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Abstract: The temporary immersion system bioreactor named GreenTray® presents advantages
over the existing ones. Firstly, there is no need to use forceps to move the shoots or plantlets in or
out of the recipient, nor is the use of a scalpel necessary to divide them. Secondly, the basis of the
shoot can remain in the GreenTray® and can sprout again over several cycles of growth. These two
characteristics reduce the costs in the process of micropropagation. In addition, shoot or plantlet
development is enhanced by the aeration of the recipient, thus enriching the recipient’s atmospheric
CO2. This article describes and provides images and values of interest in (1) the micropropagation
process of some commercial Prunus or Pyrus rootstocks; (2) the plantlet growth under autotrophic
conditions; and (3) the inoculation of plants with pathogens that reproduce in vitro the symptoms
observed in vivo, using the GreenTray® bioreactor.

Keywords: GreenTray®; TIS; bioreactor; micropropagation; bioassays; Prunus; Pyrus; Malus; Cannabis

1. Introduction

Plant propagation through in vitro culture has been adopted by commercial propaga-
tion companies because it presents some advantages over conventional propagation with
soft or hard wood cuttings. It is a weather-unaffected propagation system, enables the
conservation of the initial plant material’s sanitary conditions, and exponentially multiplies
the selected plant materials every two- to four-week-long cycle. However, in vitro prop-
agation systems based on semisolid agar-containing media require deft manipulation in
sterile conditions with appropriate tools and expert hand labor. To prevent contamination
but allow plant material aeration, the conventional micropropagation techniques employ
glass or plastic containers, flasks or tubes, recycled or disposable, with lids that loosely
enclose the recipients, with differential passive aeration. Caps need to be removed in a
laminar flow hood cabinet before introducing or extracting the cultured plant portions
with the help of forceps, orientating them, dividing them with the help of scalpels using a
sterile hard surface, and culturing them in fresh medium with sterile forceps. Therefore,
conventional in vitro plant propagation requires a great amount of hard labor input.

Temporary immersion system (TIS) bioreactors have been developed over recent
decades to favor plantlet or shoot development. The best-known commercial ones are
RITA®, its bigger version Matis® [1–7], PlantformTM [8–14], and SETISTM [15–17]. In
addition, there are several other TISs developed for particular purposes by in vitro plant
culture laboratories [18–28]. With some differential characteristics among them, there are
two common properties which make them similar and help to differentiate the GreenTray®.
Firstly, the former systems require forceps to introduce or extract explants into or from
the culture recipient. In addition, with the former TIS, a supporting surface is needed
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to divide the grown explants into smaller pieces with the help of scalpels. Instead, as
will be described in this article, GreenTray® needs no forceps to move the explants in
and out of the culture container, and the grown-out part can be rapidly cut with scissors
instead of using a scalpel. Consequently, the design of GreenTray® significantly reduces
the labor input required for in vitro propagation and opens the possibility for further
automated manipulations.

The use of in vitro culture environment-controlled conditions is an asset to selecting
tissues, shoots, or plants with differential levels of tolerance to abiotic or biotic stress agents.
Correspondence of the results observed in vitro with those obtained in vivo, in a green-
house or field selection plots, is necessary to adopt the established in vitro protocol for
the selection of plant materials and use in breeding programs. Most protocols established
in vitro require the addition of sugar to the culture medium, since the growth conditions
of the shoots, plantlets, or seedlings are heterotrophic. GreenTray®’s design allows for
independent aeration of the culture container or its enrichment with CO2, making it pos-
sible to eliminate sugar from the culture medium. This fact, coupled with the current
possibility of increasing photosynthetically active radiation without increasing the tem-
perature through LED lighting of different spectra, makes it possible to carry out in vitro
tests under autotrophic conditions, that is, with photosynthetic activity. Consequently,
bioassays for tolerance to biotic or abiotic stresses using the GreenTray® will reproduce
in vivo conditions in a more reliable manner than with other culture techniques. This article
describes the design, operation, and manipulation of plant material in the GreenTray®, and
how these allowed the first selection tests to be carried out under autotrophic conditions
against abiotic or biotic stress agents for fruit trees, such as the effects of rhizosphere pH
and Ca2+ on plant growth, the effect of in vitro atmospheric humidity on Ca2+ absorption,
and tolerance to fire blight.

