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Abstract: Named entity recognition (NER) is particularly challenging for medical texts due to the
high domain specificity, abundance of technical terms, and sparsity of data in this field. In this work,
we propose a novel attention layer, called the “ontology attention layer”, that enhances the NER
performance of a language model for clinical text by utilizing an ontology consisting of conceptual
classes related to the target entity set. The proposed layer computes the relevance between each
input token and the classes in the ontology and then fuses the encoded token vectors and the class
vectors to enhance the token vectors by explicit superior knowledge. In our experiments, we apply
the proposed layer to various language models for an NER task based on a Chinese clinical dataset
to evaluate the performance of the layer. We also investigate the influence of the granularity of the
classes utilized in the ontology attention layer. The experimental results show that the proposed
ontology attention layer improved F1 scores by 0.4% to 0.5%. The results suggest that the proposed
method is an effective approach to improving the NER performance of existing language models for
clinical datasets.

Keywords: named entity recognition; ontology; clinical text mining; attention mechanism

1. Introduction

Named entity recognition (NER) is particularly challenging in the medical domain
due to its specialized and complex nature. Firstly, there are numerous domain-specific
and highly sparse terms in the medical field. Traditional deep learning models generally
perform NER based on available datasets and do not precisely adjust for medical domain-
specific terms. Secondly, in the medical domain, the relationships between entities are more
complex than in other domains, and traditional deep learning models require help to utilize
this relational information effectively. Thirdly, medical named entities typically include
diseases, drugs, surgeries, symptoms, etc., which can be expressed in various ways within
the text, requiring more sophisticated techniques and methods for accurate identification.

In recent years, medical NER has gained increasing attention. For instance, Guil-
laume et al. [1] applied a BiLSTM-CRF model-based approach for medical named entity
recognition, achieving good results. Yang et al. [2] proposed a medical NER method
based on knowledge graphs, leveraging entity relationship information to improve entity
recognition accuracy.

An ontology is a crucial component often developed prior to tackling an industrial
NER task. This preparation proves valuable, particularly within the context of a conven-
tional rule-based NER approach.

Our study highlights that an ontology can also significantly enhance the NER perfor-
mance of a language model when incorporated through a well-designed attention layer. In
this paper, we propose an attention model that incorporates a medical ontology. The model
utilizes a medical ontology. It takes text and ontology as inputs and passes them through
separate encoders. Using a multi-head attention mechanism, the model calculates and
combines attention weights before feeding them into a feed-forward neural network for
maximum likelihood estimation. A simple greedy sampling method is applied to generate

Appl. Sci. 2024, 14, 421. https://doi.org/10.3390/app14010421 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app14010421
https://doi.org/10.3390/app14010421
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0002-0211-631X
https://doi.org/10.3390/app14010421
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app14010421?type=check_update&version=1


Appl. Sci. 2024, 14, 421 2 of 17

tags for NER based on the estimated probabilities. Experimental results show performance
improvements across three baseline models.

The main contribution of this paper is the proposal of an approach that better captures
specific domain knowledge to recognize medical entities by leveraging knowledge from
the medical ontology. We also discuss the effects of different ontology design granularity
and abstraction-type properties on NER tasks. Our proposed method is simple, effective,
and especially useful in practice.

2. Related Works
2.1. Medical Named Entity Recognition

In the development of medical knowledge graphs, named entity recognition (NER) has
received widespread attention as a critical component for constructing medical knowledge
graphs. It aims to automatically detect the desired entities from given text.

Conventional general NER frameworks such as a bidirectional-LSTM [3] or a GPT [4]
could be used for medical NER tasks. But medical NER has its own challenges, such as the
lack of data and named entity normalization (NEN).

For the lack of data, some researches used few-shot or zero-shot learning techniques.
Jiang et al. [5] employed a combination of a small amount of robust labeled data and a
large amount of weak labeled data to train the model in stages and mitigate the problem of
few-shot learning. Li et al. [6] introduced a novel approach that used learnable logical rules
for weakly supervised NER. Li et al. [7] introduced a conditional hidden Markov model for
multi-source weakly supervised NER. Aly et al. [8] leveraged the naturally occurring facts
in the textual descriptions of various entity categories to complete a zero-shot NER task.

Other research has used external additional information. Wu et al. [9] fused the
structural information of Chinese characters to improve the performance of Chinese NER.
Wang et al. [10] improved the NER task using external context retrieval and cooperative
learning. Wei et al. [11] proposed enhancing the knowledge on the basis of the pre-trained
model, which improves the effect of NER, NLU, and NLG.

NEN involves standardizing different representations of the same medical entity, such
as a disease or drug, and it has a substantial impact on NER performance as well. For
NEN, some researchers utilize multi-task learning to address named entity normalization
in medical NER [12]. Ji et al. [13] proposed a model based on state transition, which
transforms end-to-end disease recognition and normalization tasks into action sequence
prediction tasks.

