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Abstract: Real-world production scheduling scenarios are often not discrete, separable, iterative
tasks but rather dynamic processes where both external (e.g., new orders, delivery shortages) and
internal (e.g., machine breakdown, timing uncertainties, human interaction) influencing factors
gradually or abruptly impact the production system. Solutions to these problems are often very
specific to the application case or rely on simple problem formulations with known and stable
parameters. This work presents a dynamic scheduling scenario for a production setup where little
information about the system is known a priori. Instead of fully specifying all relevant problem
data, the timing and batching behavior of machines are learned by a machine learning ensemble
during operation. We demonstrate how a meta-heuristic optimization algorithm can utilize these
models to tackle this dynamic optimization problem, compare the dynamic performance of a set of
established construction heuristics and meta-heuristics and showcase how models and optimizers
interact. The results obtained through an empirical study indicate that the interaction between
optimization algorithm and machine learning models, as well as the real-time performance of the
overall optimization system, can impact the performance of the production system. Especially in
high-load situations, the dynamic algorithms that utilize solutions from previous problem epochs
outperform the restarting construction heuristics by up to ~24%.

Keywords: dynamic optimization; scheduling; online machine learning

1. Introduction

Dynamic scheduling is a long-studied topic [1,2] that has gained significant traction in
the research community and has found many practical applications:

• Georgiadis and Michaloudis [3] propose a real-time production planning and control
system for job-shop manufacturing systems and apply it in the production of refriger-
ation bodies for commercial vehicles. They state that near-optimal control variables
are achieved, leading to improved system behavior. However, they also state that the
real-world operator was not always able to operate under near-optimal variables.

• Cafaro and Cerdá [4] successfully solve a real-world pipeline scheduling problem.
They conduct a case study and distribute multiple refined petroleum products through
a 955 km long pipeline to a handful of terminals over 1-week periods.

• Cowling et al. [5] present an integrated dynamic scheduling approach for steel casting
and milling. Scheduling is handled by a multi-agent architecture, where each agent
uses its own scheduling model to cooperatively develop global schedules for the
overall system.

A core form of scheduling problems is the static scheduling problem, where a number
of n jobs needs to be scheduled to a number of m machines with the goal of optimizing
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an objective function(e.g., the latest completion time of any job). Practical considerations
introduced numerous extensions to this:

• The processing time pi,j of a job i may be dependent not only on the machine j where
it is executed but also on any number of additional factors (including but not limited
to: the previous job performed on machine j (setup times), degrading machine states
or material properties).

• Precedence or grouping constraints can restrict possible solutions to jobs being per-
formed only in specific orders, in direct succession, in parallel, on explicitly the same
or explicitly different machines.

• Jobs sometimes may be terminated pre-emptively and either restarted or resumed at a
later point in time with varying degrees of penalties and restrictions.

• Machines may be unique or identical, with some machines accepting more or other
jobs than others.

• Both jobs and machines might require idle time for transportation, machine setups,
maintenance or quality control.

• Timings might not be fully known in advance, transforming the problem from a
deterministic to a stochastic variant.

• Jobs may have release or due times, further restricting the space of potential solutions,
while machines might be only operational during certain time windows.

In the static formulation of the problem, all problem parameters are known a priori,
the problem is solved once (often heuristically) and the best-found solution is then imple-
mented. A major extension to the static formulation includes dynamic formulations, where
a number of dynamic events can influence the optimization (e.g., the arrival of new jobs,
machine delays or breakdowns, corrections of data that are going to influence constraints or
predicted processing times, jobs might end in failure and might have to be restarted, etc.).

Solution approaches to dynamic scheduling range from exact solvers, construction
heuristics, learned or handcrafted dispatching rules and deep (reinforcement) learning to meta-
heuristic solvers like neighborhood searches and evolutionary algorithms. Mohan et al. [6]
provide a recent review of the different classes of such optimization approaches.

One main class of approaches for this problem are variations of reinforcement learn-
ing [7,8]. An extensive review of reinforcement learning approaches for dynamic task
scheduling has been published by Shyalika et al. [9]. The other popular field of research is
(simulation-based) meta-heuristic algorithms, ranging from simple genetic algorithms [10]
to more complex hybrid solutions [11], with a strong trend towards adaptive solutions in
the recent years [12].

