
Citation: Li, Q.; Zuo, D.; Feng, Y.;

Wen, D. Research on

High-Performance Fourier Transform

Algorithms Based on the NPU. Appl.

Sci. 2024, 14, 405. https://doi.org/

10.3390/app14010405

Academic Editor: Paris Kitsos

Received: 11 November 2023

Revised: 22 December 2023

Accepted: 29 December 2023

Published: 1 January 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied  
sciences

Article

Research on High-Performance Fourier Transform Algorithms
Based on the NPU
Qing Li 1,2, Decheng Zuo 1, Yi Feng 1 and Dongxin Wen 1,*

1 Faculty of Computing, Harbin Institute of Technology, Harbin 150001, China; 21b903107@stu.hit.edu.cn (Q.L.);
zuodc@hit.edu.cn (D.Z.); fengy@ftcl.hit.edu.cn (Y.F.)

2 Jiangsu Automation Research Institute, Lianyungang 222006, China
* Correspondence: wdongxin@hit.edu.cn

Abstract: Backpack computers require powerful, intelligent computing capabilities for field wearables
while taking energy consumption into careful consideration. A recommended solution for this
demand is the CPU + NPU-based SoC. In many wearable intelligence applications, the Fourier
Transform is an essential, computationally intensive preprocessing task. However, due to the unique
structure of the NPU, the conventional Fourier Transform algorithms cannot be applied directly to it.
This paper proposes two NPU-accelerated Fourier Transform algorithms that leverage the unique
hardware structure of the NPU and provides three implementations of those algorithms, namely
MM-2DFT, MV-2FFTm, and MV-2FFTv. Then, we benchmarked the speed and energy efficiency of
our algorithms for the gray image edge filtering task on the Huawei Atlas200I-DK-A2 development
kits against the Cooley-Tukey algorithm running on CPU and GPU platforms. The experiment results
reveal MM-2DFT outperforms OpenCL-based FFT on NVIDIA Tegra X2 GPU for small input sizes,
with a 4- to 8-time speedup. As the input image resolution exceeds 2048, MV-2FFTv approaches
GPU computation speed. Additionally, two scenarios were tested and analyzed for energy efficiency,
revealing that cube units of the NPU are more energy efficient. The vector and CPU units are better
suited for sparse matrix multiplication and small-scale inputs, respectively.

Keywords: backpack computer; wearables; NPU; Fourier Transform

1. Introduction

Smart wearable devices are playing an increasingly important role in the application
scenario of field special operations. Among these devices, the backpack computer serves as
the “central nervous system” for edge intelligence in the wearable device group. It collects
a variety of measurement data from multiple devices, such as smartwatches, glasses, belts,
helmets, and wristbands, for centralized processing. This organizational approach follows
the edge computing paradigm [1,2]. Consequently, the backpack computer requires high
computing power to accelerate scientific calculations or intelligent inference. One common
strategy to meet that need is the incorporation of additional hardware, such as graphics
processing units (GPUs) or field programmable gate arrays (FPGAs). However, due to the
limited size and battery capacity of backpack computers, adding extra hardware leads to
adverse effects, including increased heat generation and reduced battery life.

The system-on-chip (SoC) with high sampling performance emerges as the optimal
solution that effectively balances performance and power consumption. For intelligent
wearable applications, however, most on-chip GPUs currently exhibit poor compatibil-
ity with mainstream intelligent computing frameworks. Additionally, incorporating an
external FPGA for intelligent inference is only suitable for specialized applications and
presents challenges in development. Fortunately, SoC-containing NPUs have been devel-
oped rapidly in recent years, driven by the flourishing of smartphones [3,4]. In intelligent
applications, NPUs boost the computational speed of matrix and vector operations through
data parallelism [5,6]. This not only substantially accelerates intelligent inference but also
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enhances energy efficiency. Therefore, for most intelligent computing scenarios, the CPU +
NPU architecture is sufficient and does not require additional heterogeneous computing
hardware units [7–10].

The computational demands for intelligent applications may not always be adequately
addressed in the calculation phase of intelligent inference, as numerous data preprocessing
tasks often require high computing power as well. In various application scenarios of
wearable devices, such as heart rate estimation [11] and human activity recognition [12],
it is necessary to apply the Fourier Transform (FT) to convert sensor sampling data from
the time-domain signals into the frequency-domain signals before performing intelligent
inference. Moreover, the two-dimensional Fourier Transform has been widely used in edge
intelligence scenarios such as road object detection [13] and stroke detection [14]. With the
advancement in signal sampling rate and resolution, the computational consumption of the
FT has notably increased, especially for image Fourier Transforms. For a backpack computer
with CPU + NPU architecture, executing two-dimensional or high-dimensional Fourier
Transforms with CPUs can result in declines in real-time signal processing performance,
potentially leading to performance bottlenecks in computing. Therefore, it is crucial to
prioritize the research of accelerating FT on NPUs.

Migrating existing FT algorithms directly to NPUs is infeasible due to the distinctive
hardware architecture of NPUs. This is because the matrix and vector units of NPUs
process data blocks in a serial manner, while GPUs and FPGAs process bytes with multiple
threads in parallel [15]. Consequently, the conventional fast FT algorithm may not be
suitable for NPUs. To address this issue, this paper investigates the design of acceleration
algorithms for Fourier Transform utilizing NPU’s distinctive architecture. It aims to explore
the applicability of NPU in typical algorithms that preprocess data for AI and to identify
methods for enhancing NPU efficiency. Two novel NPU algorithms are designed and
implemented: the direct matrix multiplication-based DFT algorithm (MM-2DFT) and the
matrix-vector iterative operation-based Fast Fourier Transform (FFT) algorithm (MV-2FFT).
In benchmarking against the GPU OpenCL-based Cooley-Tukey algorithm running on
NVIDIA Tegra X2, our MM-2DFT algorithm outperforms on small inputs, while the MV-
2FFT algorithm shows superior performance on larger inputs. Based on these algorithms,
we then discussed the energy efficiency of various computing units within the NPU. In
summary, our contributions are as follows:

