Inversion of the Permeability Coefficient of a High Core Wall Dam Based on a BP Neural Network and the Marine Predator Algorithm
Abstract
:1. Introduction
2. Saturated–Unsaturated Seepage Control Equation
3. Inversion Analysis Principle
3.1. BP Network
3.1.1. Forward Propagation
3.1.2. Back Propagation
3.2. Marine Predator Algorithm
3.2.1. Mathematical Expression
3.2.2. Eddy Formation and FADs’ Effect
Algorithm 1. The pseudocode of the MPA. |
Confirm search scope Initialize the search agents (prey) populations = 1, …, n While termination criteria are not met, calculate the fitness, construct the elite matrix, and accomplish memory saving If iter < Max_iter/3, update prey based on Equation (24) Else if Max_iter/3 < iter < 2* Max_iter/3, for the first half of the populations, update prey based on Equation (25); for the other half of the populations, update prey based on Equation (26) Else if iter > 2* Max_iter/3, update prey based on Equation (27) End if accomplish memory saving and Elite update, applying FADs effect, and update based on Equation (28) End |
4. Inversion of the Penetration Parameters of a High Core Rockfill Dam
4.1. Parameters Inversion Process
4.2. An Actual Dam for Finite Element Analysis
4.3. The Initial Calculated Seepage Parameter
4.4. Verification of the Permeability Coefficient
5. Discussions
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wu, Z.Y.; Li, Y.L.; Chen, J.K.; Zhang, H.; Pei, L. A reliability-based approach to evaluating the stability of high rockfill dams using a nonlinear shear strength criterion. Comput. Geotech. 2013, 51, 42–49. [Google Scholar] [CrossRef]
- Middlebrooks, T.A. Earth-Dam Practice in the United States. Trans. Am. Soc. Civ. Eng. 1953, 118, 697–722. [Google Scholar] [CrossRef]
- Loukola, E.; Reiter, P.; Shen, C.; Pan, S. Embankment dams and their foundation: Evaluation of erosion. In Proceedings of the International Workshop on Dam Safety, Grindelwald, Switzerland, 26–28 April 1993; pp. 17–48. [Google Scholar]
- Foster, M.; Fell, R.; Spannagle, M. The statistics of embankment dam failures and accidents. Can. Geotech. J. 2000, 37, 1000–1024. [Google Scholar] [CrossRef]
- Sherard, J.L. Lessons from the Teton Dam failure. Eng. Geol. 1987, 24, 239–256. [Google Scholar] [CrossRef]
- Fredlund, D.G.; Rahardjo, H. Soil Mechanics for Unsaturated Soils; John Wiley & Sons: Hoboken, NJ, USA, 1993. [Google Scholar]
- Mualem, Y. Hydraulic conductivity of unsaturated porous media: Generalized macroscopic approach. Water Resour. Res. 1978, 14, 325–334. [Google Scholar] [CrossRef]
- Van Genuchten, M.T. A closed-form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Sci. Soc. Am. J. 1980, 44, 892–898. [Google Scholar] [CrossRef]
- Brooks, R.H. Hydraulic Properties of Porous Media; Colorado State University: Fort Collins, CO, USA, 1965. [Google Scholar]
- Xu, Y.; Zhang, G.; Liu, X.; Xia, Y.; Li, X. Numerical Modeling of Saturated-unsaturated Earth Dam During Descent of Reservoir Water Level. J. Wuhan Univ. Technol. 2011, 33, 93–97. [Google Scholar]
- Wang, S.W.; Bao, T.F. Monitoring Model for Dam Seepage Based on Lag Effect. Appl. Mech. Mater. 2013, 353–356, 2456–2462. [Google Scholar] [CrossRef]