2. Materials and Methods

The patented GreenTray® [29,30] design is characterized by the ability to access the
interior of the plant cultivation container. Its design derives from a previously handmade
assemblage [31], and another adaptation of a plastic container [32]. When opening the
cultivation container of the actual GreenTray®, the lid and the cultivation tray are always
joined, and therefore, the sprouts or plants in cultivation are oriented with the movement of
the lid, with just one hand. In the model presented in this work, the GreenTray® is adapted
to a commercial glass flask, but the GreenTray® design is applicable to any container or bag,
of variable size or shape, as long as the culture surface or tray is attached to the container
lid, like, for instance, the one presented in [32].

2.1. GreenTray® Parts and Assembly

A commercial cylindrical glass jar with a capacity of 3895 mL, slightly bigger than a
US gallon, with a Twist Off 110 lid, is used as the culture container for the plant materials.
Its dimensions (15.9 cm in diameter, 25.45 cm in height) are the basis for building each unit
of the GreenTray® bioreactor, with automated modules grouping 7 to 21 bioreactors. Plant
materials are contained in this glass flask, while the culture medium is autoclaved and
placed in 500 mL ISO GL45 graduated transparent flasks, commonly used in laboratories.

To allow the introduction, cultivation, and extraction of plant materials in the culture
container, five pieces were designed (Figure 1), which were manufactured by HP Multi Jet
Fusion 3D printing, using PA12 for its manufacture, a material that can withstand autoclave
sterilization temperatures, which is necessary for the in vitro cultivation of plants. Each
unit was assembled as shown in Figure 2.
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2.2. Autonomous and Automated Controller with Compressed Air and Lighting

A PLC+HMITM Touchscreen model, “SambaTM SM35-J-R20” (Unitronics®, Tel Aviv,
Israel), was programmed to control an air diaphragm compressor and vacuum model,
“H5P3” (EAD Pumps, Masquefa, Barcelona, Spain), as well as four electro valves and
external LED lighting. All components were assembled inside an enclosure for low-voltage
switch-gear and control-gear assemblies, the “Spacial CRN” (Schneider Electric Industries
SAS, Rueil Malmaison, Paris, France), from which two clear Polyamide Legris (Parker
Legris, Terrassa, Spain) compressed air pipes came out, both with 6 and 4 mm exter-
nal and internal diameters. The first tube provides compressed air at positive pressure
(+5 to +6 psi), and when chosen, the same tube exerts suction, or negative pressure (−1 to
−1.5 psi). Both air movements arrived at the entrance of the 500 mL ISO GL45. The second
tube provides compressed air at positive pressure (+5 to +6 psi) to the entrance of the
one-gallon cylindrical jar. Both air entrances were protected from contamination with
25–30 mm diameter 0.22 µm Teflon-PTFE air filters (Filtros Anoia, S.A., Barcelona, Spain).
The assemblage is portable and requires only an AC power plug and socket, becoming a
module for 7 GreenTray® units (Figure 3).

Appl. Sci. 2024, 14, x FOR PEER REVIEW 4 of 20 
 

2.2. Autonomous and Automated Controller with Compressed Air and Lighting 
A PLC+HMITM Touchscreen model, “SambaTM SM35-J-R20” (Unitronics®, Israel), was 

programmed to control an air diaphragm compressor and vacuum model, “H5P3” (EAD 
Pumps, Masquefa, Barcelona, Spain), as well as four electro valves and external LED light-
ing. All components were assembled inside an enclosure for low-voltage switch-gear and 
control-gear assemblies, the “Spacial CRN” (Schneider Electric Industries SAS, Rueil 
Malmaison, Paris, France), from which two clear Polyamide Legris (Parker Legris, Ter-
rassa, Spain) compressed air pipes came out, both with 6 and 4 mm external and internal 
diameters. The first tube provides compressed air at positive pressure (+5 to +6 psi), and 
when chosen, the same tube exerts suction, or negative pressure (−1 to −1.5 psi). Both air 
movements arrived at the entrance of the 500 mL ISO GL45. The second tube provides 
compressed air at positive pressure (+5 to +6 psi) to the entrance of the one-gallon cylin-
drical jar. Both air entrances were protected from contamination with 25–30 mm diameter 
0.22 µm Teflon-PTFE air filters (Filtros Anoia, S.A., Barcelona, Spain). The assemblage is 
portable and requires only an AC power plug and socket, becoming a module for 7 Green-
Tray® units (Figure 3). 