Another relevant distinction is not in the optimization algorithm but in how the dy-
namicity of the problem is handled. The purest of reactive approaches simply restarts the
optimizer, which, despite its simplicity, can be a powerful strategy, especially when the
machine times are very long compared to the time required by the optimizer to converge
toward solutions of acceptable quality. Approaches more aware of the dynamic environ-
ment adapt existing solutions from previous problem configurations (a specific problem
version and the time while it is valid are often referred to as an epoch [13]). Even more
sophisticated setups use predictive models to anticipate some or all of the potential events
produced by the dynamic problem. Anticipated events can then be used to quantify the
robustness of solutions, inform the objective function and the expected schedules associated
with generated solutions or influence the hyperparameters of the solver itself—especially
in self-aware systems.

In recent years, the role of machine learning in scheduling applications has become
more and more significant. An overview of such approaches can be found in various works
published over the last three decades [14–19]. Approaches using ML models in recent
years, including strategies that utilize models in order to evaluate potential schedules,
range from Lee et al. [20], who describe a job shop scheduling system that incorporates a
genetic algorithm and decision trees, to much more recent advances that allow the use of
full-blown digital twins that combine real and simulated data [21]. A more direct way to
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utilize models in scheduling applications is the use of different variations of deep neural
networks. Luo [22] uses reinforcement learning to directly generate the next relevant
action(s) at any point in time. Tuli et al. [23] employ an additional “constraint satisfaction
module” that interacts with the main reinforcement network in order to filter out unwanted
solutions, while Hu et al. [24] build upon Baruwa et al.’s [25] formalization of scheduling
problems as Petri-nets, together with a combination of a deep Q-network and specialized
layer. Additionally, Hu et al.’s setup utilizes a pre-existing digital twin as a simulation to
generate training data.

By utilizing a semi-realistic setup of a production system, this work demonstrates:

• The use of relatively simple machine learning models to obtain machine information
during production.

• The incorporation of these models into the optimization.
• The benefits of dynamic optimization methods that update solution candidates over time.
• An analysis of the dynamic interaction between an optimization algorithm and the

machine learning models it uses to evaluate its solutions.
• The impact of wall-clock time performance of the optimizer in an asynchronous setup

on the overall system performance.

Both model–optimizer interactions and wall-clock time performance are aspects of
real-world applications that can heavily influence the overall system performance but are
often abstracted away in academic studies.

The remainder of this paper is structured as follows. First, Section 2 introduces the
reader to the materials and methods used for the experimental study. It provides insights
into the simulated production system and the implementation thereof, as well as details
of the implemented optimizers and the used machine learning models. The results of
the study are detailed in Section 3. Finally, the paper concludes with a summary of the
presented study and possible future work in Section 4.

2. Materials and Methods

In this section, we emulate a production system that disassembles raw materials into
useful parts, optionally refines them and then assembles more complex products. An
optimizer is used to decide the production schedule in real time based on the information
obtained during production.

Figure 1 summarizes the overall setup of the experiments to follow. The main compo-
nent is a discrete event simulation that acts as the real world for experimentation purposes.
It emits production events (i.e., a new batch of tasks has arrived, a machine has started, a
machine has finished, the material was moved) to a world state that provides information
to both the optimizer and the machine learning models in the form of new training data or
updated problem definitions. While the models and some of the optimizers act reactively
by performing an update step or by computing a new solution, the more involved opti-
mizers run continuously, holding the last available problem–model combination until an
opportune time for an update is achieved (i.e., the end of a generation for evolutionary
algorithms, the end of a neighborhood batch for the local search). The optimizer computes
a schedule for all production tasks of all current orders and publishes it as a list to the
simulation whenever an update of the last solution becomes necessary or a new better
solution is found. Whenever a machine in the simulation finishes or a new solution is sent
from the optimizer, the simulation checks whether the first—not already dispatched—task
of the last solution is currently dispatchable without waiting and removes it from the solu-
tion. This process is repeated until the first element of the schedule can not be immediately
dispatched, at which point the simulation resumes its normal simulation behavior. Tasks
are neither pre-empted nor prematurely dispatched. All components shown in Figure 1
perform asynchronously from each other and receive their respective updates batch-wise
(as not to spawn multiple tasks performing model updates).
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Figure 1. Asynchronous components of the experimental setup.