• We analyzed the Discrete Fourier Transform (DFT) and several typical Fast Fourier
Transform (FFT) algorithms. Then, we analyzed the adaptability of those algorithms
and designed corresponding acceleration strategies based on the distinctive hardware
architecture of NPU;

• We have presented the direct matrix multiplication algorithm (MM-2DFT), which can
fully utilize the computing power of the cube unit for accelerating the DFT algorithm.
The MM-2DFT is highly suitable for scenarios with smaller inputs;

• We have presented the matrix-vector iterative operation-based FFT algorithm (MV-
2FFT), which uses both the cube and vector unit to perform the FFT algorithm based on
the matrix divide-and-conquer method. Building on this algorithm, we developed two
implementations to evaluate the performance difference between matrix and vector
multiplication on various computation units of NPUs. The results revealed the fact
that (1) the MV-2FFT is better suited for scenarios with larger inputs, and (2) vector
multiplication is quicker and more energy-efficient than matrix multiplication on
NPUs;

• We deployed the NPU algorithm implementations on a real hardware platform and
evaluated their performance and power consumption in a typical image preprocessing
task. Based on that evaluation, we comprehensively analyzed the energy efficiency of
different algorithms and the typical NPU’s internal hardware units.
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2. Related Works
2.1. The Applications and Acceleration Research of the Fourier Transform
2.1.1. The Applications of Fourier Transform

The Fourier Transform is a widely adopted spectral analysis method in the preprocess-
ing stage of intelligent computing applications. These applications span various domains,
including image recognition, fatigue detection, material design, and more. In detail, Bal-
abanova et al. [16] proposed a feature extraction approach that involves preprocessing
images in various graphic formats using FFT and spectral analysis methods. Sedik et al. [17]
proposed a fatigue detection system that utilizes FFT for feature extraction and noise elim-
ination. Seyed Mahmoud et al. [18,19] calculated the thermal conductivity based on the
microstructure geometry of the provided material using an FFT-based method. Subse-
quently, they developed a machine learning method to design materials according to
desired performance.

2.1.2. The Research on Accelerating the Fourier Transform

Due to the inherent computational complexity of the Fourier Transform algorithm,
specialized computational acceleration is traditionally required, particularly through the
utilization of heterogeneous computing architectures in various engineering applications.
Heterogeneous acceleration of the Fourier Transform and its fast algorithms have been
extensively studied, but most of these studies are based on specialized hardware for the
Fourier Transform, such as GPU processors or FPGA. For instance, Le Ba et al. [20] proposed
a new FFT hardware that enhanced throughput by simplifying computation and reducing
memory usage. Their architecture also reduces energy consumption by improving input
scheduling algorithms. Zhao et al. [21] proposed a new large-scale FFT framework that
improves parallelism efficiency by reducing communication overhead using advanced
floating-point compression techniques. Ayala et al. [22] studied multidimensional FFT on
large-scale GPU systems. They evaluated the features of parallel FFTs, optimized perfor-
mance with tuning methodology, and achieved linear scalability on these GPU systems.

2.2. NPU Research for Edge Devices

Due to superior computing power and energy efficiency, the utilization of NPUs for
accelerating intelligent computing on mobile edge devices has become a hot research area.
Current research in this field mainly focuses on (1) enhancing inference accuracy and
(2) boosting NPU efficiency.

Regarding enhancing inference accuracy, Tan et al. [3,4] focused on optimizing the
trade-off between inference time and accuracy within specific constraints. They also
addressed the distribution of workload between the CPU and NPU. Lee et al. [23,24]
concentrated on improving the performance and accuracy of inference by identifying
optimal model structures using model search methods. They also developed an optimiza-
tion framework to generate optimal NPU dataflow for more accurate and faster deep
learning models.

Regarding boosting the inference efficiency of NPUs, Rapp et al. [25] explored ways to
enhance the inference efficiency of the NPU by examining the dynamic frequency charac-
teristics of the processor. This was achieved by managing the temperature of the processor
cluster with task migration and Dynamic Voltage and Frequency Scaling (DVFS) techniques.
Xue et al. [6] introduced a novel framework for managing NPU resources, enhancing effi-
ciency and fairness in multi-user scenarios by enabling concurrent execution, and resource
sharing. In addition to these works, there are also studies focused on improving NPU
inference efficiency by accelerating parameter updating [26] or task scheduling [27,28].

2.3. Summary

In conclusion, the Fourier Transform and its variants, as widely used data preprocess-
ing techniques, find extensive applications in various scenarios (Section 2.1.1). Numerous
research studies have explored heterogeneous acceleration techniques for these transforms
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(Section 2.1.2). However, the predominant focus of these studies has been on GPUs and
FPGAs, with comparatively less attention given to NPUs. This trend can be attributed to
the fact that although the NPU primarily serves as an accelerator for deep neural networks,
its architecture, particularly in data parallel processing, makes it suitable for computation-
ally intensive tasks. This suitability arises from NPUs typically incorporating dedicated
hardware units designed for matrix and vector calculations, which enhance the efficiency
and parallelism of these calculations through specialized instructions. However, ongoing
research and development efforts in NPUs mainly focus on accelerating neural networks,
and support for typical engineering algorithm computation remains insufficient. Therefore,
employing NPUs to accelerate typical engineering algorithms, especially in the study of
the Fourier Transform, is significant.

3. Background

To facilitate our study, we introduce the NPU architecture and analyze the characteris-
tics of the Fourier Transform and its fast algorithms.

3.1. Architecture of a Typical NPU

The typical NPU architecture is equipped with specialized hardware units that can
directly perform matrix or vector multiplication and addition to accelerate neural network
computations [6]. Take the Huawei Atlas200 AI accelerator module as an example; its
built-in AI Core adopts the DaVinci architecture, as shown in Figure 1 [29].
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Figure 1. Huawei DaVinci architecture. 
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scalar data operations and handles logical tasks for loop control and branch decisions in 
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involving matrix and vector operations. Specifically, each execution of the cube unit com-
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The AI Core is the primary hardware for computational power in NPUs, which
contains a cube unit, vector unit, and scalar unit. The scalar unit is responsible for various
scalar data operations and handles logical tasks for loop control and branch decisions
in operators. The cube unit and vector unit are well-suited for computationally intense
tasks involving matrix and vector operations. Specifically, each execution of the cube unit
completes matrix multiplication on two 16 × 16 matrices of the float16 type. Each execution
of the vector unit can simultaneously perform operations such as multiplication, addition,
or subtraction on two 128-length vectors of the float16 type.