- Shu, Y.; Gong, D.; Luo, P. Vegetation evolution; groundwater; oasis; desertification; model; GIS.; FEFLOW Analysis of 3D saturated-unsaturated raining infiltration seepage. J. Hydraul. Eng. 2003, 0, 66. [Google Scholar]
- Zhen-zhong, S.; Hang, J.; Chang-song, S. Numerical simulation of composite geomembrane defect leakage experiment based on saturated-unsaturated seepage theory. J. Hydraul. Eng. 2009, 40, 1091–1095. [Google Scholar]
- Xu, P.; Qian, H.; Zhang, Q.; Shang, J.; Guo, Y.; Li, M. Response mechanism of permeability change of remolded loess to seepage parameters. J. Hydrol. 2022, 612, 128224. [Google Scholar] [CrossRef]
- Amnyattalab, J.; Rezaie, H. Study of the effect of seepage through the body of earth dam on its stability by predicting the affecting hydraulic factors using models of Brooks–Corey and van Genuchten (Case study of Nazluchay and Shahrchay earth dams). Int. J. Environ. Sci. Technol. 2018, 15, 2625–2636. [Google Scholar] [CrossRef]
- Ma, J.; Xiong, X.; Yang, J.; Mikami, R.; Shi, Z.; Zhang, F. Element tests on hydraulic-mechanical behavior of saturated/unsaturated landslide dam materials. Jpn. Geotech. Soc. Spec. Publ. 2020, 8, 360–365. [Google Scholar] [CrossRef]
- Dafny, E.; Tawfeeq, K.J.; Ghabraie, K. Evaluating temporal changes in hydraulic conductivities near karst-terrain dams: Dokan Dam (Kurdistan-Iraq). J. Hydrol. 2015, 529, 265–275. [Google Scholar] [CrossRef]
- Luo, H.; Li, H.; Lu, Y.; Li, Y.; Guo, Z. Inversion of distributed temperature measurements to interpret the flow profile for a multistage fractured horizontal well in low-permeability gas reservoir. Appl. Math. Model. 2020, 77, 360–377. [Google Scholar] [CrossRef]
- Mouyeaux, A.; Carvajal, C.; Bressolette, P.; Peyras, L.; Breul, P.; Bacconnet, C. Probabilistic analysis of pore water pressures of an earth dam using a random finite element approach based on field data. Eng. Geol. 2019, 259, 105190. [Google Scholar] [CrossRef]
- Rezaei, E.; Zeinalzadeh, K.; Ghanbarian, B. Experimental study of hydraulic properties in grain packs: Effects of particle shape and size distribution. J. Contam. Hydrol. 2021, 243, 103918. [Google Scholar] [CrossRef] [PubMed]
- Li, J.R.; Chen, C.; Wu, Z.Y.; Chen, J.K. Multi-source data-driven unsaturated seepage parameter inversion: Application to a high core rockfill dam. J. Hydrol. 2023, 617, 129171. [Google Scholar] [CrossRef]
- Liu, Z.; Sun, H. Observed data-based method for non-steady seepage of dams. Chin. J. Geotech. Eng. 2011, 33, 1807–1811. [Google Scholar]
- Yu, H.; Bao, T.; Xue, L. Numerical simulation of the hysteretic effects of rainfall. J. Hydroelectr. Eng. 2010, 29, 200–206. [Google Scholar]
- Hu, Y.; Feng, Q. The Saturated—Unsaturated Seepage Analysis of Hualianshu Landslide on the Condition of Rainfall. Adv. Ind. Civ. Eng. 2012, 594–597, 387–390. [Google Scholar] [CrossRef]
- Hongyan, L.I.U.; Siqing, Q.I.N. Simulation of seepage field in bank slope due to reservoir water level change. J. Eng. Geol. 2007, 15, 796–801. [Google Scholar]
- Xu, S.J.; Dang, F.N.; Han, Q.; Cheng, S.Z. Analysis of Stability of Dam Slope During Rapid Drawdown of Reservoir Water Level. In Proceedings of the 2009 International Conference on Engineering Computation 2009, Hong Kong, China, 2–3 May 2009; p. 221. [Google Scholar] [CrossRef]