2.1. Scenario

Benchmarks for dynamic versions of the job shop scheduling problem can be roughly
characterized into the following two categories:

(a) Established academic benchmark instances for static scheduling problems that have
been ad hoc “dynamicized” (e.g., Shahrabi et al. [8] or Kundakcı and Kulak [11]);

(b) Full-blown libraries that essentially have to include the full simulation code and are
often intrinsically combined with optimization problems (e.g., Lopez et al. [26] or
Beham et al. [27])

The former variation appears to be suitable for comparing the performance of different
optimizers because at least the original states equate to the static scheduling problem
instances that are known to be challenging. To the best of the authors’ knowledge, most
work focuses on scenarios where processing times are known a priori and arrival rates
of new jobs follow very simple distributions and are independent of the simulations’
current state. Such a setup is often quite reasonable as it challenges the optimizer and
disentangles its performance from the performance of any machine learning models used
to predict system properties (setup times, process times, breakdowns). However, this
assumes very well-established and verified knowledge about the process that gives rise
to the dynamic scheduling problem, which is not always given in industry 4.0 settings.
The second variation is often driven by an existing real-world use case and is so complex
that the full application code, including proprietary business logic is needed to accurately
re-perform the numerical experiments.

In this work, we opt for a simplified variation of the second approach, allowing us to
introduce several different system behaviors that may influence the simulation–modeling–
optimization composition. At the same time, we deliberately choose a smaller scenario in
order to retain the explainability of the results.

Figure 2 displays a small production system comprising upstream and downstream
processes, a disassembly, an assembly stage, a processing stage and two intermediary
buffers for the materials used in the individual steps. Table 1 summarizes the parameters
and behavior of the machines, including three disassembly machines with different task
times, three intermediary processing machines and two assemblers. Two machines (21 and
32) require setup times under certain conditions, which should be avoided by the optimizer,
while the task time of machine 23 depends on specific material properties (x1,m · x2,m is
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presented to the learning model as a precalculated feature to fit the linear model). Both
assembly and disassembly actions are predefined in the orders and target random materials
in the generated task batch (without repetition). Therefore, neither task type introduces
additional decisions that the optimizer has to make. The main impact these actions have is
the increased demands on the buffer elements and the precedence constraints implicit with
an assembly task (i.e., all sub-materials have to be ready).

Figure 2. Scenario: production pipeline.

Table 1. Scenario parametrization.

Variable Description Distribution

x1,m Material property 1 of material m (0.8, 25%), (1.0, 50%), (1.2, 0.15%),
(14.0, 10%)

x2,m Material property 2 of material m (0.8, 25%), (1.0, 70%), (1.2, 5%)

x3,m Material property 3 of material m (8.0, 25%), (10.0, 50%), (12.0, 15%),
(14.0, 10%)

dcount Number of disassembly tasks per batch 3 (constant)
acount Number of assembly tasks per batch 5 (constant)
asize Number of materials per assembly task (1, 15%), (2, 70%), (3, 15%)
dchoice Disassembly machine distribution (1, 52%), (1, 35%), (1, 13%)

ichoice Intermediary machine distribution (None, 50%), (21, 25%), (22, 20%),
(23, 5%),

achoice Assembly machine distribution (31, 30%), (32, 70%)
m11 Machine 11 task time N(30, 1)
m12 Machine 12 task time N(45, 1)
m13 Machine 13 task time N(120, 1)
m21 Machine 21 task time N(65, 5) + s21
m22 Machine 22 task time N(25, 5)
m23 Machine 23 task time N(10 + 3x1x2, 5)
m31 Machine 31 task time N(35, 4)
m32 Machine 32 task time N(20, 1) + s32

s21 Machine 21 setup time
N(60, 5) if x3,p of the last material p is

not equal to x3,m of the current material
m else 0

s32 Machine 32 setup time N(15, 5) if the last material is more than
60 s in the past else 0

b23,M
Whether a set of materials M can be

batched on machine 23
∑m x1,m · x2,m < 15 and

maxm∈M x3,m − minm∈M x3,m = 0

2.2. Simulation

The simulation is implemented in SimSharp (https://github.com/heal-research/
SimSharp, accessed on 21 August 2023) [28], which allows for setting a targeted speedup
factor in real time. As the simulation runs on pseudo-real time (real time sped up by a con-
stant factor) asynchronously to the optimizer and machine learning [29], both components’
runtime will impact the overall system performance. SimSharp allows for setting a target
speedup factor; however, it can not guarantee it is achieved. All speedups reported in
Section 3, therefore, are the real (measured) speedups for each experiment (all but ensuring
that no two problem instances are perfectly aligned).