3.2. The Matrix Acceleration Technique in the Discrete Fourier Transform (DFT)

The Fourier Transform is a mathematical procedure that extracts frequency com-
ponents from input data samples. That transform is heavily used in signal processing
algorithms, such as equalization, filtering, compression, and more.
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For frequency domain analysis, the DFT is frequently used in engineering, and its
Formula is shown as follows:

Xj =
n−1

∑
k=0

xk exp(−2πi
n

jk) j = 0, 1, . . . , n − 1 (1)

The multiplication of an N-by-N DFT matrix and the discrete samples of the sequence
of length N can be expressed in the form of Formula (2), where ω = e

−2π
N i. The complexity

of the algorithm reaches O
(

N2).

1 1 1 1 · · · 1
1 ω ω2 ω3 · · · ωN−1

1 ω2 ω4 ω6 · · · ω2(N−1)

1 ω3 ω6 ω9 · · · ω3(N−1)

...
...

...
...

...
1 ωN−1 ω2(N−1) ω3(N−1) · · · ω(N−1)(N−1)




x[0]
x[1]
. . .

x[N − 2]
x[N − 1]

 =


y[0]
y[1]
· · ·

y[N − 2]
y[N − 1]

 (2)

From Formula (2), it can be seen that the DFT is the process of multiplying a DFT
matrix of N × N with an input vector of N × 1; this task is well suited to the powerful matrix
processing capabilities of NPUs. When the input vector length is N ≤ 16, the DFT process
can be executed as a single matrix multiplication instruction. When N > 16, the matrix
multiplication can be decomposed into multiple low-order matrix multiplications using the
block matrix principle, allowing the cube unit to handle the computation. Consequently,
the computational complexity is significantly reduced to 1/256 of the original complexity.
The direct calculation method still retains its relatively high-level calculation process,
which means that as the order of matrices involved in matrix multiplication increases,
the processing speed significantly decreases. However, that method holds engineering
significance for lower-order inputs. This is due to the NPU’s exceptional matrix computing
capabilities and the finite nature of sample length N in typical engineering applications.
Therefore, employing an NPU for direct DFT calculations using Formula (2) is a valuable
engineering approach that effectively utilizes the computing power of the NPU cube unit.

3.3. The Acceleration Technique in the FFT Based on the Cooley-Tukey Algorithm

Due to the high computational complexity of solving Formula (2) directly, in engi-
neering the Fast Fourier Transform (FFT) method is generally used. The FFT is a general
term for techniques used to calculate DFT efficiently and quickly on computers. The most
classic method in the FFT is the Cooley-Tukey algorithm [30]. The Cooley-Tukey algorithm
reduces the complexity to O (N log2 N) by employing a divide-and-conquer strategy. The
core idea of the Cooley-Tukey algorithm is to decompose an input vector of length N into
two input vectors of length N/2 and recursively compute their Fourier Transforms with a
similar method. The transformed input vectors are then combined to obtain the Fourier
Transform result of the original input vector of length n. This combination process is
achieved using butterfly operations. By repeatedly applying this decomposition and com-
bination process, the Cooley-Tukey algorithm efficiently calculates the Fourier Transform
with less computation. The acceleration performance of the Cooley-Tukey algorithm has
been validated through numerous instances on both CPUs and GPUs.

However, implementing the Cooley-Tukey algorithm directly on NPUs poses a signifi-
cant challenge due to the NPUs’ inability to manipulate fine-grained data blocks, which is
essential in the execution of that algorithm. This is because the Cooley-Tukey algorithm
involves the butterfly operation. During the first several iteration cycles, the operation
directly manipulates individual elements rather than data blocks consisting of at least 32
bytes, which is difficult for NPUs. In contrast, the major computing units of CPUs or GPUs
can operate on a byte. Therefore, it is not suitable to utilize the NPU’s vector units to
accelerate the FFT based on the Cooley-Tukey algorithm.



Appl. Sci. 2024, 14, 405 6 of 19

3.4. The Acceleration Technique in the FFT Based on the Matrix Divide-and-Conquer Method

We were able to derive a matrix form of the Cooley-Tukey algorithm, presented in
Formula (3), by incorporating the divide-and-conquer technique [31]. With that formula,
we can control the granularity of matrix factorization within the feasible range of the NPU.[

X1
X2

]
N×1

=

[
I D
I D

]
×

[
A
B

]
N×1

(3)

where A and B are the result of multiplying the even and odd sequences of input data X by

a DFT matrix of order N/2, respectively; I =


1 0 · · · 0
0 1 · · · 0
...

...
. . .

...
0 0 · · · 1


N
2 × N

2

, and D is the rotation ma-

trix, where D =


1 0 · · · 0
0 ω1

N · · · 0
...

...
. . .

...

0 0 · · · ω
N
2 −1

N


N
2 × N

2

, X1 =


X(0)
X(1)

...
X
(

N
2 − 1

)


N
2 ×1

,

X2 =


X
(

N
2

)
X
(

N
2 + 1

)
...

X(N − 1)


N
2 ×1

.

Furthermore, we obtained Formula (4), which is used in the merging process:[
X1
X2

]
=

[
A + DB
A − DB

]
(4)

During the solving of A and B, we recursively repeat this process of decomposition and
merging. In this way, the DFT transformation of a higher-dimensional vector is transformed
into that of multiple lower-dimensional vectors. This algorithm has the same asymptotic
time complexity as the Cooley-Tukey algorithm, but its calculation amount depends on the
order of the vector yields by the last decomposition.

It can be observed from Formula (4) that this algorithm consists of matrix addition,
subtraction, and multiplication operations and is appropriate for acceleration utilizing the
cube units and vector units of NPUs in combination.

