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Abstract: The non-destructive measurement of fish is an important link in intelligent aquaculture,
and realizing the accurate estimation of fish mass is the key to the stable operation of this link. Taking
tilapia as the object, this study proposes an underwater tilapia mass estimation method, which can
accurately estimate the mass of free-swimming tilapia under non-contact conditions. First, image
enhancement is performed on the original image, and the depth image is obtained by correcting and
stereo matching the enhanced image using binocular stereo vision technology. And the fish body
is segmented by an SAM model. Then, the segmented fish body is labeled with key points, thus
realizing the 3D reconstruction of tilapia. Five mass estimation models are established based on the
relationship between the body length and the mass of tilapia, so as to realize the mass estimation of
tilapia. The results showed that the average relative errors of the method models were 5.34%~7.25%.
The coefficient of determination of the final tilapia mass estimation with manual measurement was
0.99, and the average relative error was 5.90%. The improvement over existing deep learning methods
is about 1.54%. This study will provide key technical support for the non-destructive measurement of
tilapia, which is of great significance to the information management of aquaculture, the assessment
of fish growth condition, and baiting control.

Keywords: image enhancement; binocular stereo vision; 3D reconstruction; mass estimation

1. Introduction

The tilapia (Oreochromis sp.) has characteristics such as fast growth, easy cultivation,
and rich nutritional content [1]. Accurate measurement of fish length information is crucial
for estimating fish mass, bait control, and aquaculture sales [2]. Length and body weight are
fundamental biological features of fish populations and can reflect individual physiological
states [3]. Fish mass information is essential for various aquaculture management activities.
Traditional fish mass measurement methods require capturing fish and measuring their
length and weight, which can result in fish mortality, resource waste, and poor measurement
consistency [4].

With the continuous development of computer vision technology, more and more
researchers are investing in the field of underwater binocular vision. Non-contact fish
mass estimation methods [5] have attracted increasing attention from researchers. Abinaya
et al. [6] used deep learning techniques, specifically the YOLOv4 model, to detect and
analyze fish head, body, and tail features. Completely visible fish (CVF) were identified by
the segmentation analysis technique. The fish biomass was calculated from the estimated
length using a length—-mass relationship calibration curve. The method showed high
accuracy and reliability in estimating fish biomass, especially in cryptic environments.
Konovalov et al. [7] collected about 2500 images of golden eye bass and estimated their
mass. Two instances of a convolutional neural network (CNN) were trained using LinkNet-
34 architecture. A CNN that regresses the weight directly from the images was also trained
to estimate the mass of the fish efficiently and automatically. That study demonstrated the
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potential for automated mass estimation of golden eye bass using deep learning techniques.
Fernandes et al. [8] designed the CVS to be able to efficiently distinguish the fish body
from the background and fins, and the extracted fish body regions could be successfully
used to predict fish weight and carcass weight. That study demonstrated the potential
of utilizing computer vision and deep learning techniques for fast, accurate, and non-
invasive measurements in the aquaculture industry. Yu et al. [9] improved the feature
pyramid network (FPN) for Mask R-CNN and proposed an effective scheme for the accurate
measurement of fish body length and body width in precision agriculture, which can
achieve highly accurate measurement results in different contexts. But, in these methods,
the fish were caught and placed on a platform. Such a process may cause a lot of stress
to the fish, affecting its growth and even leading to its death [10]. Of course, there are
researchers who conduct experiments underwater. Sanchez-Torres et al. [11] used a single
underwater camera to acquire images in a controlled environment in order to shorten
the measurement time and reduce fish stress. The length and mass of the fish were also
estimated by image processing and regression analysis techniques. Saberioon et al. [12]
developed an automated system using a Kinect as an RGB-D camera to collect depth map
and top view images of 295 farmed bass of different sizes. The geometric features of the
back of the fish and machine learning algorithms were utilized to estimate the mass of the
fish. Hao et al.’s [13] study proposed an unsupervised fin removal method. The fish mass
was estimated based on the area and the area squared after fully automated caudal fin
removal with a maximum relative error of 8.46%. Although this method of mass prediction
based on fish body area is efficient, it is not possible to accurately estimate the mass of the
fish when its body plane is at an angle to the camera level.