https://github.com/heal-research/SimSharp
https://github.com/heal-research/SimSharp
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2.3. Optimizer

This section details the algorithms that are part of the experimental setup. On the
one hand, two population-based approaches (the offspring selection genetic algorithm
and the relevant alleles preserving genetic algorithms) are evaluated. The main benefits
of choosing evolutionary heuristics in general and genetic algorithms, in particular, are
their black-box approach with respect to the problem, which decouples the specifics of the
optimizers from the features (e.g., batching and clustering of tasks, number and size of
buffers, etc.) of the production system and their proven applicability to a wide spectrum of
dynamic optimization problems [30,31], as well as their white-box approach with respect
to the resulting schedule that could be reviewed by human operators. On the other hand,
a trajectory-based algorithm (local search), as well as two construction heuristics (first-
in-first-out and shortest-job-first) are used to optimize the same simulation scenarios for
comparison. Both are implemented as open-ended optimization algorithms, which are
executed in parallel to the system to be optimized and only ever terminate manually. The
dynamic algorithms incorporate dynamic changes into the problem model during algorithm
execution and need to adapt existing solutions to be valid for the current system state.

2.3.1. First-In-First-Out

First-in-first-out (FIFO) is the first and simplest algorithm to determine the schedule
of pending jobs. It is implemented as a rule-based approach. For every event yielded by
the simulated production system, FIFO returns a complete schedule of all jobs currently
present in the system. The jobs are sorted with respect to their creation date, meaning that
jobs that entered the system first are scheduled before jobs that entered the system later.
FIFO scheduling is always executed immediately if there are pending system changes that
require a new schedule to be created. If multiple changes accumulate over the course of
one FIFO execution, FIFO is started again— taking into account the latest known system
state—until no more changes are pending. A depiction of the FIFO algorithm can be seen
in Figure 3.

J0

time

J1 J2 J3 ...

J0 J0
J1

J0
J1
J2

J0
J1
J2
J3

sc
he

du
le

Figure 3. The First-In-First-Out (FIFO) algorithm.

2.3.2. Shortest-Job-First

The Shortest-Job-First (SJF) scheduling algorithm inherits some of its behavior from the
FIFO scheduler. It executes repeatedly as long as pending changes are present to produce
updated schedules that contain all currently known jobs. SJF processes all known jobs
as follows. It sorts all n jobs with respect to their predicted processing time in ascending
order and selects the job with the shortest predicted processing time that does not have
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unscheduled predecessors first. It then assumes this first job to be processed and sorts
all remaining n − 1 jobs again with respect to their shortest predicted processing time.
Therefore, SJF splits the set of jobs into two lists S and U , where S contains all scheduled
jobs, and U contains all remaining jobs. Scheduling a job, i.e., moving it from U to S , might
lead to other jobs in U being processable and therefore schedulable. Figure 4 shows how
jobs are sorted and selected. Job J1 depends on J0 and cannot be scheduled until J0 is
scheduled. Jobs J4 and J5 both depend on J3. Jobs that can be scheduled are marked with a
check mark, jobs that cannot be scheduled (because of precedence constraints) are marked
with a cross. Already scheduled jobs are marked with a star. The fill level of each job
corresponds to the predicted processing time, making J7 the fastest job and J6 the slowest.
In the first step, all jobs are sorted with respect to their processing time. Then, the fastest
schedulable job—here J7—is scheduled, i.e., moved from U to S . As no jobs depend on
J7, no precedence constraints are changed. SJF then virtually applies J7 and updates the
timing models, as well as the predicted processing times for all remaining, schedulable
jobs. SJF then selects the next fastest, schedulable job in the sorted set U , now being J2, in
which the predicted processing time was updated. Since both J4 and J5 depended on J2,
their precedence constraints are now lifted and both jobs are schedulable. SJF would then
select the next fastest, schedulable job in U , being J4. This repeats until U = ∅.