4. Methods

In wilderness formation tasks, it is common for backpack computers to preprocess
images captured by wearable image sensors. This typically involves using the 2D Fourier
Transform before applying intelligent processing to the images. The 2D Fourier Transform
requires performing 1D Fourier Transforms on the rows and columns of the image individ-
ually. That means the calculation process comprises three steps, namely: (1) performing
the Fourier Transformation according to Formula (5), (2) transposing the result obtained in
step 1, and (3) performing another Fourier Transformation using Formula (5).


1 1 1 · · · 1
1 ω ω2 · · · ωN−1

...
...

...
...

1 ωN−1 ω2(N−1) · · · ω(N−1)2

×


x[0] x[1] · · · x[N − 1]
x[1] x[2] · · · x[2(N − 1)]

...
...

...
x[N − 1] x[2(N − 1)] · · · x

[
(N − 1)2

]
 =


y[0] y[1] · · · y[N − 1]
y[1] y[2] · · · y[2(N − 1)]

...
...

...
y[N − 1] y[2(N − 1)] · · · y

[
(N − 1)2

]
 (5)

Considering that the forward and inverse transformations are commonly used in pairs
in engineering applications, the inverse transformation algorithm adds only a conjugation
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operation based on the forward transformation algorithm, thus having little influence on
the software architecture. Moreover, the inverse transform can intuitively demonstrate
the effects of the forward transform, helping to validate the correctness of the transform
algorithms. Therefore, the image preprocessing process is designed for both forward and
inverse transformations.

In this section, two algorithms based on NPUs were designed to accelerate the appli-
cation of the 2D Fourier Transform in image processing for formation task scenarios. One
uses the direct matrix multiplication, while the other uses the divide-and-conquer method.

4.1. The Direct Matrix Multiplication-Based DFT Algorithm (MM-2DFT)

As analyzed in Section 3.2, directly solving Formula (5) incurs a computational com-
plexity of O(N2), making it impractical for most heterogeneous acceleration hardware, such
as GPUs and FPGAs. This approach, however, holds engineering significance for NPUs
equipped with dedicated matrix multiplication hardware units.

The direct matrix multiplication algorithm (MM-2DFT) solves Formula (5) using the
cube units of the NPU directly. When using NPU cube units for computation, N × N
matrices can be decomposed into multiple 16 × 16 low-order matrices, and the block matrix
multiplication method can be used to obtain the transform result of N × N matrix results.
This is what the NPU excels at, and it can fully use the cube units’ computing power.
Fortunately, most NPU platforms provide high-order matrix multiplication primitives,
such as the general matrix multiplication (gemm) operator provided by the Huawei NPU
platform. These NPU platforms are commonly used as coprocessors to execute the gemm
operator. During execution, the CPU transfers raw data to the NPU platform, which
performs the operator calculation and returns the results to the CPU.

When the cube unit of the NPU performs matrix multiplication, it does not directly
calculate complex numbers. Therefore, the real and imaginary parts of the DFT matrix need
to be used as inputs for the MM-2DFT algorithm. Then, using the properties of complex
multiplication, the complex results can be calculated to obtain the desired output. The
specific algorithm for MM-2DFT is shown in Algorithm 1.

To prevent the intermediate results from overflowing during the calculation process
of the MM-2DFT algorithm, it is necessary to normalize the input values of X beforehand.
Afterward, the Fourier Transform is computed on all the “rows” of X, then the result is
transposed, and the Fourier Transform is applied to all the “rows” of the transposed result.
Note that the “rows” of the transposed result actually correspond to the “cols” of the
original matrix. After completing those two transformations, transposing the result yields
the final result of the 2D Fourier Transform. During the calculation process, data copy
operations can be parallelized in single-operator calculations like gemm, optimizing the
overall algorithm execution time.

4.2. Improved Matrix Divide-and-Conquer-Based FFT Algorithm (MV-2FFT)

The MV-2FFT is an NPU implementation of the FFT based on the matrix divide-
and-conquer approach [31]. It first divides the input matrix into several minimum block
matrices according to the parity of rows. Then, it calculates the DFT for each minimum
matrix block. Finally, it iteratively applies Formula (4) via the bottom-up method to obtain
the final result. The pseudo-code for the MV-2FFT is presented in Algorithm 2. The detailed
execution process can be described in the following three steps.

First, the input image matrix data are divided into blocks of even matrices and blocks
of odd matrices. The specific calculation process of the DFT result can be represented by
two steps: (1) calculating the number of iterations as logN

2 − R based on the hyperparameter
R and (2) using a recursive algorithm to determine the correspondence between the row
numbers of the original input matrix and the smallest block matrices. Based on the results,
the corresponding rows are copied into the smallest block matrices.
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Algorithm 1: MM-2DFT Algorithm

Input: Wr real part of the Twiddle factor matrix;
Wi imaginary part of the Twiddle factor matrix;
Xr real part of the matrix to be transformed;
Xi imaginary part of the matrix to be transformed;
Inverse whether to perform inverse transformation bool Inverse.

Output: Yr, Yi resulting matrix
Begin

normalize Xr and Xi, coefficient nN
for j = 0 to 2 do

transpose matrix Xr, Xi to obtain XT
r , XT

i
if Inverse == TRUE then

call gemm complete matrix transpose and conjugate XT
i = −1 × XT

i
end if
call the gemm operator to do A = Wr × XT

r , B = Wi × XT
i ,

C = Wr × XT
i , D = Wi × XT

r
if j == 0 then

call the vector subtraction operator to do XT
r = A − B

call the vector addition operator to do XT
i = C + D

end if
if Inverse == TRUE then

call the gemm operator and take the conjugate XT
i = −1 × XT

i
call the gemm operator to do Xr =

1
N × XT

r , Xi =
1
N × XT

i
else if j == 1 then

call the vector addition and subtraction operator to do Yr = A − B, Yi = C + D
end if
if Inverse == TRUE then

call the vector multiplication operator to do Yr = nYr
end if
Yr = YT

r , Yi = YT
i

end for
end

Then, the DFT results of minimal blocks are calculated separately. The function
FFT_1D is called to compute the DFT results for each of the smallest block matrices.