 
Figure 3. Portable, autonomous module for 7 GreenTray® units. 

2.3. Light Source 
The LED lighting used in the GreenTray® modules is exchangeable between the mod-

els of different light spectra produced by Gealed S.L. (Catajorra, Valencia, Spain), namely 
“Supernova Lima” (Ref. SUP12100LDC), “Alnayr” (Ref. AN-NAYYIR 60S), and “Meissa” 
(Ref. AL-MAISAN 100S). The last two, with a Cool White 5000K sun-like spectrum, can 
provide up to 900 µEm-1s-1 PAR 20 cm from the light source. The light intensity and pho-
toperiod is regulated from the previously described automated controller. 

2.4. Plant Materials 
Five Prunus hybrid rootstocks, namely Rootpac® 20, Rootpac® R (obtained by Agro-

millora) [33], Intensia® (obtained by IRTA), Garnem® (obtained by SIA-DGA), and GF667 
(obtained by INRA); Adara, a plum rootstock (obtained by EEAD-CSIC); two Pyrus hybrid 
rootstocks, namely OHF87TM (obtained by OSU) and Py170 , which is a hybrid between 
“OH11” [34] and Pyrus amygdaliformis, in the last phase of selection of the IRTA breeding 
program, oriented to have tolerance to iron chlorosis and reduced vigor [35,36]; three ap-
ple varieties, namely Carrandona (M0676), Florina (M0216), and Rozona (M0163) (collec-
tion of SERIDA) [37]; the Cannabis sativa variety “Ferimon” (obtained by HEMPit); and 
propagules of Kalanchoe daigremontiana were used for the present work (Table 1). 

  

Figure 3. Portable, autonomous module for 7 GreenTray® units.

2.3. Light Source

The LED lighting used in the GreenTray® modules is exchangeable between the
models of different light spectra produced by Gealed S.L. (Catajorra, Valencia, Spain),
namely “Supernova Lima” (Ref. SUP12100LDC), “Alnayr” (Ref. AN-NAYYIR 60S), and
“Meissa” (Ref. AL-MAISAN 100S). The last two, with a Cool White 5000K sun-like spectrum,
can provide up to 900 µEm-1s-1 PAR 20 cm from the light source. The light intensity and
photoperiod is regulated from the previously described automated controller.

2.4. Plant Materials

Five Prunus hybrid rootstocks, namely Rootpac® 20, Rootpac® R (obtained by Agromil-
lora) [33], Intensia® (obtained by IRTA), Garnem® (obtained by SIA-DGA), and GF667
(obtained by INRA); Adara, a plum rootstock (obtained by EEAD-CSIC); two Pyrus hybrid
rootstocks, namely OHF87TM (obtained by OSU) and Py170 , which is a hybrid between
“OH11” [34] and Pyrus amygdaliformis, in the last phase of selection of the IRTA breeding
program, oriented to have tolerance to iron chlorosis and reduced vigor [35,36]; three apple
varieties, namely Carrandona (M0676), Florina (M0216), and Rozona (M0163) (collection of
SERIDA) [37]; the Cannabis sativa variety “Ferimon” (obtained by HEMPit); and propagules
of Kalanchoe daigremontiana were used for the present work (Table 1).
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Table 1. Plant material used herein for propagation, and biotic or biotic stress assays.