Some research has focused on difficult entity names such as nested names, long names,
or discontinuous names. Wang et al. [14] designed an objective function for training neural
models to handle nested entity label sequences as suboptimal paths for nested NER tasks.
Li et al. [15] developed a network for long names utilizing both segment-level information
and word-level dependencies. Wang et al. [16] addressed the issue of discontinuous text
in NER tasks by adopting a fragment graph approach. Li et al. [17] presented a span-
based model capable of identifying overlapping and discontinuous entities, as well as
determining whether entity relationships overlap.

2.2. Attention Mechanism

Early research on attention mechanism in neural networks used it with conven-
tional neural networks such as recurrent neural networks or convolutional neural net-
works. Luong et al. [18] subsequently introduced global and local attention mechanisms.
Yang et al. [19] integrated hierarchical thinking and introduced a hierarchical attention
mechanism. Zhang et al. [20] proposed a top-down attention mechanism, making the
neural network more targeted when learning attention. Gehring et al. [21] then proposed a
multistep attention mechanism, using an attention mechanism at each decoder layer.

Subsequently, Vaswani et al. [22] proposed the transformer model, which relies
entirely on the attention mechanism to represent the global dependencies between inputs
and outputs, avoiding convolution and recurrence and promoting attention mechanisms.
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Following that work, Eldete et al. [23] proposed a model called AttnSleep, which uses multi-
head attention to capture temporal dependencies among extracted features. Xiong et al. [24]
introduced a new regularization transfer learning framework called DELTA, which uses a
feature map with attention for deep learning transfer and preserves the outer layer output
of the target network.

Despite building upon these models, medical NER remains challenging due to the
specialized nature, numerous rare words, and high sparsity of named entities in medical-
related texts compared to general texts. Therefore, in this study, we propose incorporating
the relevance between the text to be recognized and the concepts in the knowledge graph
ontology as features in medical NER to improve its efficiency and accuracy.

3. Proposed Methods
3.1. Overall Architecture

The overall architecture of our proposed method for medical NER is shown in Figure 1.
The input text and its ontology are encoded into vectors. Then, their output is input into a
multi-head attention layer to compute cross-attention. Afterwards, the input text vector
and the output of the attention layer are added, and the result is input into a feed-forward
network with a softmax activation function to obtain the likelihood of NER tags.
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Figure 1. The architecture of our proposed model for medical NER. B refers to the batch size. Lmaxinput

refers to the max length of an input text. We pad every input text into the same length and use a



Appl. Sci. 2024, 14, 421 4 of 17

mask to preserve the correctness of attention results. Lontology refers to the length of the serialized
and tokenized ontology tags, which was fixed because the whole unchanged ontology was used
in the experiment. dh is the dimension of the hidden vectors. “@” refers to matrix multiplication
operator. “+” refers to the element-wise add operator. The multi-head attention is described in
Equations (1) and (2).

3.2. Text Encoder

The proposed method utilizes a BERT-based language model as the text encoder, such
as BERT [25], BERT-WWM [26,27], and RoBERTa [28]. A typical BERT model employs a
transformer to extract features, effectively leveraging the contextual information of the text,
which is beneficial for entity extraction and classification in downstream tasks.

3.3. Ontology Encoder

For the ease of computing the co-relevance between the concepts in the ontology
and the tokens in the input, we serialize the ontology into texts and then encode it using
a pre-trained language model, rather than employing popular graph encoders such as
TransE [29], ConvE [30], GCN [31], CompGCN [32], etc. This encoding approach facilitates
the learning of the mapping between the text and ontology concepts, as both the input
text and the ontology can be encoded by the same model, ensuring natural alignment.
Furthermore, because the ontology in our experiments contained many properties but
few entity-to-entity edges, the methods based on triplets or link prediction perform less
powerfully than in other tasks.

3.3.1. Serialization and Tokenization

The primary challenge is how to serialize the ontology to preserve relationship in-
formation between the concepts in the resulting sequence. We hypothesize that since a
BERT-based language model takes the position of each input token into account by exploit-
ing the position vectors [25], if the position of each class tag or property in the ontology
matches the conditions as follows, the language model is able to learn the corresponding
relationship information by fine-tuning:

1. The relative position of two tokens is able to show the relationship between the
corresponding class tags or properties.

2. The positions are fixed in every training epoch.

Treating the ontology as a graph, the relationship of the classes and their properties can
be represented by their topological location. Thus, we use alphabetical pre-order depth-first
traversal (DFS) to traverse the ontology and output and concatenate the tags of each visited
node. In our preliminary study, we found that using pre-order traversal is slightly better
than post-order traversal or the combination of both of them. The comparison of pre-order
traversal, post-order traversal and the combination of them is provided in Appendix A.