Following this, the final transformation results are gradually computed according to
Formula (4) through logN

2 − R iterations. After obtaining the DFT result matrices of the
smallest block matrices, the adjacent two result matrices are substituted into Formula (4) to
solve for the high-order DFT results. Repeating this process iteratively eventually yields
the final Fourier Transform result of the input image.

Finally, the results are copied to the output matrix.
Both the MV-2FFT algorithm and the Cooley-Tukey algorithm share the fundamental

concept of matrix divide-and-conquer, but they differ in the partition details (Figure 2).
These distinctions include:

• The MV-2FFT algorithm determines the number of iterations and the depth of the
matrix partition based on the input hyperparameters. However, the Cooley-Tukey
algorithm partitions the matrix to the finest granularity by default, and its iteration
time is fixed for logN

2 , where N is the order of the input square matrix. From an
algorithm scheduling perspective, MV-2FFT is a more streamlined approach;

• During the iterative computation, the MV-2FFT algorithm operates on matrices, while
the Cooley-Tukey algorithm performs butterfly operations on elements of row vectors.
The Cooley-Tukey algorithm cannot be implemented on NPUs, as it operates on the
element lever, while NPUs can operate only on data blocks. In contrast, the MV-2FFT
algorithm can fully utilize the computation power of matrix units.
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FUNCTION: FFT_1D

Input: N N × N rotation matrix;
Xr real part of the input matrix;
Xi imaginary part of the input matrix;
Ct nested termination condition.

Output: N × N rotation matrix Yr, Yi
Begin

read the pre-generated matrices WN
r , WN

i , DN
r , DN

i
call the gemm operator to calculate E = WN

r × Xr, F = WN
i × Xi,

G = WN
r × Xi, H = WN

r × Xr
call the vector addition and subtraction operator to do Yr = E − F, Yi = G + H
end

The typical approach of calculating D × B in Algorithm 2 is calling on the gemm oper-
ator. However, this calculation can be simplified by employing vector multiplication, con-

sidering that D is a diagonal matrix. In detail, the matrix D =


1 0 · · · 0
0 ω1

N · · · 0
...

...
. . .

...

0 0 · · · ω
N
2 −1

N


N
2 × N

2

in Formula (3) can be converted to the form


1 1 · · · 1

ω1
N ω1

N · · · ω1
N

...
...

. . .
...

ω
N
2 −1

N ω
N
2 −1

N · · · ω
N
2 −1

N


N
2 × N

2

, which

allows us to replace matrix multiplication with vector multiplication.
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Algorithm 2: MV-2FFT Algorithm

Input: N N × N rotation matrix;
Xr real part of the input matrix;
Xi imaginary part of the input matrix;
R is a hyperparameter that is set to logZ

2 when the minimum sub-block matrix is defined as
a Z × Z matrix.
Output: N × N rotation matrix Yr, Yi
Begin

allocate memory for an array M
[
2(logN

2 −R)
]
[N × N]

transpose matrices Xr, Xi to obtain XT
r , XT

i
using the recursive method to calculate the assigned row numbers for each minimum sub-block

matrix and fill the results into matrix P[2(logN
2 −R)][Z]

for i = 0 to 2(logN
2 −R) do

for j = 0 to Z do
copy each row of matrices XT

r , XT
i to matrices M[i]r, M[i]i based on the values of matrix P

end for
end for
for i = 0 to 2(logN

2 −R) do
M[i]r, M[i]i = FFT_1D (Z, M[i]r, M[i]i)

end for
for i =

(
logN

2 −R
)

to 0 do

for j = 0 to 2i/2 do
call the gemm operator to do E = D

N/2i

r × M [2j + 1]r, F = D
N/2i

i × M [2j + 1]i,
G = D

N/2i

r × M [2j + 1]i, H = D
N/2i

r × M [2j + 1]r
DBr = E − F
DBi = G + H
copy the N/2i × N/2i order matrix M[2j]r to Ar
copy the N/2i × N/2i order matrix M[2j]i to Ai
calculate based on Formula (4): M[j]ur = Ar + DBr, M[j]ui = Ai + DBI,

M[j]dr = Ar − DBr, M[j]di = Ai − DBi
end for

end for
copy the matrices M [0]r, M [0]i matrices to Yr, Yi

end

We implemented Algorithm 2 by calculating D × B in Formula (4) via employing a
vector multiplication operator rather than a gemm operator. To investigate the effect of
this replacement on computation speed and energy efficiency, we implemented another
version of the MV-2FFT algorithm with the matrix multiplication operator. In the following
sections, we refer to the algorithm using the matrix multiplication operator as MV-2FFTm
and the one using the vector multiplication operator as MV-2FFTv.

The flow of the MV-2FFT algorithm is shown in Algorithm 2, where the FFT-1D
function is used to calculate the DFT of the smallest block matrix.

5. Results and Discussion
5.1. Experiment Setup
5.1.1. Hardware Platform

We adopted the Atlas 200I DK A2 developer kits made by Huawei in China as the
experimental hardware platform to deploy the implementations of our algorithms, which
are based on the Ascend 310 series AI processor. The Ascend 310 is one of the most popular
NPUs in edge intelligence. Our development and validation of the simplified development
kits of the Ascend 310 are conducive to the application and promotion of our algorithm.
The AI processor provides four 1 GHz A55 ARM cores and one 500 MHz AI Core. On
the software side, the Huawei Atlas 200I DK A2 runs Ubuntu 20.04 and deploys an NPU
runtime environment configuration. Three CPUs were defined as control CPUs to run



Appl. Sci. 2024, 14, 405 11 of 19

the operating system and applications, while one CPU was dedicated to running AI CPU
operators.

5.1.2. Software Flow of the Edge Filter

The combination of high-pass filtering and the Fourier Transform is a common usage.
Specifically, the software edge filter uses the high-pass filter to extract contour images. The
extraction results can be visualized through the reverse Fourier Transform, which facilitates
validating the correctness of algorithms. The software execution stream of the edge filter is
shown in Figure 3.
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We prepared six types of PGM format images with specifications of 64 × 64, 128 × 128,
256 × 256, 512 × 512, 1024 × 1024, and 2048 × 2048 as the input for the Fourier Transform
algorithms.