- Biniyaz, A.; Azmoon, B.; Liu, Z. Coupled transient saturated-unsaturated seepage and limit equilibrium analysis for slopes: Influence of rapid water level changes. Acta Geotech. 2022, 17, 2139–2156. [Google Scholar] [CrossRef]
- Shu, Y.K.; Shen, Z.Z.; Xu, L.Q.; Duan, J.R.; Ju, L.Y.; Liu, Q. Inverse Modeling of Seepage Parameters Based on an Improved Gray Wolf Optimizer. Appl. Sci. 2022, 12, 8519. [Google Scholar] [CrossRef]
- Chi, S.C.; Ni, S.S.; Liu, Z.P. Back Analysis of the Permeability Coefficient of a High Core Rockfill Dam Based on a RBF Neural Network Optimized Using the PSO Algorithm. Math. Probl. Eng. 2015, 2015, 124042. [Google Scholar] [CrossRef]
- Qian, W.W.; Chai, J.R.; Zhao, X.Y.; Niu, J.T.; Xiao, F.; Deng, Z.P. Inversion method of hydraulic conductivity for steady-state problem based on reduced-order model constructed by improved greedy sampling method. Adv. Water Resour. 2022, 166, 104260. [Google Scholar] [CrossRef]
- Li, F.; Zhang, H.Y. Stability Evaluation of Rock Slope in Hydraulic Engineering Based on Improved Support Vector Machine Algorithm. Complexity 2021, 2021, 8516525. [Google Scholar] [CrossRef]
- Liu, Y.R.; Wang, L.; Gu, K.X.; Li, M. Artificial Neural Network (ANN)- Bayesian Probability Framework (BPF) based method of dynamic force reconstruction under multi-source uncertainties. Knowl. Based Syst. 2021, 237, 107796. [Google Scholar] [CrossRef]
- Guoping, W.; Hongyan, X.; Zhongxiang, X. Grey Bp network for prediction of the buried depth of reservoir. J. Grey Syst. 2007, 19, 167–172. [Google Scholar]
- Wang, J.X.; Sun, J.; Kou, H.J.; Lin, Y.X. Multiparameter Inversion Early Warning System of Tunnel Stress-Seepage Coupling Based on IA-BP Algorithm. Adv. Civ. Eng. 2021, 2021, 1566693. [Google Scholar] [CrossRef]
- Lu, Y.; Huang, M.; Lan, Z. Application of artificial neural network model on back analysis of permeability parameters for unsteady seepage of seawall. South-North Water Transf. Water Sci. Technol. 2015, 13, 1147–1150. [Google Scholar]
- Faramarzi, A.; Heidarinejad, M.; Mirjalili, S.; Gandomi, A.H. Marine Predators Algorithm: A nature-inspired metaheuristic. Expert Syst. Appl. 2020, 152, 113377. [Google Scholar] [CrossRef]
- Humphries, N.E.; Queiroz, N.; Dyer, J.R.M.; Pade, N.G.; Musyl, M.K.; Schaefer, K.M.; Fuller, D.W.; Brunnschweiler, J.M.; Doyle, T.K.; Houghton, J.D.R.; et al. Environmental context explains Levy and Brownian movement patterns of marine predators. Nature 2010, 465, 1066–1069. [Google Scholar] [CrossRef] [PubMed]
- Reynolds, A.M.; Frye, M.A. Free-Flight Odor Tracking in Drosophila Is Consistent with an Optimal Intermittent Scale-Free Search. PLoS ONE 2007, 2, e354. [Google Scholar] [CrossRef] [PubMed]
- Sims, D.W.; Southall, E.J.; Humphries, N.E.; Hays, G.C.; Bradshaw, C.J.A.; Pitchford, J.W.; James, A.; Ahmed, M.Z.; Brierley, A.S.; Hindell, M.A.; et al. Scaling laws of marine predator search behaviour. Nature 2008, 451, 1098–1102. [Google Scholar] [CrossRef]
- Viswanathan, G.M.; Afanasyev, V.; Buldyrev, S.V.; Murphy, E.J.; Prince, P.A.; Stanley, H.E. Levy flight search patterns of wandering albatrosses. Nature 1996, 381, 413–415. [Google Scholar] [CrossRef]