This study utilized binocular stereoscopic vision technology to capture images of
tilapia, eliminated the influence of uneven illumination on underwater images using the
Retinex image enhancement algorithm, conducted stereo matching, segmented fish bodies
using a segmentation platform, marked key point coordinates, and estimated the length
of the tilapia using three-dimensional reconstruction technology. Five tilapia length-mass
prediction models were established, and the one with the smallest error was selected
through analysis and comparison, providing technical support for rapidly estimating the
length and mass of freely swimming fish underwater. The main contributions of the work
in this paper are as follows:

1. Firstly, a binocular image dataset of underwater tilapia is established, which can be
used for binocular image stereo matching in combination with underwater image
enhancement algorithm. It provides an effective basis for the three-dimensional
reconstruction of tilapia.

2. Aiming at the problem of non-contact tilapia length estimation based on underwater
binocular stereo vision, this paper proposes a tilapia length estimation method based
on binocular vision, image segmentation, and key pixel marking, which is aimed at
realizing efficient and low-cost non-contact tilapia length estimation.

3. Aregression model for predicting the mass of tilapia body length-body mass relation-
ship was developed. The body length was obtained by the body length estimation
algorithm, and the mass of tilapia could be estimated by inputting the model. The
experimental results showed that the method was highly reliable and could be used
for non-contact mass estimation of underwater tilapia.

2. Materials and Methods
2.1. Experimental Setup

In this experiment, the image data were acquired from the aquaculture plant in the
coastal aquaculture base of Shanghai Ocean University, and tilapia, which has a high
economic and edible value, was selected to obtain the images. The underwater binocular
vision system used a deepwater binocular camera model ZF-USB-02B10 (Weihai Zhifan
Marine Equipment Technology Company Limited, Weihai, and China), with a pixel size of
3.75 x 3.75 x 107 mm?, a frame rate of 30 fps, a resolution of 2560 x 960 pixels, a focal
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length of 3.0 mm, a baseline of 60 mm, and a horizontal fixation, which was connected to a
laptop computer via USB 2.0. The processor of the laptop was Intel i5-9300H 2.4 GHz; the
memory was 16 G; the graphics card was GTX-1660Ti; the operating system was Windows
11; and the programming environment was Python3.8. The experimental environment is as
shown in Figure 1, and the tilapia were swimming freely in a white culture tank with a size
of 120 cm x 90 cm X 34 cm. The weighing was carried out using an electronic scale with
an accuracy of 1 g and connected to a DC power supply.

Figure 1. Experimental equipment and materials: 1, binocular camera; 2, breeding water; 3, calibration
board; 4, breeding box; 5, cables; 6, laptop; 7, electronic scale.

2.2. Data Acquisition

When acquiring data, the specific steps were as follows: Water was drawn directly
from the breeding pool into a white breeding box, and the tilapia were scooped out and
placed on a flat surface. Their body length was measured with a tape measure once they
ceased to move. The body length of the tilapia was defined as the straight-line distance
from the tip of the snout to the base of the tail fin. Afterward, the tilapia, whose length
had been measured, were placed on a container weighing 1, and the total weight was
determined with an electronic scale to be my. Thus, the mass of the tilapia was as follows:

m=my —m 1

To minimize errors, the same sample was measured three times, and the average value
was taken. This study acquired the body length and mass information for approximately
50 tilapia specimens. These samples were divided into three different weight groups: M1
(0200 g), M2 (200400 g), and M3 (400-800 g) for analyzing tilapia at different stages of
growth. Additionally, 10 tilapia from the samples were sequentially placed in the breeding
box for photography. The computer software AMCap 9.08 (build 63.4) was used to acquire
and filter out 1000 unobstructed images of the tilapia, and during the image acquisition
process, the binocular camera was continuously moved to capture images of the swimming
fish from multiple angles.