Name Type Plant Species In Vitro Plant Material

Rootpac® 20 Prunus rootstock Prunus besseyi × P. cerasifera Shoot tip cultures
Rootpac® R Prunus rootstock Prunus cerasifera × P. dulcis Shoot tip cultures

Intensia® Prunus rootstock Prunus dulcis × P. persica Shoot tip cultures
Garnem® Prunus rootstock Prunus dulcis × P. persica Shoot tip cultures

GF667 Prunus rootstock Prunus dulcis × P. persica Shoot tip cultures
Adara Prunus rootstock Prunus cerasifera Shoot tip cultures

OHF87 TM Pyrus rootstock Pyrus communis Shoot tip cultures
Py170 Pyrus rootstock OH11 × Pyrus amygdaliformis Shoot tip cultures

Carrandona Apple variety Malus domestica Rooted shoots
Florina Apple variety Malus domestica Rooted shoots
Rozona Apple variety Malus domestica Rooted shoots
Ferimon Cannabis variety Cannabis sativa Germinated seeds

Kalanchoe Succulent plant Kalanchoe daigremontiana Plantlets from leaf’s edge

2.5. Micropropagation in the GreenTray®

2.5.1. Culture Media

Culture in the GreenTray® was conducted in liquid Murashige and Skoog (MS)
medium, supplemented with 30 g/L sucrose, 5 µM 6-Benzylaminopurine (BAP), and
the pH adjusted to 4.7 before autoclaving [38]. The pH before autoclaving was one unit
lower than that used in agar-containing media, after what was observed in [39] to prevent
outgrowth of endophytes into the culture medium.

2.5.2. Immersion and Aeration Frequencies

The automated controller facilitates temporizing the waiting time between explant
immersions (WTI), the duration of explant immersion (TI), the waiting time between
explant aerations (WTA), and the duration of explant aeration (TA). In addition, the TI can
last 90 s during passive movement, driven by gravity, or 30 s during active movement,
forced by air impulsion into the culture jar (35 s) or air suction out of the culture medium
bottle (30 s).

The WTI, TI, WTA, and TA depend on the plant material’s capacity for optimal growth,
avoiding waterlog or water loss. Such times are adjusted to the plant materials, and for the
present work, they were set up according to what is indicated in Table 2.

Table 2. Time set up of the controller for 7 GreenTray® along the culture week.

Parameter Week 1 to 3 Week 4 to 6 After 6 Weeks

WTI 2:00 h:m 4:00 h:m 6:00 h:m
TI 0:37 m:s 0:30 m:s 0:25 m:s

APIT 1:00 m:s 1:30 m:s 2:30 m:s
WTA 0:00 h:m 6:00 h:m 0:30 h:m

TA 0:00 m:s 1:00 m:s 0:30 m:s
WTI = waiting time for immersion; TI = time of immersion; WTA = waiting time for aeration; TA = time of aeration;
APIT = aeration post immersion time; h:m = hours: minutes; m:s = minutes:seconds.

Depending on the plant material volume occupying the tray, 250 to 200 mL of medium
is required to immerse the whole culture tray containing the explants.

2.5.3. Establishment of Shoot Cultures in the GreenTray®

Apical and internodal segments derived from in vitro shoot tip cultures in agar-
containing medium were used to establish micropropagation cultures in the GreenTray®,
called the 1st generation (G1) herein. Depending on the shoot explant size, each GreenTray®

unit contained between 30 and 40 shoot explants when the explants were between 1 and
2 cm long, and up to 80 or 90 explants when they were 1 cm long or less.
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2.5.4. Sequential Number of Shoot Cuts without Subculture

GreenTray®’s design allows new shoots to be extracted and cut and grown above
the culture tray, followed by the introduction of the remaining basal part back into the
culture glass jar (Figure 4A,C). Once this basis regrows, the shoots are cut the same way,
several times, depending on the plant material’s capacity to keep growing. Compared
to the conventional in vitro propagation procedures in which shoots are cultured in agar-
containing medium, propagation in the GreenTray® needs no subculture of the shoot bases,
since they remain in the culture tray for several generations, keeping its axillary sprouting
capacity, like a hedge from which new shoots are cut.
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2.5.5. Subculture in New GreenTray® and Number of Generations

Shoots produced from the GreenTray® can either be moved to soil for rooting in an
acclimation facility, or placed in another GreenTray® bioreactor, what herein is called a
generation (Figure 4B) The number of generations is recorded for each plant material.

2.5.6. Plantlet Development under Autotrophic Conditions

Rotted plantlets were moved to GreenTray®, kept vertical with the help of an upper
grid, and with their roots laid on the culture tray. The conditions to promote autotrophic
growth were as follows: culture liquid: Murashige and Skoog (MS) medium with 0 g/L
sucrose; air renewal of the culture jar at 1.5 L/min, forcing aeration in the regime indicated
in Table 2 for the 6 weeks of culture; and light intensity: 400 µEm-2s-1 PAR 20 cm from the
LED light.