J7J6J5J4J3J2J1J0

J7 J6J5J4 J3 J2J1 J0

J5J4J1

S U

J7

J6J1 J0

S U

J3J4 J5

J3 J2 J0 J6

J2J7

Figure 4. Shortest-Job-First (SJF) processing eight jobs.
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2.3.3. Open-Ended Local Search

Furthermore, an open-ended version of a local search (LS) is created. The algorithm
starts off by randomly creating an initial solution and conducts move operations to sample
all neighbors of this solution in sequence until a better solution is found. It then replaces
the current solution with the newly found (better) neighbor and starts to enumerate the
new neighborhood. Once a local optimum has been found, i.e., no better neighbors can
be discovered, the algorithm sets the current solution as an elite solution and restarts
by replacing the current solution with a newly generated one. Furthermore, if dynamic
problem changes occur, the problem model is updated accordingly and both the current and
elite solutions are updated. The algorithm then reevaluates both solutions and publishes
the best. The local search procedure is continued on the current solution and once a local
optimum has been found, the elite solution is again replaced by the current solution.

2.3.4. Open-Ended Offspring Selection Genetic Algorithm

The first population-based approach is an open-ended variation on the offspring se-
lection genetic algorithm (OSGA) [32]. Offspring selection (OS) is the single population
version of the self-adaptive segregative genetic algorithm with simulated annealing aspects
(SASEGASA) [33], which is a further development of the SEGA algorithm [34]. Offspring
selection introduces self-termination to genetic algorithms by implicitly measuring the
convergence of the overall population, and states where not enough genetic material is
available anymore to produce better offspring, which can be alleviated by restarting with a
new population. OS selects offspring by comparing the fitness of created children against
the fitness of respective parents. A comparison factor ϕ is used to define the threshold of
what is considered the minimum fitness value of successful offspring, which is computed
as follows

fs = fw + ( fb − fw) · ϕ (1)

where fs is the minimum required fitness to be successful, fw is the fitness of the worse
parent, fb is the fitness of the better parent and ϕ is the comparison factor. As depicted in
Figure 5, only the successful survive into the new population. Conversely, OSGA variations
usually need not introduce convergence pressure via parent selection and thus parents are
usually chosen uniformly and randomly from the old population. Weak offspring selection
requires offspring to be fitter than the worse parent and is achieved with a comparison
factor of 0.0, while strict offspring selection (used in the experiments in Section 3) uses
a comparison factor of 1.0 and thus requires children to outperform their better parent.
Finally, OSGA also requires a minimum fraction of offspring to be successful when creating
a new generation, which is defined by the success ratio. OSGA also tracks the amount
of generated children that are required to generate the necessary amount of successful
offspring, which is defined as:

ActSelPress =
GeneratedO f f spring
Success f ulO f f spring

(2)

Preliminary results showed that the last generations before convergence and restart
required significantly more run time than the faster speed up settings allowed while
maintaining good qualities. In order to combat this phenomenon, we use the selection
pressure after each parallel batch to parameterize a normal approximation of a binomial
distribution and, if achieving the number of successful offspring still required lies outside
the 2 · σ-interval, the population is reseeded prematurely.

This allows OSGA to track the current selection pressure within the population over
generations. In the default implementation, OSGA will terminate once the selection
pressure within the population rises to a certain amount. The open-ended version in-
stead restarts with a newly created population to introduce new genetic material (except
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for the current best solution that is appended to the population as to not lose optimiza-
tion progress).

nochild
 'better' than

parents ?

yes

selection (roulette, linear rank, tournament, ...)
crossover
mutation

Discarded
individuals

Figure 5. Strict offspring section.

2.3.5. Open-Ended Relevant Alleles Preserving Genetic Algorithm

An open-ended version of the relevant alleles preserving genetic algorithm (RAPGA)
has been implemented, which is called OERAPGA in short and has proven applicable
to discrete encoded dynamic problems in the past [35]. The original RAPGA [36] is a
self-adaptive algorithm that automatically adjusts its population size based on offspring
success. It features offspring selection similar to the OSGA, but compared to it, no pool
of discarded offspring is used. Instead, RAPGA accepts all successful and only successful
offspring into the next generation, and adds the elite solutions from the parent population.
This results in varying population sizes, depending on how much the offspring outperform
their parents. Most importantly, the computational effort decreases as the population loses
diversity, making the algorithm faster at the end of the restart cycle.