2.3. Image Processing and Analysis

The main flow of this experiment is shown in Figure 2. Firstly, underwater camera
calibration was performed to obtain the parameters of the camera for aberration correction.
Then, the acquired images were processed in a division of labor. On the one hand, the
underwater image was enhanced as a way to eliminate some effects of uneven illumination.
The enhanced image was then stereo-matched to calculate the disparity value and obtain
the depth information of the image. On the other hand, the acquired data were segmented,
and the purpose of segmentation was to facilitate the labeling of key points in the next
step. After labeling, the pixel body length of the tilapia could be calculated. Then, the
depth information and pixel body length were combined to reconstruct the tilapia in three
dimensions, which was used to calculate the actual body length of the tilapia. Finally,
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the relationship between the body length and the mass of tilapia was modeled. The mass
information of the tilapia was obtained by inputting the estimated body length of the tilapia.

[ Left and right image acquisition J
\

| !

{ Image enhancement J [ Image segmentation ]

v v

[ Underwater camera calibration ]—)[ Stereo image matching ] [ Mark key point coordinates J

v v

[ Compute disparity map ] [ Calculate pixel body length ]

Get depth map

-1
{ Tilapia mass estimation model ](——/RL — BLx {cos {arctan[ “F’l - F’zﬂ} /
dl - dz

Figure 2. Flowchart for mass estimation of tilapia based on underwater binocular vision.

2.3.1. Camera Calibration

The refraction of light when shooting in underwater environments can lead to image
distortion. To ensure the accuracy of the results, the binocular camera requires binocular
calibration and distortion correction underwater [14]. The ZHANG’s method [15,16] was
used, and a 12 x 9 square grid aluminum substrate was selected for the calibration plate.
The size of each square was 30 mm x 30 mm.

Keeping the position of the camera unchanged, the position of the calibration plate
was constantly changed, and several groups of images with different angles and positions
were captured. The relative position of the binocular camera to the calibration board is
shown in Figure 3. Forty of these images were selected and programmed to be split into
separate left and right viewpoint maps and stored in separate folders. The left and right
viewpoint maps were automatically calibrated using tools in Matlab2017b. The corner point
detection results of the calibration board are shown in Figure 4. The optical aberrations
produced by the images can be corrected using Equations (2)—(4).

Xl = x(l + kltz + k2t4 =+ k3f6) (2)
Y = y(l + kltz + k2t4 + k3t6)
{ Xp = x + 2p1xy + pa (£ + 2x?)] 3)
Yy =y + [2p2xy + p1 (£ +27)]

NONO)

where (x,y) are the coordinates of the original image. X1, X5, Y1, and Y> are the coordinates
of the corrected image. fy and f, are the focal lengths in each direction. k; and k, are
correction coefficients for radial distortion, and p; and p, are correction coefficients for
tangential distortion. ¢ is the distance from the image pixel point to the center of the image.
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Figure 3. Relative position of binocular camera to calibration board.
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Figure 4. Calibration board corner point detection.

The histogram of the reprojection error of the Matlab2017b first calibration results is
shown in Figure 5a. The maximum error in the first calibration reached 0.15, and it can be
seen that several images had a large impact on the error. In order to further improve the
subsequent estimation accuracy, we removed some image groups with large errors. The
histograms of the reprojection errors after removal are shown in Figure 5b, and the errors
were all below 0.1.