For the small example in Figure 2, which shows a part of the ontology in our experi-
ment (to be described in Section 4.3), the subtrees are sorted alphabetically from left to right.
In the example, “i” is before “r”, so the subtree of “disease” is to the left of that of “drug”.
We start from the root, and then the “disease” subtree. For the root, we output nothing. For
the “disease” subtree, at first, we obtain the tag of the node “disease”. Let us assume that
all the tags are equal to the English node name here for simplicity; thus, the sequence is
now “disease”. Then we go to the left-most subtree of the “disease” subtree, which has only
one node, “cause”. We obtain its tag and update the sequence to “disease cause”. Similarly,
we obtain “disease cause clinical manifestations diagnostic criteria disease name” for the
“disease subtree”. Then we process the “drug” subtree and update the sequence to “disease
cause clinical manifestations diagnostic criteria disease name drug contraindication dosage
drug component drug name indications”.
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In this way, each node will have a meaningful position that implicitly corresponds to
its topological position in the ontology, which is also fixed in every training epoch. We can
see that “clinical manifestations”, which are properties of a “disease”, are closer to “disease”
than to “drug”. Furthermore, the class “disease” is closer to its own “disease name” than
the “drug name” property of the class “drug”.

Formally, the ontology is considered as a directed tree, where the classes and their
properties are treated as nodes, and the relationships, e.g., “is_property”, are treated as
unweighted edges. Denote the tree as G = (V, E), where V and E refer to the nodes
and edges, respectively. Depth-first traversal is employed, utilizing alphabetically or-
dered depth-first search to traverse the ontology and generate a sequence of node tags
S = (s1, s2, . . . , si, . . . , sn), where i is the position and n is the number of nodes in the on-
tology. Note that the relationship tags are dropped here because of the limitation of the
proposed method.

disease cause clinical manifestations diagnostic criteria disease name drug contraindication dosage drug component drug name indications

Language Model

Alphabetically Ordered Depth
First Search

root

disease

cause clinical
manifestations

diagnostic
criteria

disease
name

drug

contra-
indication dosage drug

component drug name indications

Ontology

Node Tag Sequence

Figure 2. The proposed method to encode the ontology with a small example.

Another issue is how to seprate the node in the resulting sequence. It depends on the
target language. In the experiment, the tags of nodes were separated by a space, because
most experiments were performed on a Chinese dataset where space was rarely used.

3.3.2. Encoding the Serialized Ontology

After we serialize the ontology into a text token sequence, this sequence is then
inputted into a BERT-based language model for encoding. For each node tag si, when it
is inputted into a BERT language model in the next phase (introduced in Section 3.3.2), a
position embedding PEi is generated and inputted into the language model along with it.
The method to generate the position embedding depends on the language model. A typical
method is to use sine and cosine functions, proposed by Vaswani et al. [22]. Additionally,
the self-attention layers in a BERT model enable each node tag to attend to all positions.
Thus, the encoder is capable of extracting the meaning of the positions.

We use the same model used for the input text so that the embedding spaces are
aligned. Formally, we take the hidden states of the last layer Vot = vo

1, vo
2, . . . , vo

n as a vector
representation of the ontology. Because the outputs of a BERT-based language model
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implicitly contain the context information, each vector vo
i both represents the meaning of

the tag of the node and the topological position of the node in the original ontology.

3.4. Ontology Attention

The ontology attention layer utilizes attention mechanisms to capture the relevance
between the concepts in the ontology and input tokens.

Denote the encoded input text as Vt = {v1, v2, . . . , vi, . . . , vLmaxinpput}, where vi is the
vector corresponding to the ith token. We employ multi-head attention. For headi, we
initialize parameters WQ

i , WK
i , WV

i , and obtain the query, key, and value vectors for multi-
head attention as follows:

Q = VtW
Q
i , K = VotWK

i , V = VotWV
i (1)

Then, let all the vectors be of dimension dh. Then, we have

headi = Attention(Q, K, V)

= Softmax(
QKT
√

dh
V).

(2)

We concatenate the results from all the heads, apply another linear projection, and
add it to Vt, as follows:

Vf = Vt + Concat(head1, . . . , headi, . . . , headh)W, (3)

where W and Vf are the parameters of the linear projection and the output of this ontology
attention layer, respectively.

3.5. Feed-Forward Layer and Output

Finally, the feed-forward layer applies a linear transformation to the output of the on-
tology attention layer, followed by a softmax activation function, to produce the likelihood
distribution over the predefined tags for the NER task, as follows:

P = Softmax(Vf WP + bP), (4)

where P is the predicted distribution of the NER tags. WP and bP are trainable parameters.