2.6. Assays for Abiotic and Biotic Stress Agents

Two Prunus rootstocks, namely Garnem® and Rootpac® 20, and three apple varieties,
namely Carrandona (M0676), Florina (M0216), and Rozona (M0163), were established
in vitro, multiplied, and rooted in agar-containing medium following the protocol described
in [38]. The plantlets were transferred to a GreenTray® and cultured under autotrophic
conditions during the assays to characterize the plant materials’ ability to withstand abiotic
(high pH, low Ca2+ concentration) or biotic stress (inoculation with fire blight).

2.6.1. Abiotic Stress Conditions: Rhizosphere pH and Ca2+ on Plantlet Growth

To determine the differential tolerance of the two Prunus rootstocks to high pHs and
Ca2+ availability, as determined by the shoot fresh weights, 15 plantlets per rootstock were
cultured in eight pH x Ca2+ combinations. The liquid culture (Murashige and Skoog (MS)
medium) was adjusted before autoclaving to pH 5.7 (standard) or pH 7.7 (alkaline) and used
to test for tolerance to high pHs. In both pH conditions, the standard Ca2+ concentration
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in the MS medium (3.0 mM CaCl2·2H2O) was compared with 1/2 (1.5 mM), 1/3 (1 mM),
and 1/4 (0.75 mM) Ca2+ concentrations in the rhizosphere. Two weeks after culture in the
GreenTray®, the shoot length (cm) of each plantlet was measured.

2.6.2. Abiotic Stress Conditions: In Vitro Atmospheric Humidity on Ca2+ Uptake

Liquid culture media adjusted to pH 5.7, before autoclaving, and with Ca2+ at the
MS standard concentration (3.0 mM CaCl2·2H2O) were used to determine the differential
ability of the two Prunus rootstocks to uptake and transport Ca2+ from the rhizosphere
to the roots and shoots. Since leaf transpiration is a determinant for Ca2+ uptake and
mobilization to the aerial part, a high aeration regime in the GreenTray® was set for this
assay, as described in [40].

2.6.3. Biotic Stress Conditions: Tolerance to Fire Blight

An inoculum of fire blight (Erwinia amylovora) was prepared as described in [37]. After
three days of adaptation to the GreenTray® under autotrophic conditions, 15 plantlets of
each variety were inoculated with the bacteria with a pair of scissors (Figure 5), with two
cuts in opposite sites perpendicular to the mid rip in the upper first expanded leaf. The
level of affection of each plantlet was measured ten days post inoculation to determine
the differential tolerance of both varieties to the bacteria, following the same levels of
affectation described in [37]. Briefly, susceptibility was recorded ten days post inoculation
by dividing necrosis progression by shoot length. Necrosis progression was measured
using the following scale: 0—no visible symptoms; 0.5—necrosis only affected veins of the
inoculated leaf; 1—necrosis reached the petiole of the inoculated leaf; and 1+—necrosis
reached the stem.
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2.7. Statistical Analysis

The experiment was set up as a completely randomized design (CRD), and the data
were analysed by a one-way ANOVA. Statistical significance was judged at the level p < 0.05.
When the analysis was statistically significant, a Tukey–Kramer HSD test was used for the
separation of means. Data analysis was performed using JMP® software (version 16.0.0,
SAS Institute Inc., Cary, NC, USA).

3. Results
3.1. Micropropagation
3.1.1. Shoot Development

Optimal shoot development from internodal shoot explants cultured in the GreenTray®

includes multiplication by axillary branching, shoot elongation, and leaf development with-
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out vitrification (Figure 6). This was depended on the plant material, as well as on the
frequencies of immersion and aeration, the composition of the culture medium, and the
light intensity. Following the methodology described herein, a good development was ac-
complished for the almond × peach (Prunus dulcis × P. persica) hybrid rootstocks Intensia®,
Garnem®, and GF677 (Figure 6A–C), as well as for the plum hybrid (P. besseyi × P. cerasifera)
rootstock Rootpac®20 and the plum x almond hybrid (P. cerasifera × P. dulcis) rootstock
Rootpac®R (Figure 6D,E), along with the plum selection (P. cerasifera) rootstock Adara.
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Other plant materials that showed good shoot elongation and leaf development but
require more research on adjusting the culture media and immersion frequencies are the
pear (Pyrus communis) rootstock OHF 87TM (Figure 6F) and the pear rootstock Py170.