5.1.3. Algorithm and Configuration

To conduct a comprehensive comparison, we benchmarked three implementations of
our algorithms running on NPUs against the Cooley-Tukey algorithm running on other
platforms for execution speed. One baseline we used was the Cooley-Tukey algorithm
based on OpenCL running on the NVIDIA Tegra X2 built-in GPU, referred to as FFT_CL.
NVIDIA Tegra X2 is specifically designed for edge applications, and its level of compute
power is representative. Another baseline was the Cooley-Tukey algorithm running on an
embedded CPU within the NPU, referred to as FFT_CPU.

Note that the FFT_CL was excluded from the energy efficiency evaluation as the
different hardware designs interfered with the experiment’s results. An additional reason
was that we focused more on the impact of the NPU algorithm and internal units on the
overall energy efficiency of the board. For the same reason, the FFT_CPU was included in
the analysis of CPU energy efficiency as an internal unit of the NPU. That is because CPU
units are usually integrated into NPU architectures to support the execution of algorithms
that cannot be effectively processed through matrix and vector computations.

For the algorithm configuration, we used the GCC O2 level optimization for the
FFT_CPU and set the minimum block matrix size differently for MM-2FFT. These configu-
rations were obtained based on preliminary experimental results to maximize performance.
Specifically, the GCC O2 level optimization was used because it accelerates the FFT_CPU
algorithm up to three times faster than the non-optimized one, and it outperforms all other
optimization levels. Regarding matrices division, we partitioned the input matrix into
block matrices whose order was half of the original matrix when the order of input matrices
was lower than 2048. Specifically, for an input matrix of order 2048, we set the minimum
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block matrix size to 512 × 512. We selected those configurations as they are shown to be the
optimal ones according to the preliminary experiment. It is worth noting the experiment
result shows that fine-grained division of the input matrix may slow down the algorithm
execution on the NPU platform. This is because the fine-grained division strategy incurs
high scheduling costs. For the configuration items not mentioned above, we used the
default settings.

5.2. Acceleration Effect and Discussion
5.2.1. Acceleration Effect of Experiment Results

In this section, we validated the acceleration effect of NPUs on the Fourier Transform
following the experimental settings mentioned in the former section. The execution times
for performing one edge filter process of various algorithms are shown in Table 1, and their
line graphs are shown in Figure 4. The data shown in Table 1 were obtained by executing
the edge filter 100 times and calculating the average time consumption. We have bolded
the notable outcomes for each set of inputs in Table 1.

Table 1. Time consumption of a single process (ms).

Input Matrix’s
Order

FFT_CL
(Tegra X2) MM-2DFT MV-2FFTm MV-2FFTv FFT_CPU

(with O2)

64 8.41 1.92 6.93 6.22 2.26
128 11.09 1.68 7.35 6.62 10.00
256 22.32 2.76 11.60 10.62 44.16
512 37.31 14.68 27.89 24.21 197.44
1024 73.99 67.50 91.04 82.64 849.90
2048 271.39 448.33 483.32 372.57 4000.59
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The experiment result showed that the execution time of MM-2DFT, MV-2FFT, FFT-
CL, and FFT_CPU increased with the input scale but at different rates. In detail, the
result demonstrated that MM-2DFT has the shortest processing time for most input sizes
(64 × 64~1024 × 1024), while FFT_CL has the longest processing time with an input size
under 256 × 256. As the input size increased, the gap between their runtimes progressively
narrowed and eventually reversed. When the input size increased to 2048 × 2048, FFT_CL
achieved the highest running speed among the three algorithms, surpassing the second
place MV-2FFTv by 27%. Similarly, MV-2FFTv ran 16% faster than MM-2DFT for that input
size. Additionally, FFT_CPU showed the second-best performance with the smallest input
data size (64 × 64). However, its time consumption increased substantially on larger input
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data sizes, surpassing other algorithms. This suggested that other computing platforms
may have significant advantages over the CPU for this task.

Apart from the growth rate of time consumption, we made another finding. Namely,
the MV-2FFTv algorithm consistently exhibited over 10% higher performance compared to
MV-2FFTm, and this advantage grew with increasing input sizes.

5.2.2. Analysis of the Acceleration Effect of MM-2DFT

The experiment results showed the MM-2DFT algorithm with the NPU cube unit
is more suited for small input sizes than large input sizes. In detail, that algorithm is
4–8 times faster than its competitor, given a DFT input size up to 256 × 256, and maintains
its advantage until the input size exceeds 1024 × 1024. This attribute to the powerful
computing power of the cube unit makes up for the high complexity of MM-2DFT, and the
scheduling overhead of MM-2DFT is lower. Consequently, with the small input image size
up to 256 × 256, the MM-2DFT achieves high performance by leveraging the cube unit’s
powerful computational capabilities of NPU with low scheduling overhead. However, as
input size increases, time complexity gradually dominates the execution time. That results
in the MM-2DFT’s inefficient compared with FFT_CL at input sizes of 2048 × 2048 or larger.
In conclusion, MM-2DFT can achieve high performance in input sizes below 1024 × 1024
by leveraging the computational power of the cube unit and reducing scheduling overhead.
When the input size is not lower than 2048 × 2048, the fast Fourier algorithm shows
performance advantages due to its lower time complexity.

5.2.3. Analysis of the Acceleration Effect of MV-2FFT

We measured the single execution time separately for two implementations of the
MV-2FFT algorithm, namely the MV-2FFTm and the MV-2FFTv, and analyzed the results
to evaluate the impact of processing unit selection on performance.

1. Analysis of Execution Time Change with Input Size

Compared with MM-2DFT, MM-2FFT exhibited a higher execution time under the
order of the input matrix size equal to 1024. Nevertheless, as the size of the input matrix
increases, MM-2FFT’s execution time increases slower than that of MM-2DFT. Eventually,
when the order of the input square matrix reaches 2048, MM-2FFTv’s time efficiency
surpasses that of MM-2DFT. This observation implies that when the input data size is
small, the scheduling overhead involved by the divide-and-conquer method outweighs the
potential benefits of that algorithm. As the size of the input matrix increases, however, the
calculation complexity advantage of the divide-and-conquer approach used in MM-2FFT
gradually becomes more prominent.