4. Experiments
4.1. Dataset

We conducted experiments on two datasets: the CMeEE dataset from the Chinese
Biomedical Language Understanding Evaluation (CBLUE) [33] and the NCBI disease
dataset [34].

The CMeEE dataset task is a multi-class NER task, requiring the recognition of “疾
病” (disease), “临床表现” (symptom), “医疗程序” (process), “医疗设备” (equipment), “药
物” (drug), “医学检验项目” (test item), “身体” (anatomical location), “科室” (hospital
department), and “微生物类” (microbe) in clinical texts. The texts are collected from clinical
trials, electronic health records, medical forums, textbooks, and search engine logs. The
ground truth is annotated by three to five domain experts.

This NCBI disease dataset contains the disease name and concept annotations of the
NCBI disease corpus. The corpus comprises 793 abstracts in PubMed (https://pubmed.n
cbi.nlm.nih.gov/, accessed on 6 October 2023).

https://pubmed.ncbi.nlm.nih.gov/
https://pubmed.ncbi.nlm.nih.gov/
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4.2. Labeling Policy

For both the datasets, we followed their own original labeling policy.
For CMeEE, the BIO format is used for data annotation. Each character was labeled

“B-X”, “I-X”, or “O”. Specifically, “B-X” indicates that the character belongs to the X type
and is the beginning of a sequence. “I-X” indicates that the character belongs to the X type
and is in the middle of a sequence. “O” indicates that the character does not belong to
any type. The corpus is annotated according to three categories: disease name, specific
symptoms, and causes. For example, for the term “cell reduction”, which is a symptom,
the initial character “c” is labeled as “B-Symptom” and the other characters from “e“ to “n”
are labeled “I-Symptom”.

For the NCBI disease dataset, the start of a mention of diseases is tagged by “1”. The
subsequent disease tokens are tagged by “2”. The tag “0” indicates no disease mentioned.
Furthermore, as the original tokens are not in the subword format for the language models
in the experiment, we reprocessed the data to fit the inputs to the models. For example,
before we input the mention of disease “adenomatous polyposis coli tumour”, tagged as
“1, 2, 2, 2”, to a BERT model, we reprocessed the term into “ad, ##en, ##om, ##at, ##ous, po,
##ly, ##po, ##sis, co, ##li, t, ##um, ##our”, and the tags into “1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2,
2”, respectively. The first five “1”s are the tags to “adenomatous”, which was divided into
subwords “ad, ##en, ##om, ##at, ##ous”. The “2”s are for the other words in this mention
of a disease.

4.3. Construction of the Ontology

In this study, a hierarchical structure was adopted to construct a tree-like system as a
medical ontology. The detailed design is as shown in Table 1. We designed this ontology for
the CBLUE dataset. We extracted seven classes: “疾病” (disease), “临床表现” (symptom),
“医疗设备” (equipment), “药物” (drug), “身体” (anatomical location), “医院部门” (hospital
department), and “微生物” (microbe) from the dataset. Note that these classes were not
the same as the targets of the CMeEE dataset, although there was some overlap. We also
used the translated version of this ontology for the NCBI disease dataset. Even though
the NCBI disease task only requires recognizing mentions of diseases, we believe that
including additional classes could help the models distinguish diseases from potentially
confusing words.

The properties were classified into three types based on their characteristics: entity-
type properties, attribute-type properties, and relationship-type properties.

The entity-type properties are used to model and describe the nouns of the ontology in
more detail. A specific description of the noun ontology can be obtained at the entity-type
property. For example, in Figure 1, the entity-type property would describe the unique
descriptions of the noun “disease”, such as the name and cause.

The attribute-type properties describe the characteristics of the noun ontology. For
example, in Figure 1, the attribute-type property of the disease includes the clinical mani-
festations and diagnostic criteria of the disease.

The relationship-type properties represent the relationships between the entity and
attribute-type properties, describing various behaviors between various entities. For ex-
ample, a treatment method can treat specific diseases, and certain diseases can cause
certain symptoms.

We used the tags of the ontology classes, their entity-type properties, and their
attribute-type properties for the NER tasks in the experiments because none of the datasets
in our experiments required relationship extraction.
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Table 1. Detailed design of the ontology in the experiment for the Chinese Biomedical Language
Understanding Evaluation (CBLUE) dataset. The ontology is presented in Chinese, and we offer the
corresponding English translation here.