}' Reprojection Errors '\ | Reprojection Errors i |
0.15 T T T T T
@ 2 o4 | Drag to select outliers
5] s O
X X
o t o
c 0-1_ o o o 1 - < 0.08
i v
c 0.05 c 0.04
3 [ Camera 1 3 [ Camera 1
= [CIcamera 2 = 0.02 [ cCamera 2
0 — — — -Overall Mean Error: 0.09 pixels 0 — — — - Overall Mean Error: 0.08 pixels
5 10 15 20 25 30 35 40 5 10 15 20 25 30
Image Pairs Image Pairs
(a) (b)

Figure 5. Comparison of reprojection error before and after processing: (a) histogram of reprojection
error for first calibration; (b) histogram of reprojection error after removal of large errors.

The calculated camera parameters are shown in Table 1. It can be seen that the rotation
matrix R approximates the unit matrix. The first parameter of the translation vector T
represents the distance between the centers of the two cameras. The default parameter for
the binocular camera baseline was 60 mm, which is within the tolerance of the error.
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Table 1. Camera calibration results.
Parameter Left Camera Right Camera

1757.9769 0 0 1755.6439 0 0
Internal parameters 0 1739.4673 0 0 1737.4004 O
6912410 3504650 1 639.7740  341.6467 1

k1 = 0.2938 k1 = 0.2956

Radial distortion
ky = 0.7482 k, = 0.7320

—0.0005 0.9999 —0.0024
0.0037 0.0024  0.9999

Translation matrix T = [—60.0704 0.0448 — 0.2057]

0.9999 0.0005 —0.0037
Rotation matrix R =

2.3.2. Image Enhancement and Stereo Matching

Because of the uneven illumination of the underwater images obtained from the
experiment, this study preprocessed the images before stereo matching. A Retinex-based
image enhancement algorithm was used to enhance the underwater images, and the
final image was obtained to eliminate the uneven illumination and retain the nature
of the fish itself. In this study, several mainstream image enhancement methods were
selected for comparison, including single-scale Retinex (SSR), multi-scale Retinex (MSR),
and multi-scale Retinex with color restoration (MSRCR). A comparison of the underwater
enhancement results is shown in Figure 6.

(b) (d)

Figure 6. Underwater image enhancement results based on Retinex: (a) original image; (b) SSR;
(c) MSRCR; (d) MSR.

Quantitative analysis is needed for images processed by underwater image enhance-
ment methods. In this study, two commonly used image quality evaluation metrics, peak
signal-to-noise ratio (PSNR) and structural similarity index (SSIM), were used to quantita-
tively analyze and compare the performance of different algorithms.

In the application of underwater image enhancement, PSNR can be used to determine
whether the enhanced image is over-enhanced. Ideally, the enhanced image should be
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closer to the reality of the original scene rather than producing unnatural enhancement. A
higher PSNR value means that the difference between the enhanced image and the original
image is smaller, which usually indicates that the image is of better quality and does not
appear to be over-enhanced. The formula for calculating the PSNR is as follows:

MAX3
[AG,j) =BG, )

PSNR =10 - log;, (5)

mn
1

1

irs
It

]

In the above formula, MAX, denotes the maximum pixel value of the image, m and
n denote the pixel value of each row and column of the image, A(7,j) denotes the original
image, and B(i,j) denotes the enhanced processed image. The four sets of images in Figure 6
are numbered from 1 to 4. The PSNR values of different algorithms in the same environment
are shown in Table 2.

Table 2. PSNR results for different algorithms.

Image SSR MSR MSRCR
1 10.637 11.559 14.179
2 10.098 10.807 14.430
3 10.433 10.755 13.442
4 10.495 10.865 14.370

Table 2 shows that the peak SNR values of MSRCR algorithm were higher than those
of the other algorithms for different images in the same environment, which proves that
the MSRCR performed well in this index.