2. Analysis of Performance Difference Between MV-2FFTm and MV-2FFTv

When evaluating the two implementations of MV-2FFT, the comparison result demon-
strates that MV-2FFTv outperforms MV-2FFTm on all tested input sizes. This performance
difference grows as the input size increases, ranging from 10% to 22% improvement as the
order of the input square matrix grows from 64 to 2048. This computation time difference
is caused by the different handling of those MV-2FFT implementations to calculate D × B
in ALGORITHM 2. Specifically, MV-2FFm calculates multiplication with the cube unit.
In contrast, MV-2FFv replaces matrix multiplication with vector multiplication, taking
advantage of the sparsity property of the matrix, thereby accelerating computation.

5.3. Energy Consumption Measurement Results and Discussion
5.3.1. Energy Consumption Measurement Results

In this section, we measured the energy consumption of our algorithms and imple-
mentations in two usage scenarios.
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1. Continuous test results

In the continuous test, we measured energy consumption by continuously processing
input images with varying data sizes using edge filters based on MM-2DFT, MV-2FFT,
MV-2FFTm, MV-2FFTv, and FFT_CPU. The measurement results of energy consumption of
the hardware platform during 1-h operation are shown in Table 2, and their change trend is
shown in Figure 5. Like the processing in Table 1, we have bolded the notable outcomes for
each set of inputs in Table 2.

Table 2. Entire-board energy consumption during continuous test.

Input Matrix’s
Order

MM-2DFT MV-2FFTm MV-2FFTv FFT_CPU

E n E n E n E n

64 13.1 wh 1,785,504 13.2 wh 511,567 12.8 wh 577,538 12.2 wh 1,556,041
128 13.2 wh 2,010,560 13.3 wh 478,662 12.8 wh 544,520 12.3 wh 358,985
256 13.4 wh 1,171,872 13.4 wh 301,800 13.0 wh 330,720 12.4 wh 81,002
512 13.5 wh 228,840 13.7 wh 123,473 13.3 wh 147,448 12.4 wh 18,000
1024 13.7 wh 51,864 14.4 wh 38,041 14.0 wh 42,144 12.4 wh 4206
2048 14.0 wh 7920 14.8 wh 7217 14.6 wh 9336 12.5 wh 870
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Figure 5 illustrates the trend of the total energy consumption of different algorithms
as a function of the input matrix size when executed consecutively. According to the
test results, those algorithms can be ranked by total power consumption in the following
order from low to high: FFT_CPU, MV-2FFTv, MM-2DFT, and MV-2FFTm. In detail, the
FFT_CPU algorithm incurred a mild increase in the board’s total power consumption as
the input matrix size grew. In contrast, the board’s total power consumption of other tested
algorithms, especially MV-2FFTm and MV-2FFTv, increased significantly with the input
data size.

We defined the calculation method for the energy consumption of a single algorithm
computation as Formula (6); the average energy consumption per execution (Ea) is calcu-
lated from hardware power consumption (E) and execution count (n) as follows:

Ea = E/n (6)

Using Formula (6), we were able to calculate the energy consumption of each algorithm
for a single execution based on the continuous running test results, as shown in Figure 6.
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Different from Figure 5, Figure 6 shows the single execution energy consumption of
those algorithms during the continuous execution test. The trend depicted by the broken
lines in the chart indicates a substantial increase in energy consumption per execution
of various algorithms as the input matrix size increased, but the growth rates varied
significantly. The FFT_CPU algorithm had the highest growth rate in energy consumption
with increasing input data size, which significantly exceeded that of other algorithms.
Regarding the other algorithms, the MM-2DFT algorithm had the highest energy efficiency
for input sizes equal to or lower than 1024 × 1024, followed closely by MV-2FFv and
MV-2FFm algorithms. Once the input size reached 2048 × 2048, the energy efficiency of the
MM-2DFT algorithm was surpassed by that of the MV-2FFTv algorithm.

2. Fixed frame rate test results

For the periodic running test, we invoked the image edge filter using input images
of varying sizes. In this test, the processing period was set to 50 ms to simulate an input
image stream with a frame rate of 20fps. Due to that process time constraint, we had only
used small input data sizes (up to 512 × 512) that can be processed by most algorithms
within one processing period.

The energy consumption of the hardware platform after running for 1-h is displayed
in Table 3, and the corresponding bar chart is shown in Figure 7. The bolded data in that
table are notable outcomes for each input sets.

Table 3. Entire board of energy consumption during continuous tests.

Input Matrix’s Order MM-2DFT MV-2FFTm MV-2FFTv FFT_CPU

64 11.8 wh 12.0 wh 12.0 wh 11.8 wh
128 11.9 wh 12.1 wh 12.0 wh 11.9 wh
256 11.9 wh 12.2 wh 12.2 wh 12.4 wh
512 12.3 wh 12.9 wh 12.8 wh ---
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Figure 7 illustrates that the energy consumption of various algorithms generally
increased as the order of input matrices increased, yet with different growth rates. Among
these algorithms, MM-2DFT was the most energy-efficient overall. FFT_CPU showed low
power consumption comparable to MM-2FFT when the input data size was equal to or
lower than 128 × 128. However, its power consumption soared to the highest among all
the evaluated algorithms when the input data size reached 256 × 256 or higher. Regarding
the two implementations of MV-2FFT, MV-2FFTv was more energy-efficient compared to
MV-2FFTm but still consumed more time than MM-2DFT on all tested input data sizes.