Ontology Class Entity-Type Property Attribute-Type Property Relationship-Type Property

疾病
disease

疾病名称
disease name
疾病病因

cause

临床表现
clinical manifestations

诊断标准
diagnostic criteria

诊断
diagnosis
治疗
treat
预防

prophylaxis

临床表现
symptom

症状
symptom signs

表现的性质
symptom property
表现的时序

symptom timing

表现与疾病的关系诊断和治疗
diagnosis and treatment of

the relationship between manifestations and disease

医疗设备
medical equipment

设备名称
equipment name
设备功能

equipment function

适合使用的症状
symptoms suitable for use

操作要求
operational requirements

设备使用
device use
设备操作

device operation

身体
anatomical location

部位名称
part name
解刨结构
anatomy

部位性质
anatomical property

部位与疾病的临床表现
location and clinical manifestations

of the disease

医院部门
hospital department

部门名称
department name
部门职能

departmental functions

服务对象
service object
作用范围

range of action

部门与疾病治疗的关系
the relationship between the

department and the treatment of diseases

微生物
microbe

微生物名称
microbial name
微生物工作职能

microbiology functions

生物学特征
biological characteristics

致病性
pathogenicity

微生物与药物之间的关系
the relationship between microorganisms and drugs

药物
drug

药物名称
drug name
药物成分

drug component

适应症
indications
禁忌症

contraindication
剂量

dosage

药物治疗疗程与疾病的关系
the relationship between

the course of drug therapy and the disease

The serialization result of the ontology described above can be found in Table A2 in
Appendix A.

4.4. Hyperparameters

The hyperparameters were tuned by grid search on the vanilla BERT model in the
CMeEE task. Because the purpose of the experiments was to validate the effectiveness
and functional feasibility of the proposed method, we used the same hyperparameters for
all the groups to reduce the effects from the hyperparameters. A detailed description is
provided in Table 2.

Table 2. Hyperparameter settings. The hyperparameters are tuned by grid search on the BERT model.

Hyperparameter Value

Training Batch Size 16

Evaluation Batch Size 64

Learning Rate 5 ×10−5

Epochs 10
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5. Experimental Results and Discussion
5.1. Performance over Different Pretrained Language Models as the Encoders

We validated the effectiveness of the proposed method using different pretrained
language models as the encoders. We tested our method with BERT, BERT-WWM, and
RoBERTa. In detail, for the CMeEE dataset, which is in Chinese, we used “bert-base-chinese”
(https://huggingface.co/bert-base-chinese, accessed on 6 October 2023), “chinese-bert-
wwm-ext“ https://huggingface.co/hfl/chinese-bert-wwm-ext, accessed on 6 October
2023) [26,27], and “chinese-roberta-wwm-ext” (https://huggingface.co/hfl/chinese-robe
rta-wwm-ext-large, accessed on 6 October 2023). For NCBI disease, which is in English,
we used “bert-base-uncased” (https://huggingface.co/bert-base-uncased, accessed on 6
October 2023) [25] and roberta-base (https://huggingface.co/roberta-base, accessed on 6
October 2023) [28]. Because BERT-WWM is not for English, we did not use a BERT-WWM
model for the NCBI disease dataset.

To assess the impact of the proposed algorithm on model recognition efficiency, all
models were trained and tested on the same dataset using identical hyperparameters. The
hyperparameters are tuned by grid search on the BERT model. The training and testing
data for the medical corpus were also extracted from the same dataset.

We compare the test results achieved by our proposed method, those achieved by
the language models with the conventional self-attention layer, and those achieved by
the vanilla language models. We used micro F1 score for CMeEE and macro F1 for NCBI,
respectively, as the metric. The results in CMeEE and NCBI are shown in Figures 3 and 4,
respectively.

For CMeEE, the proposed ontology attention improved efficiency from 0.1% to 0.5%
compared to the conventional self-attention layer. Furthermore, compared to the vanilla
models, the proposed method improved efficiency from 0.1% to 1.5%.

For NCBI disease, the proposed method consistently outperformed self-attention.
However, it failed to outperform the groups that used the plain base model. This outcome
may be attributed to the fact that the ontology was designed for the CBLUE dataset
in Chinese and was translated into English for the NCBI disease task by non-medical
professionals. A more professional translation may yield better results.

Table 3 shows some typical outputs for the NCBI disease dataset. All groups encoun-
tered challenges in the recognition of certain difficult named entities, such as “T-PLL” in
data #11. In texts without disease mentions, the plain base model and the self-attention
group tended to generate more false positives, while the proposed method showed a
reduction in false positives, as seen in data #18 and #81. Notably, the proposed method
demonstrated superior efficacy in the identification of long complex named entities, exem-
plified in data #94, #138, and #155.