3.1.2. Extraction and Division of Shoots without Forceps

With all plant materials, it was easy to extract all shoots and cut the new growth
with the use of a pair of scissors, returning the shoot bases back to the culture flask of the
GreenTray®, as shown in Figure 4.

3.1.3. Sequential Shoot Cuts without Subculture and Multiplication Rates

All plant materials used herein had the same multiplication rates in the GreenTray®

than in flasks with agar-containing medium. However, with the utilized culture media
and protocols of immersion and aeration, the diverse plant materials tested had different
capacities to sprout after being cut. The most productive was Rootpac® R, which was able
to stand seven cuts in a 19-week period of culture, producing 650 shoots from 25 initial
explants, which equals 93 shoots for each cut, with an overall multiplication rate of 26, or a
multiplication rate of four for each 3-week-long culture period, equivalent to the subculture
time with agar-containing medium flasks.

Rootpac® 20, GF677, and Intensia® regrew for two consecutive cuts. The Cannabis
sativa variety “Ferimon” was also able to regrow for two consecutive cuts, while Garnem®,
Adara, OHF 87TM, and Py170 could not sprout after a cut. More work is required to develop
better culture media and conditions in order favor the growth after being cut.

3.1.4. Hand Labor Reduction and Produced Shoots during Micropropagation

As shown in Figure 7, using the GreenTray® system, there is a reduction in hand labor,
accumulated along the subculture time, for the manipulation required to extract the shoots
from the flask, cut them on a sterile surface, and culture them in a new flask. When using
the GreenTray® to establish a new generation (Figure 4B), equivalent to a new subculture
in semisolid medium, the time needed is reduced by 65% compared to that required with
semisolid medium.
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When additional shoot cuts were made from one GreenTray®, while only one cut was
possible from each flask with agar-containing medium, the time saved in the procedure was
reduced and the number of shoots produced with the same number of subcultures increased
in the GreenTray®. As shown in Figure 7, with a second shoot cut of the Roopac® R, the
number of shoots produced in the seventh subculture with the GreenTray® approaches
2500 × 103, 20% more than with the conventional semisolid-containing flasks.

3.1.5. Number of Generations in the GreenTray®, without Establishing from Agar Cultures

Up to six generations of the rootstock Rootpac® R were initiated, from one GreenTray®

to another, without having to start from cultures maintained in agar-containing medium.
The procedure was carried out as indicated in Figure 4B, and there were no contaminations
in either the GreenTray® source of shoots or the newly established GreenTray®.

With other plant materials, the number of generations was lower. For Rootpac® 20, the
maximum number of generations was four, while for Intensia®, Garnem®, GF667, Adara,
OHF87TM, and Py170, it was possible to establish only one generation.

3.1.6. Autotrophic and Long-Term Cultures

In the conditions stated to promote autotrophic growth, excellent root and shoot
development were obtained in the GreenTray® with rooted shoots of Rootpac®20 and
Garnem®, used for abiotic stress assays [40].

The three apple varieties, Carrandona, Florina, and Rozona, doubled their size after
two weeks of culture and before inoculation with the biotic stress agent (Figure 8).
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Figure 8. Plantlets of the apple variety Carrandona, grown under autotrophic conditions for three
weeks in the GreenTray®.