k(cm/s) | |||
---|---|---|---|
gravel core wall | 7.00 × 10−6 | 0.02 | 2 |
upstream rock | 1.00 × 10−1 | 0.02 | 2 |
downstream rock | 1.00 × 10−1 | 0.02 | 2 |
curtain grouting | 1.00 × 10−7 | 0.02 | 2 |
transition layer | 3.00 × 10−2 | 0.02 | 2 |
filter layer | 8.00 × 10−3 | 0.02 | 2 |
sand layer | 3.00 × 10−3 | 0.02 | 2 |
bed rock | 1.00 × 10−5 | 0.02 | 2 |
Observation Point Number | Pore Water Pressure Observed (m) | Pore Water Pressure Calculated (m) |
---|---|---|
1 | 5.81 | 6.41 |
2 | 19.82 | 18.81 |
3 | 30.24 | 28.84 |
4 | 46.63 | 45.76 |
5 | 53.62 | 59.81 |
10 | 161.51 | 163.85 |
14 | 245.35 | 244.09 |
Pressure Water Head (m) | Observe 1 | Observe 2 | Observe 3 | Observe 4 | Observe 5 | Observe 10 | Observe 14 |
---|---|---|---|---|---|---|---|
rock a = 0.02 n = 2 | 6.41 | 18.81 | 28.84 | 45.76 | 59.81 | 163.85 | 244.09 |
core a = 0.02 n = 2 | |||||||
rock a = 0.02 n = 2 | 6.6 | 21 | 31.55 | 47.23 | 58.78 | 162.07 | 243.87 |
core a = 0.03 n = 2 | |||||||
rock a = 0.03 n = 2 | 9.9 | 21.21 | 30.11 | 47.28 | 61.76 | 164.11 | 244.15 |
core a = 0.02 n = 2 | |||||||
rock a = 0.03 n = 2 | 9.87 | 21.1 | 28.52 | 45.01 | 58.1 | 162.35 | 243.95 |
core a = 0.03 n = 2 |
K (cm/s) | K (cm/s) | Observe 1 | Observe 2 | Observe 3 | Observe 4 | Observe 5 | Observe 10 | Observe 14 |
---|---|---|---|---|---|---|---|---|
3.00 × 10−6 | 0.1 | 3.75 | 9.68 | 12.13 | 28.53 | 38.91 | 156.86 | 243.22 |
1.10 × 10−6 | 0.14 | 6.56 | 22.3 | 33.97 | 51.98 | 67.73 | 165.41 | 244.31 |
Average of Absolute Error (m) | Average of Relative Error | Variance in Absolute Error | Variance in Relative Error | |
---|---|---|---|---|
MPA-BP | 3.52 | 0.105 | 3.15 | 0.109 |
BP | 2.21 | 0.058 | 1.43 | 0.035 |
COMSOL–MATLAB | 3.68 | 0.083 | 3.78 | 0.068 |
Pressure Water Head (m) | K (cm/s) | K (cm/s) | 1 | 2 | 3 | 4 | 5 | 10 | 14 |
---|---|---|---|---|---|---|---|---|---|
observed value | 5.9 | 17.9 | 30.4 | 46.4 | 58.1 | 152 | 247.9 | ||
MPA-BP | 4.02 × 10−6 | 0.0698 | 5.64 | 13.73 | 19.84 | 36.64 | 49.87 | 160.98 | 243.66 |
BP | 6.93 × 10−6 | 0.442 | 6.23 | 19.52 | 28.98 | 46.68 | 61.46 | 164.56 | 244.46 |
COMSOL–MATLAB | 6.89 × 10−6 | 0.949 | 5.64 | 19.05 | 29.47 | 45.84 | 60.64 | 164.56 | 244.49 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Duan, J.; Shen, Z. Inversion of the Permeability Coefficient of a High Core Wall Dam Based on a BP Neural Network and the Marine Predator Algorithm. Appl. Sci. 2024, 14, 4008. https://doi.org/10.3390/app14104008
Duan J, Shen Z. Inversion of the Permeability Coefficient of a High Core Wall Dam Based on a BP Neural Network and the Marine Predator Algorithm. Applied Sciences. 2024; 14(10):4008. https://doi.org/10.3390/app14104008
Chicago/Turabian StyleDuan, Junrong, and Zhenzhong Shen. 2024. "Inversion of the Permeability Coefficient of a High Core Wall Dam Based on a BP Neural Network and the Marine Predator Algorithm" Applied Sciences 14, no. 10: 4008. https://doi.org/10.3390/app14104008
APA StyleDuan, J., & Shen, Z. (2024). Inversion of the Permeability Coefficient of a High Core Wall Dam Based on a BP Neural Network and the Marine Predator Algorithm. Applied Sciences, 14(10), 4008. https://doi.org/10.3390/app14104008