The results above indicate that the proposed ontology attention mechanism outper-
forms existing self-attention mechanisms in recognizing challenging medical named entities
and reducing false positives. The integration of ontology enhances the model’s comprehen-
sion of medical terms. Consequently, the model can better capture context and semantic
information related to medical entities, recognizing more complex medical terms and
mislabeling fewer non-medical terms. This leads to an improvement in the performance of
medical named entity recognition (NER).

https://huggingface.co/bert-base-chinese
https://huggingface.co/hfl/chinese-bert-wwm-ext
https://huggingface.co/hfl/chinese-roberta-wwm-ext-large
https://huggingface.co/hfl/chinese-roberta-wwm-ext-large
https://huggingface.co/bert-base-uncased
https://huggingface.co/roberta-base


Appl. Sci. 2024, 14, 421 10 of 17

53.00%

54.00%

55.00%

56.00%

57.00%

58.00%

59.00%

60.00%

F1
 S

co
re

Base Model

ontology attention
(Proposed)

conventional self-
attention

plain model without
additional attention
layers

BERT BERT-WWM RoBERTa

Choice of Attention Layer

Figure 3. Comparison of the test results in CMeEE (Chinese dataset) task achieved by our proposed
method (in orange), those by the language models with the conventional self-attention layer (in
yellow), and those by the vanilla language models (in blue). The results with BERT, BERT-WWM,
and RoBERTa used as the base language model are provided.
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Figure 4. Comparison of the test results in NCBI disease (English dataset) task achieved by our
proposed method (in orange), those by the language models with the conventional self-attention
layer (in yellow), and those by the vanilla language models (in blue). The results with BERT and
RoBERTa used as the base language model are provided. Macro F1 Scores are reported.
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Table 3. Output examples for the NCBI disease dataset when BERT-base was used as the base model.
“ID” refers to the data ID in the NCBI disease dataset. In the “Text” column, we display the input texts.
The bold words in the “Text” column represent the ground truth. If no words are bold, it indicates that
there was no disease mention in it. “Plain Base Model” refers to the group that only used BERT-base.
“Proposed Method” refers to the group that utilized the proposed method. “Self-attention” refers to
the group that incorporated an additional self-attention layer to the base model for NER.

ID Text Plain Base Model w/ Proposed Method w/ Self-Attention

11
As constitutional DNA was not available, a putative
hereditary predisposition to T-PLL will require further
investigation.

(None) T- T-

18
Neither the content nor the activity of Na+/K+ ATPase
and sarcoplasmic reticulum Ca2+- ATPase are affected
by DMPK absence.

(None) (None) DMPK absence

81 Saamis (2%) and Mordvinians (1.8%) had significantly
lower frequencies of the Tyr allele. Saamis (None) (None)

94
Numerous cytogenetic and allelotype studies have re-
ported frequent loss of heterozygosity on chromosomal
arm 10q in sporadic prostate cancer.

prostate cancer sporadic prostate can-
cer prostate cancer

138
We conclude that paternal transmission of congenital
DM is rare and preferentially occurs with onset of DM
past 30 years in the father.

DM, DM congenital DM, DM DM, DM

155
Mutations in the SMAD4/DPC4 tumor suppressor gene,
a key signal transducer in most TGFbeta-related path-
ways, are involved in 50 % of pancreatic cancers.

pancreatic cancers tumor, pancreatic can-
cers

tumor, pancreatic
cancers

5.2. Discussion on the Granularity of the Ontology

After the last round of experiments, we found that the proposed attention mechanism
worked better than the self-attention mechanism. Considering that our ontological attention
mechanism reduces sparsity by subdividing text, the more words it contains, the greater
the sparsity. In this round of experiments, the original structure of the ontology attention
mechanism was not changed. Instead, the input body was replaced with ontology of
different granularity. Because the input body was different, the mask calculated during the
calculation was also different. As a result, the calculated ontological similarities are also
inconsistent, resulting in different F1 scores. The main points of this study are based on
medical ontology. We defined three classes of grain properties: coarse, medium, and fine.
Details regarding the design of this experiment are provided in Table 4, and the results of
the comparison are shown in Figure 5.

Table 4. Setup of groups for the experiment on the influence of the granularity type properties.

Group Contained Property Types

Coarse-grained class name only without properties
Medium-grained entity-type properties

Fine-grained entity-type properties, attribute-type properties

According to the experimental results, the NER performance of the proposed model
with a medium-grained ontology is approximately 0.2% higher than that with a coarse-
grained ontology. When the granularity increases further, there is a decrease in the results.
A possible reason of the latter result is that the distance of words in semantic space becomes
far when the granularity of the ontology increases too much, resulting in increased sparsity,
although appropriately increasing the granularity can enhance the semantic richness,
resulting in better representation of domain knowledge.
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Figure 5. Results of the proposed method with different ontology setups. The values are micro F1
scores for the NER task on the CMeEE dataset. Regardless of what language model is used as the
encoder, the medium-grained ontology performs best.