SSIM is a metric used to assess the similarity between images. It is determined by
the covariance between two images. A larger value of SSIM indicates a higher-quality
image. When two images are identical, the SSIM is equal to 1. For two images x and y, the
structural similarity index between them can be calculated using a specific formula:

(2pxpy +c1)(20%y + c2)

SSIM(x,y) =
W) = tE T E Tt o)

(6)

In the above equation, the mean of x is denoted by y, and the mean of y is denoted by
Hy- 02 denotes the variance of x; 0’}% denotes the variance of y; 0y, denotes the covariance of
x and y; and c denotes a constant value. The structural similarity ranges from 0 to 1. Table 3
shows the SSIM index of different algorithms.

Table 3. SSIM results for different algorithms.

Image SSR MSR MSRCR
1 0.9018 0.9218 0.6484
2 0.8991 0.9099 0.6809
3 0.8784 0.8980 0.6303
4 0.8966 0.9089 0.6393

As can be seen from Table 3, the similarity structure index of MSR algorithm was better
than that of the other two algorithms. Because the image must be restored to the original
image as much as possible during image stereo matching, the two evaluation indexes and
the final effect of the image were synthesized. In this study, we decided to choose the
MSR algorithm for underwater image enhancement before stereo matching to make the
image clearer.

After completing the underwater camera calibration and image enhancement, the
stereo matching algorithm can be used to match each pixel point in the left and right
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cameras. The depth of each point was calculated from the disparity value and converted
into a depth image. The 3D coordinates of the corresponding target points were obtained
to complete the 3D reconstruction. The depth of the target point corresponding to the pixel
point in the image was calculated using the similar triangle principle, as shown in Figure 7.
In the figure, O; and O, are the optical centers of the left and right cameras, respectively,
Xj and X, are the horizontal coordinates of the pixels on the left and right imaging planes,
respectively. The depth D of the target point P is related to the disparity value d by the

following equation:
D= f i Bl _ f i Bl

(X} =X)L, d-L

(7)

where D is the depth value, f is the focal length. B; is the baseline length of the camera, and
d is the disparity value. L, is the edge length of a single pixel of the camera.

A A

Figure 7. Binocular camera ranging model.

In this paper, we used the current mainstream semi-global block matching method
(SGBM) [17,18] as the camera stereo matching algorithm, and the adopted parameters are
shown in Table 4. In this paper, we used the relevant functions and methods integrated
in the OpenCV library to implement the process of stereo matching. The texture filtering
algorithm of the block matching algorithm was also integrated in the preprocessing of the
SGBM algorithm in the OpenCV library, which helped to remove regions with low texture
values. An example of the stereo matching results is shown in Figure 8. It is not difficult to
observe that there is only a small void in the disparity of the fish body part of the disparity
map [19], which basically meets the needs of size measurement.

Table 4. SGBM stereo matching algorithm parameters.

Parameter Value
Min disparity 0
Max disparity 128

Bock size 3x3

Uniqueness ratio 15
P1 8§x3x3
P2 32x3x%x3

2.3.3. Image Segmentation

Before further processing the image and estimating the fish body length, the fish
body needs to be recognized and segmented as the foreground. Deep-learning-based
semantic segmentation methods have better environmental adaptability than traditional
image segmentation methods. The effect of environmental factors on the segmentation
results can be overcome. As this paper used a white breeding tank, the difference between
the tilapia and the background was more obvious. In order to simplify the processing, the
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segment anything model (SAM) [20] modeling platform of Meta-Al was used to segment
the acquired images like the one illustrated in Figure 9. The model has a huge amount of
training data and can perform hierarchical and full segmentation of images as shown in
Figure 10. The segmented fish body parts help in the next step of key point labeling and
improve the accuracy of manual labeling.

(b)

Tools

* Upload ) Gallery

R Hover & Click

-

Add Mask R

@ Multi-mask
&)

(W Box
+. Everything

[ Cut-Outs

Figure 9. Image segmentation platform.

(a) (b)
Figure 10. SAM platform segmentation results: (a) fish body layering; (b) full segmentation result.