At the end of each generational cycle, all individuals in the newly created generation
are updated to be feasible for the new scenario and reevaluated in order to allow future
parent–child comparisons.

2.3.6. Improvement Operators

To create a new offspring from the two parents, a maximal preservative crossover (MPX) [37]
is used, while mutation is a consecutive application of 0.05 · permutationlength two-swap
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operations with a mutation probability of 0.05 for each child. Note, that since the total
number of tasks changes over time, the disruptiveness of the mutation operator stays
constant on a per-task basis.

For all solutions of the aforementioned optimization approaches, two additional
preprocessing steps are applied before the solution is evaluated. The first preprocessing
step tries to keep the level of the first buffer low. This is done by moving all tasks that
remove materials from the buffer to the front, while not violating the precedence constraints.
This results in a task sequence that removes all possible materials from the buffer before
adding the incoming materials to it, reducing the risk of overfilling the buffer.

The second preprocessing step batches tasks based on a predefined set of rules while
not violating the precedence constraints. This helps the behavior of the machines regarding
the processing of more than one material at a time. To create batches, the batching rules of
each machine are used to batch as many materials into one task. Once a rule is broken, the
current batch is complete and a new batch with the current material is started.

2.3.7. Optimization Objectives

For many variations of scheduling problems [38] and hybridizations [39], one of the
most prominent objectives is the makespan of a schedule, which, in this scenario, can be
defined as the last finishing time of any job. Since there are numerous solutions that
exhibit the same makespan when one machine becomes the bottleneck of the system,
we differentiate these solutions by minimizing the overall (sum) duration of materials in
the buffers.

2.4. Machine Learning Models

As the focus of this work is to study the interaction of the optimizer and models and
not to evaluate the power of any given ML model, we restrict ourselves to online linear
regression, by performing a Sherman–Morrison update [40] to the inverted Hessian matrix
every time a new data point is collected (i.e., a machine has finished a task). Should the
model not yet have full rank, we opt to calculate the Moore–Penrose pseudo-inverse of the
Hessian from scratch [41]. This results in a type of model that is fast to calculate and does
not have any hyper-parameters that would require tuning and therefore impact results.

As the focus of this work is to study the interaction of the optimizer and models
and not to evaluate the power of any given ML model, we restrict ourselves to online
linear regression. This choice is mainly because linear regression requires no parameters
whose tuning could impact the results. With the Sherman–Morrison update [40], a well
established and fast technique exists with witch to update the model when new training
data are available. New training data become available whenever a machine finishes a task.
The generated input vector (independent variables) for the model consists of the aggregated
material properties, the time at which the action started, as well as the material properties,
and start and finishing times of the previous action performed on this machine (this allows
the model to capture simple batching and pipe-lining behaviors). The dependent variable
is then simply the time it took to perform the current action. Every machine is assigned an
independent model, so transfer learning possibilities from machines of similar types are
not in the scope of this work.

In this work, we deliberately assume “cold start” conditions. Only the production
layout is known, as well as the buffer capacities b1 and b2. The machine learning models
predicting machine/setup times are initialized with the same constant value c = 45 s that is
within an order of magnitude for all actual processing times as not to intentionally mislead
them and allow for the generation of initial solutions.

Additionally, when only a few data points are available, the number of training data
points might be smaller than the degrees of freedom in the model or several input features
might be co-linear to each other. In this case, the linear system is under-determined and we
opt to calculate the Moore–Penrose pseudo-inverse of the Hessian matrix from scratch [41].
This essentially chooses from all possible linear models with equal quality, the model where
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the coefficients display the smallest Euclidean norm (i.e., the coefficients closest to zero).
Since online updating the pseudo-matrix is more complex than the Sherman–Morrison
formula, and this edge case is mainly relevant in stages where the number of data points is
small and training is fast anyway, we recalculate this matrix whenever the calculation of
the actual Hessian matrix is not possible.

A note is made that given enough data, the linear models should be able to learn the
true behavior of all machines in this scenario (x1 · x2 provides a singular input variable)
and more complex structures (artificial neural networks, random forests, etc.) should not
be required.