Kalanchoe daigremontiana propagules collected from the leaves of a mature plant, estab-
lished in the GreenTray®, developed and produced new propagules in their leaves, which
were spontaneously dropped on the culture tray and became new mature plants, in a cycle
that was repeated four times over a year-long period without needing any manipulation
inside the culture flask (Figure 9). We can observe the propagules at the edges of the
mature leaves and the small plants growing on the surface of the culture tray, in which
the white–yellowish film observed is not a contamination but as a result of the natural
degradation of the previous generation of plants.
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3.2. Assays with Abiotic and Biotic Stress Agents

3.2.1. Rhizosphere pH and Ca2+ on Plantlet Growth

Both Prunus rootstocks behaved differently to the high pH and lower Ca2+ availability
in the liquid culture medium. Garnem® (Figure 10A), an almond × peach hybrid, showed a
significantly (p < 0.001) better shoot growth at basic pH 7.5 than at the conventional culture
pH 5.7, without interacting with the Ca2+ concentration (p = 0.100) and without the effect of
the lower Ca2+ availability (p = 0.977). Instead, the plum hybrid Rootpac® 20 (Figure 10B)
was negatively affected in terms of its shoot growth when the plantlets were depleted of
Ca2+ (p = 0.001) to 0.75 mM, 25% of the usual 3 mM present in the medium, and also when
the pH was alkaline (7.5) compared to the conventional pH 5.7 (p = 0.001).

3.2.2. Atmospheric Humidity on Ca2+ Uptake

As described in [40], GreenTray® established a TA of 1 min and a WTA of 15 min,
resulting in lowering the relative humidity in the culture flask to 60% during aeration and
which recovered afterwards to 80% during the WTA. Instead, the non-aerated GreenTray®

had a constant 100% relative humidity.
Under these experimental conditions in the GreenTray®, the shoot Cadff (calcium

derived from the fertilizer) was significantly (p = 0.003) higher in aerated environments
(47%) than in non-aerated environments (37%) [40]. This means that aeration induced
Ca2+ uptake at the roots and transported it to the shoots. More interestingly, the rootstock
Rootpac® 20, sensible to lower Ca2+ availability in the rhizosphere (Figure 10), presented a
significantly higher (p = 0.0173) shoot Cadff (46%) than Garnem® (38%), a rootstock less
affected by Ca2+ depletion [40].
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3.2.3. Tolerance to Fire Blight

For the apple plantlets inoculated as shown in Figure 5, after three days of culture in
the GreenTray®, the first symptoms of infection in the leaf blade were visible through the
culture flask glass. At 7 and 10 d of culture, necrosis reached the leaf mid rib (Figure 11A)
and shoot (Figure 11B) of the balanced apple variety Florina.

Ten days post inoculation, the different levels of susceptibility to Erwinia amylovora of
the three apple varieties tested, Carrandona, Florina and Rozona, were evident (Figure 12),
with increasing levels of susceptibility to fire blight, respectively. Shoot and root devel-
opment was clearly better for Carrandona and Florina (Figure 12A,B) than for Rozona
(Figure 12C), which showed evident growth reduction, wilting, and shoot and root necrosis.
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The affectation levels obtained in the GreenTray® (Figure 13A) showed a significant
(p < 0.001) difference among the three apple varieties. A significantly (p = 0.050) higher
tolerance to fire blight was observed for Carrandona and Florina than Rozona. With a level
of R2 = 0.68 (Figure 13B), the level of susceptibility to fire blight observed in the GreenTray®

was significantly (p < 0.0001) and linearly correlated with the level of tolerance observed in
potted plants grown in soil inside a climatic growth chamber of a BSL3 facility [37].
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4. Discussion

The extraction of shoots with forceps from in vitro culture containers, as well as from
TIS bioreactors, followed by arranging them on sterile surfaces in order to divide them
with the help of surgical scalpels and their subsequent introduction into new culture
containers, a process known as subculturing in the conventional in vitro culture process,
is time-consuming and represents a significant portion the hand labor involved in most
in vitro plant culture processes. The components of the actual GreenTray® TIS bioreactor
described herein, which is a further evolution of the ones presented in the past [31,32],
make it significantly improved and versatile compared to other commercial TIS bioreactors,
such as RITA®, Matis®, PlantformTM, SETISTM [1–17], or the TIS developed by several
in vitro plant culture laboratories oriented to solve particular propagation objectives for
diverse plant species [18–28].

GreenTray provides the opportunity to automate the in vitro clonal plant propagation
process because of its new methods: the disposition of the plant material, extraction from
the culture vessel, easy manipulation for reorientation, shoot cutting, and reintroduction
for the further growth of the shoot basis. These facts represent a significant reduction
in the time required for conventional subcultures, implying a reduction in hand labor
and an increase in the number of shoots produced per container, which reduce the cost
per plant produced and therefore facilitates the application of micropropagation to more
plant species.