2.3.4. Methods of Estimating Body Length

The segmented fish body image was labeled with the coordinates of the muzzle
(x1,41) and the base of the caudal fin (xp,2), as shown in Figure 11. Since stereo matching
is not good at obtaining high-density correspondences, the problem of not finding the
corresponding depths on key points can occur. For such cases, we acquired the depths of
multiple neighboring points of the key point. The average of the depths of these neighboring
points was taken as the depth of the key point. The pixel length (PL) of the tilapia was
calculated by Equation (8), and we tried to avoid acquiring the values of empty areas when
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acquiring the depth information. And the depth values of five different parts of the fish
body were acquired. The average value D,, was taken as the depth value of the fish body
in this figure, so as to minimize the error. Then, we combined the depth information with
the triangle similarity principle to calculate the body length (BL) of the fish:

PL=/(x1 = 22)* + (y1 — 12)? ®)
BL = D}”g x PL )

Figure 11. Key point pixel labeling.

In practice, it is difficult to obtain a high-quality image of the fish at a perfect angle
(fish body parallel to the mirror) [21,22]. In most cases, the body of the fish is not parallel
to the mirror. As shown in Figure 12, the angle between the fish body and the mirror is a.
We need to acquire the depth information of the fish’s muzzle and the base of the caudal
fin. Their pixel coordinates are combined for 3D reconstruction of the fish body. In the
figure, p; and p; are the pixel coordinates of the fish’s muzzle and caudal fin base in the
x-axis, respectively. d and d; are the depth values of the first two, respectively. Finally, the
trigonometric function is combined to further calculate the real length (RL) of the fish body:

-1
RL = BL x {cos [arctan(M)] } (10)
lp1 — p2l

P, =P,

Figure 12. Effect of fish distance and angle variation on pixel body length.
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3. Results
3.1. Fitting Results

In this study, a mass estimation model for tilapia was developed based on the body
length of the tilapia. Five regression models were established: linear regression model,
exponential regression model, logarithmic regression model, power function regression
model, and quadratic term regression model. We manually measured the length and mass
of 50 tilapia and fitted a model to these data. Categorized by different mass groups, the
results were obtained as shown in Table 5. M denotes the mass of the fish, x denotes the
actual body length of tilapia derived from Equation (10), and R? denotes the coefficient of
determination of the model.

Table 5. Comparison of fittings of different models for tilapia mass.

M1 M2 M3
Name - ; :
Equation (M=) R? Equation (M=) R? Equation (M=) R?
Linear 1.427x — 99.372 0.89 2.565x — 260.41 0.90 6.939x — 1261.2 0.89
Exponential 1.639 x e0-028x 0.99 47.527 x 0-008x 0.91 27.002 x 0-012x 0.86
Logarithmic 142.08In(x) — 603.06 0.78 558.96In(x) — 2709.1 0.89 1886.9In(x) — 9947.3 0.90
Power 3 x 1072x*9% 0.99 0.016x'828 091 2 x 10723124 0.87
Quadratic 0.014x> — 1.861x +71.347 099  0.047x* — 18.075x + 1991.7  0.93  —0.072x> + 46.135x — 6564.2  0.91
From the results of fitting these five models, it can be seen that the correlation between
fish length and mass was high. The overall coefficient of determination was greater than
0.78. The exponential, quadratic term, and power model had the highest coefficients of
determination of 0.99 for the M1 mass group, but the coefficients of determination for
all three types of models decreased as the fish grew. In contrast, the logarithmic model’s
coefficient of determination increased with fish mass. Overall, the quadratic term model
had the highest coefficient of determination in each mass group and was superior to the
other models. Therefore, the quadratic term model was designated as the best fitting model.
The results of the quadratic term fitting for the three mass groups are shown in Figure 13.
250 450 - 900 ~
400 1 . 800 - Y
200 (] 350 ¢ 700 - “
_ ‘ a. — i
= ; 5 300 - P o 600 1 »
Z 150 Z 550 | P 5 500 -
g » ] B
; ] 400 -
100 é 2 200 B
. 150 - 300 4
L J
50 J 100 - 200 +
} 50 A 100 -
0 T 1 0 T : 0 T 1
100 200 0 200 400 0 200 400
body length(mm) body length(mm) body length(mm)

Figure 13. Quadratic term fit plots for different mass groups of tilapia.