5.3.2. Discussions of Energy Efficiency for Algorithms

1. Discussions of energy consumption for executing continuously on the entire board

During continuous execution, the power consumption of the FFT_CPU algorithm
showed a slight increase as the input data size increased, whereas the NPU algorithm
implementations demonstrated a more pronounced rise, as shown in Figure 5. Considering
that power consumption has a positive correlation with processor utilization, we monitored
the utilization of the CPU and AI Core by those algorithms to investigate the reasons for
the above phenomenon. The monitor results showed that, regardless of the input size,
FFT_CPU fully occupies a single CPU core but no AI Core. In contrast, the utilization of
both the control CPU and AI Core of other algorithms increased as the input size grew,
resulting in a significant rise in the power consumption of the whole board. The increase in
utilization is attributed to the decrease in the proportion of communication cost between
the NPU and CPU to the total overhead as the input size increased. Specifically, algorithms
that rely on NPUs require transmitting input data to and results from the NPU, resulting
in considerable communication overhead. As the input scale increased, more data were
passed to the NPU in a single data pass. That allowed the internal units to participate more
fully in the calculation rather than importing and exporting data frequently, which led to a
significant increase in NPU utilization.

2. Discussions of energy efficiency for a single execution

The energy efficiency of algorithms is strongly related to their execution time, meaning
that optimizing process speed may help to improve energy efficiency. The comparison
between Figures 4 and 6 indicates a high degree of consistency between the trends of
changes in energy consumption and time consumption of different algorithms concerning
input size. Note that lower energy consumption implies higher energy efficiency, while
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lower time consumption implies higher time efficiency. Hence, that shared trend suggests
the speed of a single execution is a critical factor that influences the energy efficiency of the
algorithm executing continuously under high load without considering any particular opti-
mization strategy. To conclude, optimizing the execution speed is equivalent to optimizing
the energy efficiency to some extent.

3. Analysis of energy efficiency considering static power consumption

Continuous running tests may reflect busy working conditions, but in practical engi-
neering, the frame rate of image input channels is typically fixed. Hence, after completing
the computation for one frame, the system enters a waiting task state but still consumes
power. Given that under a fixed frame input rate, the total power consumption of the
algorithm is the sum of all the execution and standby power consumption, the former is
referred to as the dynamic power consumption, while the latter is referred to as the static
power consumption. Although the FFT_CPU algorithm has a slightly longer execution
time, it does not utilize the extra hardware resources of the AI Core and has a low dynamic
power. Thus, the overall power consumption of FFT_CPU is controlled. That is supported
by the fact that at those input scales, the power consumption of FFT_CPU is tied with
that of MM-2DFT for the lowest. To conclude, despite being less efficient than other NPU
algorithms on large inputs, FFT_CPU remains the preferred algorithm for small inputs (up
to 128). As the image resolution increases, however, the energy efficiency advantages of
NPU algorithms become more noticeable, and they can complete computing tasks faster
and with less power consumption compared to CPU algorithms. To summarize, the total
power consumption depends not only on the energy efficiency of the algorithms used.
Hence, employing the fine-grained device resource energy-saving scheduling algorithms is
crucial to leverage the energy efficiency of an algorithm in all scenarios.

5.3.3. Discussions of Energy Efficiency for the Internal Units of the NPU

Next, we analyzed the energy efficiency characteristics of the main acceleration com-
putation units within the NPU, including the cube units, vector units, and embedded CPU.
MM-2DFT primarily utilizes the NPU’s cube unit. Despite not having any algorithmic
advantages over other methods, MM-2DFT shows the best energy efficiency in both en-
ergy consumption tests. Hence, the cube unit can be deemed as the most power-efficient
computation unit among all the units in NPUs and is suitable for the majority of matrix
computation tasks.

The comparison between MV-2FFTm and MV-2FFTv demonstrates that MV-2FFTv
is more advantageous in both speed and energy consumption. The main reason for this
can be attributed to the optimization technique of replacing a sparse diagonal matrix
multiplication with a vector multiplication operation, wherein the vector unit plays a crucial
role in enhancing the time and energy efficiency of sparse matrix multiplication operations.
Consequently, improving multiplication efficiency in sparse computing scenarios has
become a key optimization focus.

Some NPUs usually provide CPU units to support the execution of algorithms that
are not compatible with matrix and vector computations. Hence, we consider the CPU to
be an internal unit of NPUs to analyze its energy efficiency. Based on the test outcomes of
FFT_CPU, it is evident that the CPU possesses prominent advantages in swiftly processing
small-scale inputs and keeping low peak power. Therefore, the CPU still emerges as the
optimal choice in the above scenarios.

6. Conclusions

This study aims to develop Fourier Transform acceleration algorithms that are well-
suited to NPU hardware architecture. This enhancement of the data preprocessing ca-
pabilities in NPU-based backpack computers facilitates faster execution of conventional
engineering algorithms, supporting various computational service scenarios. Specifically,
two NPU algorithms, namely MV-2DFT and MV-2FFT, based on the DFT and the divide-
and-conquer approach, were designed. MV-2FFT was implemented in two variants, namely,
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MV-2FFTm and MV-2FFTv. In terms of the acceleration effect, the MM-2DFT algorithm
shows superior performance for small-scale inputs due to the powerful computational
ability of cube units. However, its advantage diminishes as the input size increases, com-
pared with FFT_CL and MV-2FFT. As the input size reaches 2048 × 2048, FFT_CL and
MV_2FFT outperform MM-2DFT, primarily attributed to their lower computational com-
plexity. Regarding energy efficiency, it is illustrated that the cube units have the highest
energy efficiency among the NPU internal units. However, utilizing CPU or vector units
may be advantageous in optimizing speed and reducing energy consumption in specific
scenarios, such as handling small-scale inputs and performing sparse matrix computations.

In future work, there are plans to explore methods for optimal energy-efficient schedul-
ing strategies that automatically select different processors and algorithms and determine
the hyperparameters of MV-2FFT for Fourier Transform processing on NPU platforms.
Meanwhile, NPU acceleration methods for some other preprocessing algorithms, like the
discrete wavelet transform, will also be investigated. Addressing the identified issue in
this paper, the efficiency of NPUs for sparse matrix multiplication will be optimized by
proposing a more general sparse matrix multiplication optimization method. This aims to
enhance the energy efficiency of NPUs in sparse scenarios based on the energy-efficient
underlying arithmetic.
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