under the
influence of the lighting effect, the side information color presentation and the rest of the
main part of the difference, and in the process of data normalization is retained, the gloss,
color difference affects the final results of the detection.

Table 5. Sample identification examples.
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Reconstructed
Area-Feature
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4.5. Ablation Experiment

In Section 3.2.3 we mentioned that when a 224 × 224 image is fed into the essential
features extraction network, it is divided into 16 × 16 blocks at the feature-optimization
layer, but we also tried dividing it into 32 × 32 blocks and 8 × 8 blocks and comparing the
results obtained in these cases. Figure 20 shows an example of the reconstruction results
from the model for the feature-optimized image in these three blocking scenarios.

From this figure, we can see that when the feature-optimization image is divided
into 8 × 8 blocks, its reconstructed image is more likely to have defective residues. When
the feature-optimization image is divided into 16 × 16 blocks, its reconstruction effect is
better compared to the other two cases. When the feature-optimization image is divided
into 32 × 32 blocks, in addition to defective residues appearing in some of the images,
non-defective parts of the image may also be disturbed by other factors interference, which
leads to the problem of inconsistent texture of non-defective regions before and after
reconstruction. The comparison of the detection precision for the three cases is shown in
Table 6.
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Table 6. Comparison of detection results within different blocking scenarios.

Blocks 8 × 8 16 × 16 32 × 32

PR 0.581 0.974 0.738

From Table 6, it can be seen that the method dividing the image into 16 × 16 blocks
has the best detection effect, that dividing it into 32 × 32 blocks has the second best
detection effect, and that dividing it into 8 × 8 blocks has the weakest detection effect
among the three.

5. Conclusions

The unsupervised surface-defect detection method for aluminum profiles focusing on
feature reconstruction contains three parts: aluminum profile image preprocessing, essential
feature learning and surface-defect detection. The adaptive boundary extraction method of
the preprocessing process can accurately determine the main part of the aluminum profile
under the background of different colors and complex lighting, can reduce redundant
data, and can lay the foundation for improving the accuracy of the detection method. The
feature-optimization module is integrated into the MAE model, which effectively eliminates
the interference of the complex texture randomly distributed on the surface of aluminum
profiles, improves the model’s focus on the essential features of aluminum profiles, weakens
the influence of irrelevant information on the model, and effectively extracts the surface
features of the good aluminum profiles. The method also adds a fixed local masking
strategy, which masks the defective information on the surface of the aluminum profile as
much as possible during the detection process, and it is able to obtain its global features
from the unmasked area, which ultimately achieves a better repair effect. The experimental
results show that its detection accuracy reaches 97.7%, compared with the current common
methods for detecting defects on the surface of aluminum profiles. The training process for
this method does not require defect samples or a large amount of data labeled in advance,
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which reduces the labor cost. At the same time, the method is not subject to the limitations
of the types of defect samples, giving higher accuracy, and the equipment required for
the model training meets the cost requirements of industrial production. However, the
proposed method still has challenges in distinguishing small and low-contrast defects, so
future research will continue to explore more efficient feature-optimization methods.
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