3. Results

In this section, we take a detailed look at the effects apparent in the optimizer–model–
simulation system, starting by visualizing and comparing individual executions and lead-
ing into aggregated views on algorithm performance.

3.1. Individual Runs

Figure 6 shows the results of one application (a run) of the open-ended local search.
The top section contains a utilization chart of the actions performed in the simulation. On
the one hand, not all machines are equally utilized, as machine 23 is working considerably
less then the others. On the other hand, no machine achieves full utilization, indicating that
the critical path is not trivially located on a single machine. The bottom section juxtaposes
the quality of the best found solution by the optimizer whenever it is published (solid, blue
line) to the number of tasks that had to be scheduled in it (dashed, green line). As can
be seen, the number of unfinished tasks in the system does not generally increase much
over time, while also never reaching zero again after the start, indicating that the system is
stable with regard to Little’s theorem [42] (i.e., the average time it takes to work through a
batch of jobs is not larger than the average time it takes for a new batch to arrive). A note
is to be made, that comparisons between makespans of different times or worse between
different runs or algorithms are often invalid as they depend on the predictions of learned
models with different training data. An indication of this can be seen whenever the relation
between the solution size and makespan changes significantly; this is especially visible at
the “peak” of the makespan in the first minutes of the run, where the models overestimate
the time required to perform tasks on certain machines.
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Figure 6. Gantt chart and quality curves of a single run (open-ended local search; OELS).

Figure 7 is the visualization of a run of the SJF optimizer on the same scenario with
equal dynamic parameters. Both solution size and makespan increase steadily throughout
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the run, indicating that the performance of the SJF is not enough to keep the system stable,
even though such an under-performance is not easily visible in the Gantt chart.
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Figure 7. Gantt chart and quality curves of a single run (shortest-job-first; SJF).

3.2. Oversaturation

Figure 8 serves as a reminder that if the arrival rate of new tasks is too high, stable
system behaviors can not be achieved by any algorithm. Similar to Figure 6, a spike in
the perceived makespan is noticeable in the first few minutes of the run, which is again
indicative of overestimated machine times. However, even after the models stabilize, the
total number of tasks to schedule steadily increases.
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Figure 8. Typical algorithm performance for a problem where tasks arrive faster than they can
be processed.

The effects of real-time computation costs can even compound this problem. Figure 9
shows the performance of the OERAPGA (artificially hindered by a high speedup factor).
Note that the elongated flat steps in the graph are symptoms of the linearly increasing
evaluation time it takes to calculate the quality of a new solution candidate. This makes the
algorithm increasingly slow to react to the changes in the system and leads to underuti-
lized machines, as the simulation has to work with outdated and incomplete schedules.
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Simultaneously, this results in bad schedules, in general, as the algorithms can no longer
converge its population before drastic changes invalidate much of the progress made.
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Figure 9. Algorithm performance for a problem instance with very high speedup.

3.3. Model Qualities

On the performance of the regression models, it should be noted that the model
and optimizer can enter a feedback loop with the model steering the optimizer toward
potentially good solutions and the optimizer reaffirming the model by selecting operations
that have good predicted machine times and adding those back into the training data.

Figures 10 and 11 show the demonstrate part of this effect. Figure 10 relates to a single
simulation run using the OSGA as an optimizer, while Figure 11 depicts a run with similar
settings using the SJF. In both diagrams, the predicted (unmarked line end) and actual
machine time (marked line end) for machines 21 and 32 (the machines with setup times)
are compared along the simulation time. The predictions are taken just before the point in
question is added to the respective model’s training set via online update.
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Figure 10. “Well”-performing models for machines with setup times.

At the beginning, both models for both runs display erratic behavior, as is expected
from under-defined models with very little training data. Then, all models slowly improve
their behavior with the model for machine 32 stabilizing faster as it is provided more
training data per time than its machine 21 counter part. However, in the run shown in
Figure 11, the model only manages to learn the machine time for operations that do not
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require a setup, while constantly underestimating situations that do. Whether the model
for machine 21 in the run underpinning Figure 10 has overcome this problem, can not be
discerned from the data alone; either the model is intentionally steering the optimizer away
from requiring setup times or random chance was barely ever required to encounter this
situation. For machine 32, conversely, the models manage to distinguish both situations
(with the occasional mishap) even with considerably fewer training samples overall.
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Figure 11. “Mediocre”-performing models for machines with setup times.