5.3. Ablation Study on Effects of Different Property Types

Besides the granularity, different property types also contribute differently to the
performance because they are parallel to ontology words and have different emphases
when describing ontology words. In this round of experiments, we studied the effects by
the attribute-type properties and entity-type properties. To achieve this, we modified the
medium-grained group described in Section 5.2 to contain either only entity-type properties
or only attribute-type properties, and then compared the NER performance of the proposed
model with the two modified ontologies. The results are shown in Figure 6.
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F1
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co
re
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Attribute Level

Ontology Level +
Entity Level

Figure 6. Results of the ablation study on ontology property types. The values are micro F1 scores for
the NER task on the CMeEE dataset.

This round of experiments confirmed that the two layers have parallel relationships in
the ontology, but have different descriptive properties and manifestations in the ontology.
Entity-type attributes provide only a specific description of the entity, while attribute-type
attributes include ontology properties and capabilities, which describe ontology informa-
tion for different dimensions. This ultimately leads to inconsistencies in the calculations
and results between the two layers. Both are descriptions of the corresponding ontology
information, but there are slight differences in the results due to differences in emphasis.
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5.4. Discussion on the Number of Ontology Classes

In the experiments introduced in Section 5.2, the refinement of granularity improved
the model to a certain extent. Meanwhile, the ontology also had an impact on the model
effect. In this experiment, we investigated the effect of adding additional ontology-type
attributes to the same type attribute of the ontology. The ontology was expanded from seven
classes to nine classes by adding “medical procedures” and “medical testing items” and
their corresponding entity-type properties, attribute-type properties, and relationship-type
properties, as shown in Table 5. The results are as shown in Table 6.

Table 5. The two new classes added to the experimental ontology to investigate the impact of the
number of classes.

Ontology Class Entity-Type Property Attribute-Type Property Relationship-Type Property

医疗程序
medical process

医务人员
personnel
检验样本
sample

医疗程序的执行
execution of medical process
医学检验项目的目的

the purpose of the test

医疗程序的操作步骤
the process of performing medical procedure

医疗程序的选择
choice of medical procedure

医疗检验项目
test items

医疗设备
equipment
检测设备

操作技术
operational technique
医学检验项目的指标

indicator

检验流程
inspection process

质量控制
quality control

Table 6. A comparison of NER performance (micro F1 scores) in the CMeEE dataset of the pro-
posed method using ontology of 7 or 9 classes under different base language models and different
granularity settings.

Settings Coarse-Grained Medium-Grained Fine-Grained

w/ BERT & original ontology (7 classes) 56.27% 56.41% 56.21%
w/ BERT & extended ontology (9 classes) 56.35% 56.20% 56.21%

w/ BERT-WWM & original ontology (7 classes) 58.73% 58.91% 58.60%
w/ BERT-WWM & extended ontology (9 classes) 58.78% 58.71% 58.75%

w/ RoBERTa & original ontology (7 classes) 59.27% 59.23% 59.00%
w/ RoBERTa & extended ontology (9 classes) 59.18% 59.15% 59.15%

For the fine-grained setting in which both entity-type properties and attribute-type
properties were involved, adding two ontology classes consistently improved the NER
performance of the proposed model. For the coarse-grained setting, it also improved most
variations of the proposed model. The results suggest that adding two additional ontology
classes allows for more comprehensive descriptions within the ontology, which can lead to
better NER performance in some cases.

For the medium-grained setting in which only entity-type properties were involved,
the extending ontology classes consistently harmed the NER performance of the proposed
model. The most probable reason was that the entity-type properties of these two new
classes were too similar to each other. The results suggest that the classes in the ontology for
the proposed model should be as unique as possible, which can be critical for the practical
use of the proposed method.

5.5. Discussion on the Usage of the Ontology Class Name

In the experiments introduced above, we used the ontology class names with corre-
sponding properties. As introduced in Section 3.3, the encoding policy for the ontology
is based on depth-first search. Thus, the class name is to be read first, followed by the
properties. To study that whether the properties themselves are descriptive enough for the
proposed model, in this round of experiments, we directly eliminated class name before
the ontology was encoded to expose the properties without the class name. This was
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performed to investigate the changes in the micro F1 scores of the proposed model before
and after removing the class names in the ontology encoding step. The experimental results
are shown in Table 7.

Table 7. Effects of the usage of the ontology class name on the proposed model under different base
language models and different granularity settings. Micro F1 scores are reported.

Settings Medium-Grained Fine-Grained

w/ BERT and class name 56.41% 56.21%
w/ BERT, w/o class name 56.14% 56.57%

w/ BERT-WWM and class name 58.91% 58.60%
w/ BERT-WWM, w/o class name 58.53% 58.92%

w/ RoBERTa and class name 59.23% 59.00%
w/ RoBERTa, w/o class name 59.38% 59.19%

If the medium-grained setting was used, the NER performance of the proposed
model decreased in most groups. However, if the fine-grained setting was used, the NER
performance of the proposed model consistently increased.