3.2. Tilapia Mass Estimation

To further validate the stability of the model, we used the body lengths of the acquired
tilapia to input directly into the model. Different mass groups can be interpreted as tilapia
at different growth stages. Comparisons were made by selecting the linear, power function,
and quadratic term models. The estimated values of the corresponding mass groups for
the three models are shown in Table 6. The evaluation metrics were root mean square error
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(RMSE), mean absolute error (MAE), and mean relative error (MRE), and their equations
are as follows:

j — .
RMSE = \/nzl'l (vi — 0:)° (11)
j — .
MAE = ;Zizl\yi — 7l (12)
_ 1w |\yi— Ui
MRE =) T (13)

In the above equation, 1 is the number of samples. y; denotes the true value. #J; denotes
the estimated value.

Table 6. Error analysis of tilapia mass estimation.

Group Name R? RMSE/g MAE/g MRE/%

Linear 0.89 18.11 15.65 73.16

M1 Power 0.99 15.82 741 13.35
Quadratic 0.99 6.62 497 12.14

Linear 0.90 18.84 17.20 5.74

M2 Power 0.91 19.88 18.75 6.06
Quadratic 0.93 22.16 17.19 5.34

Linear 0.89 60.99 54.90 9.40

M3 Power 0.87 59.16 53.11 8.90
Quadratic 0.91 56.21 43.38 7.25

Comparing the three tilapia mass estimation models, the RMSE ranged from 6.62 to
60.99 g. The lowest of these was the quadratic term model estimation results in M1, and
the highest was the linear model estimation results in M3, with MAE ranging from 4.97
to 54.90 g. The lowest was still the quadratic term model estimation result in M1 and the
highest was still the linear model estimation result in M3. It is not difficult to find that the
linear model had poorer estimation results with R? ranging from 0.89 to 0.90. Removing
the group with the smallest mass, the MRE ranged from 5.74% to 9.40%. And the power
function model performed better than the linear model in the small mass estimation group.
The R? was 0.87 to 0.99 and the MRE was 6.06% to 8.90%. The best prediction was made by
the quadratic term model with an R? of 0.91 to 0.99, and the MRE was also minimized to
5.34% to 7.25%.

Finally, in this study, the mass of 10 tilapia whose images were acquired was estimated.
After image enhancement, stereo matching, body length estimation, and mass fitting,
we calculated the mass of tilapia. The results of the comparison between the manual
measurements and the estimated mass of the final tilapia are shown in Figure 14. The
R? was 0.99, and the MRE was 5.90%. No significant difference was found between the
artificially measured mass and the estimated mass, so the test proved that the method can
be used for the mass estimation of tilapia.

Although the experiments are affected by the water body environment with some
differences in the results, we compared them with some existing methods in order to show
the superiority of our approach. The methods we compared are the area- and area-squared-
based mass estimation model [13] and the deep learning method using YOLOv4 DLN [6].
As can be seen in Table 7, comparing the other two methods, the MRE of our method
reached 5.90%, which is an improvement of 1.54% compared to the second place. The
coefficient of determination of our method reached 0.99, which is an improvement of 0.05
compared to the deep learning method of YOLOv4 DLN. Thus, our method performed
better than the first two.
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Figure 14. Comparison between estimated and manually measured fish mass.

Table 7. Comparison of results of different methods for estimating fish mass.