3.4. Optimizer Performance

In order to assess the dynamic performance of the optimizer, we compare the total
number of completed assembly (Figure 12) and total tasks (Figure 13) as an estimation
of the combined systems throughput. Both numbers could be exploited if selected as a
direct optimization target. Maximizing the number of total finished tasks would lead to
extremely full buffer zones, while focusing only on the number of finished products could
lead the optimizer to ignore preparatory tasks. Both numbers should therefore be viewed
in tandem.
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Figure 12. Overall performance of different optimizers measured by finished products.

Both figures plot the respective median performance measure over the speed of the
simulation while grouping problem instances by the selected timing interval (in seconds) for
the order generation, with larger generation intervals leading to easier problem instances.
First, for both the throughput measures for intervals higher than 75 s, there is no noticeable
difference between all algorithms, indicating that the inherent capacity of the system is
larger than what is required for the slowly arriving orders.

Second, for the harder problem instances, the rankings between algorithms are rela-
tively stable with the informed FIFO algorithm performing worst, and the SJF optimizer
outperforming it in terms of finished orders while staying relatively comparable in terms
of total tasks. The open-ended variations of the local search and RAPGA perform even
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better but do not distinguish much from each other, which points to the mutation operator
being the main driving force during the search.
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Figure 13. Overall performance of different optimizers measured by finished subtasks.

Third, the total tasks performed by the computationally more expensive OERAPGA
seem to deteriorate in short interval problem instances with increasing speed up, which
is in line with the observation in Section 3.2 that longer order queues, and the therefore
longer evaluation times of solution candidates, can impact the algorithm significantly.
Additionally, in the short interval setting, the performance of the SJF optimizer seems to
slightly decrease with speedup, although the effect is much less pronounced.

4. Discussion

This work presents a setup for scheduling via dynamic heuristic optimization and
integrated machine learning with a focus on asynchronous execution. Effects of real time
considerations, algorithm behavior, the “cold start” of machine learning models and model–
optimizer interactions were analyzed. The chosen scenario contains several real-world
characteristics (i.e., noise, setup times, batching, assembly and disassembly operations, as
well as resource/buffer constraints). While not all are simultaneously influential to the
system’s performance at hand, the described setup could, in principle, accommodate all of
these features.

In the computational experiments, the more sophisticated algorithms could out-
perform the simpler constructions heuristics, but they were also more afflicted by run
time issues.

The results in Section 3.3 indicate the need for careful consideration of the integrated
machine learning models. Not only the questions of training and prediction speed, retention
and un-learning of experienced training data will have to be answered in the future, but
also the fact that the optimizer biases the generation of training data, potentially skewing
classic error measures, like mean squared error, is an open question going forward. For
purely practical considerations, not every model needs to start without an existing data set,
which could alleviate the issue, but also quite often data will only be available in the form
of knowledge by domain experts, requiring a method to integrate this knowledge into an
otherwise automatically updating prediction model. All the while, errors or blind spots in
the models could appear and be largely undetected simply because the optimizer avoids
creating solutions that would expose them.

As a side note, the demonstrated approach of learning machine behaviors is not
applicable to every production system, as it depends on fairly complete, accurate and
up-to-date information about almost every aspect of the system. Especially sections of the
system with timings that depend largely on human interaction or performance might be
difficult to accurately measure and/or predict. Furthermore, in many situations, accurate
historic data are scarce, but domain knowledge in the form of constrains, rule-of-thumbs
or even physically proven equations might be available, generating a need to combine
domain knowledge with machine learning in order to generate accurate assessments of
potential solutions.
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In order to fully gauge the potential of the considered optimization algorithms, the
comparative study will need to be extended to reinforcement learning approaches, more
complex neighborhood searches (e.g., variations of variable neighborhood search [43])
and, certainly, a considerably larger set of different machine setups and layouts. Hence,
the observed good performance of the LS and OERAPGA are not generalizable as of yet.
Here, the reader is referred to the numerous studies that compare algorithmic performance
in more controlled setups where timings need not be learned and model and optimizer
performance are thus disentangled.
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