For the medium-grained setting in which only part of the properties (“entity-type
properties” as defined in Section 4.3) was used, the information of the properties was not
enough for the proposed model. Therefore, in this case, the class name was necessary.

For the fine-grained setting in which both entity-type properties and attribute-type
properties were used, the information of the properties was enough. In this case, the
redundant information brought by the class name was not necessary and relatively harmful.

6. Conclusions

In this study, we proposed a novel attention layer called the “ontology attention layer”
to improve NER performance for medical texts by incorporating ontology. It enhances
the NER performance of a BERT-based language model for clinical text by leveraging
an ontology to improve the recognition of domain-specific entities. In the experiments,
the proposed method enhanced three different BERT-based language models’ ability to
accurately identify and classify entities, resulting in an improved F1 score for the medical
NER task when utilizing a tailored ontology.

We further studied the effects to the performance by the design details of the ontology,
which were also studied in several experiments. The results suggest that to maximize the
performance of the proposed model, the granularity of the ontology should be tailored,
and the name of the properties of different classes should be as distinct as possible.

Our research findings highlight that integrating an ontology can significantly improve
the NER performance of a language model when implemented through a well-designed
attention layer. This suggests that introducing the ontology reasoning model in entity
recognition represents a practical approach to enhance the performance of BERT-based
NER models. In the practical construction of a knowledge base, an ontology is typically
crafted prior to processing unstructured corpora. In such scenarios, our proposed method
would be valuable during the NER phase of corpus processing, requiring little additional
manual effort.

Given that the design of the ontology significantly influences the effectiveness of the
proposed method, our primary focus in future work is to explore an automated method
for tailoring an ontology to suit the proposed approach. An ontology contains connections
between entity names and their alternative representations may also be helpful but it is
out of the scope of this work. Additionally, we aim to investigate similar approaches
on a larger and more complex ontology. The combination of text-based embedding and
graph-based embedding would prove beneficial in such scenarios, with the challenge lying
in developing an effective method to integrate them seamlessly. Furthermore, the proposed
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method may find utility in other domain-specific NLP tasks, such as relation extraction or
question answering. Our plan is to delve into applications for these tasks in the future.
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Appendix A. Study on Post-Order Traversal and the Combination of Pre-Order and
Post-Order Traversal

Table A1 shows the results of our study on the choice among pre-order DFS traversal,
post-order DFS traversal, and the combination of them for the proposed method. All of the
groups used the BERT-based model as the base language model. The serialization results
are as shown in Table A2. The macro F1 scores on the NCBI disease dataset were used as
the metrics to evaluate the effectiveness.

In the experiments, the pre-order DFS traversal performed slightly better than post-
order DFS. We believe it is due to the fact that the serialization results by the pre-order DFS
are closer to the natural order of corresponding words in a natural language. Furthermore,
the combination of the sequences from two different orders adversely affected the effective-
ness of the proposed method. It is because that such a combination leads to inconsistencies
in the relative positions between two nodes in the encoded sequence.

Table A1. Comparison of pre-order DFS traversal, post-order DFS traversal, and the combination
of them for the proposed method. In this experiment, the base language model was BERT-base.
“Bi-order DFS” here is the group that used the concatenated two sequences generated by pre-order
traversal and post-order traversal, respectively. Macro F1 scores are reported.

Dataset Pre-Order DFS Post-Order DFS Bi-Order DFS

NCBI disease 66.27% 65.80% 64.90%

Table A2. Serialization results of pre-order DFS traversal and post-order DFS traversal for ontology
described in Table 1 in the experiments.

Traversal
Method Serialization Result

Pre-order DFS

anatomical location anatomical property anatomy part name disease cause clini-
cal manifestations diagnostic criteria disease name drug contraindication dosage
drug component drug name indications hospital department department name
departmental functions range of action service object medical equipment equip-
ment name operational requirements symptoms suitable for use microbe biologi-
cal characteristics microbial name microbiology functions pathogenicity sympton
symptom property symptom signs symptom timing

https://github.com/yuanzhiKe/NER_KG_Att_2023
https://github.com/yuanzhiKe/NER_KG_Att_2023
https://github.com/CBLUEbenchmark/CBLUE
https://huggingface.co/datasets/ncbi_disease
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Table A2. Cont.

Traversal
Method Serialization Result

Post-order
DFS

disease name cause clinical manifestations diagnostic criteria disease symptom
signs symptom property symptom timing sympton equipment name symp-
toms suitable for use operational requirements medical equipment part name
anatomy anatomical property anatomical location department name departmen-
tal functions service object range of action hospital department microbial name
microbiology functions biological characteristics pathogenicity microbe drug
name drug component indications contraindication dosage drug
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