Method MRE/% R?
Based on area and area squared 8.46 0.99
YOLOv4 DLN 7.44 0.94
Our method 5.90 0.99

4. Discussion

In some previous studies using fish body length to estimate fish mass, it was necessary
to manually mark the fish contour. However, such marking is not only less accurate but
also time-consuming and laborious [23,24]. Moreover, the free swimming of the fish in the
water increases the difficulty of this operation. There are also combinations of features [25]
to estimate fish mass and the use of fish body area [26] to estimate mass. In this study, in
order to improve the accuracy of labeling the mouth and tail end of the fish, the image is
segmented first. The body part of the fish is accurately segmented, and then the segmented
image is labeled. And underwater image enhancement is performed before image stereo
matching to further improve the matching accuracy. With the rapid development of
deep learning, the SAM model released by Meta-Al has been able to perform semantic
segmentation without the researcher providing any training samples. The segmentation in
this study was directly based on this platform. For the segmented fish body, we can more
clearly label the coordinates of the fish’s muzzle and caudal fin base. And use the pixel
coordinates combined with the depth information to estimate the body length of the fish
more accurately.

The experimental results show that the mass of the tilapia can be accurately estimated
using the single characteristic of fish body length. However, as the tilapia grows it may
lead to larger errors. In this study, it was found that, at the later stage of tilapia growth,
the growth rate of the body length of the tilapia was lower than the growth rate of its own
mass. At this point, a single body length can no longer accurately estimate the mass of
tilapia. It is necessary to consider adding other characteristic parameters such as body
height and body width to improve the estimation of tilapia weight to further improve the
accuracy of tilapia weight estimation.

Although this study created a dataset containing images of tilapia, the dataset was
primarily collected under farm tank conditions. These experimental conditions resulted in
a homogenous experimental context and fish species limitations. In the future, in order to
enhance the general applicability of the method, it could be tested in more diverse natural
water environments. A wider range of species of fish and their images under different
background conditions could be collected to verify the applicability and generalizability
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of the system. In this paper, the coordinates of the key points of the fish’s muzzle and
caudal fin base are extracted using manual labeling, and there is some human error in the
calculation of the fish’s body length. In the subsequent research, the model can be built
using neural networks with deep learning methods. More complex datasets can be trained
so as to achieve automatic detection and labeling of the endpoints of the snout and the
base of the caudal fin for fully automated fish quality estimation. Currently, the system
relies on a laptop computer as the platform for image processing and computation, and the
images are captured by a binocular camera. Given the relatively large size of the laptop, the
integration of the system components and the binocular camera into a smaller embedded
device can be considered in the future. In this way, the size and weight of the system can be
reduced, making it more suitable for use in practical application scenarios. When acquiring
image depth information, some advanced devices can be used, such as the ZED depth
camera, which can avoid the complex calibration and ranging process.

5. Conclusions

In this paper, a non-contact tilapia mass estimation method based on underwater
binocular vision is proposed. Firstly, a platform for acquiring underwater tilapia images
was built. The underwater tilapia images were acquired by a binocular vision system,
and the underwater camera was calibrated, and the aberration was corrected. The image
was preprocessed using a Retinex-based image enhancement algorithm, combined with
stereo matching to obtain depth information. Image segmentation was performed on
the acquired tilapia images, and the coordinates of key points were labeled. Thus, the
three-dimensional reconstruction of the underwater tilapia was realized. The estimation
model between body length and mass of tilapia was established, thus realizing the mass
estimation of non-contact tilapia. The MRE of the tilapia mass estimation model developed
in this paper ranged from 5.34% to 12.14%. Experimental results show that the method
proposed in this paper has high accuracy and stability. The R of the estimated value of the
mass estimation model to the manually measured value was 0.99, and the MRE was 5.90%.
The mass estimation of underwater tilapia can be carried out effectively. The tilapia mass
estimation model established by this study can estimate the mass of tilapia without contact,
which improves the measurement efficiency. It provides technical support for the rapid
estimation of body length and mass of underwater free-swimming tilapia.
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