Although excellent shoot development and sequential shoots cuts were obtained for
Rootpac® R, Rootpac® 20, GF677, Intensia®, and Ferimon, further research is needed to
improve the culture media, the frequencies of immersion, and aeration for Garnem®, Adara,
OHF 87TM, and Py170. Indeed, this observation is applicable to all plant species for which
a great amount of experience has been accumulated during previous decades of work with
semisolid culture media, compared to TIS culture systems.
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As reported in previous works [41–46], autotrophic in vitro culture is facilitated by
aeration in the culture vessel and increasing the PAR radiation without stressing the plant
materials. GreenTray®’s design is particularly focused on improving aeration through two
mechanisms, suction from the glass bottle containing the medium or the propulsion of air
into the glass culture jar. PAR radiation was significantly increased with LED lights, with
a variable and high range of intensities, paired with low heating effects. Aeration of the
culture flask induces transpiration in the plantlet’s leaves; therefore, water exits through
the open stomas and CO2 diffuses in, which, in return, favors photosynthesis [41].

Rooted plantlets of the Prunus rootstocks Rootpac®20 and Garnem®, or the apple
varieties Carrandona, Florina, and Rozona, grew in the GreenTray® without sucrose in the
culture medium during the biotic and abiotic stress agent assays that lasted several weeks.
As an example of a long-term in vitro autotrophic culture, the Kalanchoe daigremontiana
species demonstrated that the autotrophic culture conditions in the GreenTray® are feasible
for at least one year.

GreenTray®’s design allows access to shoots or plantlets by moving the container’s
lid and attached tray sideways. With this simple movement, all plants are pulled out of
the culture recipient and displayed in front of the observer, so they can easily be treated,
inoculated, phenotyped, sampled, or pictured. By pulling the holding racks, plantlet roots
can be observed, sampled, or pictured the same way as the aerial part of the plants. Since
the container holding the culture medium is independent from the cultured plantlets, it can
be aliquoted, supplemented, inoculated, and observed at any time during culture [39,42].
These characteristics make the GreenTray® TIS superior to other commercial TIS bioreactors
and containers to perform studies on abiotic [43–46] or biotic [47–55] stress agents.

The experimental conditions to assay the effects of pH and Ca2+ availability in the rhi-
zosphere were easily established and repeated with the GreenTray® design. The differential
capacities of the Prunus rootstocks Garnem® and Rootpac®20 to grow in alkaline conditions
and Ca2+ depletion, reported herein, were in accordance with what is known from agro-
nomic trials in calcareous soils [56,57]. Therefore, GreenTray® could be useful for many
nutritional studies, including the characterization and selection of plant materials [36].

Forcing a reduction in the atmospheric humidity inside the GreenTray®’s culture
vessel, although periodic and recovered rapidly through the evaporation of wet surfaces
and transpiration through the plantlet leaf stomas, implies a lower water potential, which
induces higher transpiration of the plantlet’s leaves and a higher water uptake at the
roots, reinforcing Ca2+ transport to the shoots [41]. In these conditions, the rootstock
Rootpac® 20 presented a significantly higher shoot Ca2+ uptake than Garnem® [40]. All
mechanisms of ventilation inside the bioreactor, for which the GreenTray® is especially
suited for, increase the water potential in the atmospheric culture recipient, and this favors
water and nutrient root uptake and translocation to the leaves.

In vitro assays for tolerance to Erwinia amylovora have always been approached in
heterotrophic conditions [47–54]. Although the results presented herein are for a reduced
number of apple varieties, this is the first time that the test has been performed in the
in vitro autotrophic conditions of the GreenTray®, and the same plant material was tested
against the same Erwinia amylovora strain in a confined growth chamber with grafted
potted plants. Since a very good correlation was found in terms of susceptibility to fire
blight between the in vitro and in vivo growth, it is recommendable to use the GreenTray®

bioreactor to select seedlings and obtain apple or pear varieties with higher tolerance to
fire blight through cross-breeding. Further improvements will be needed in inoculating all
plants with the same amount and concentration of the bacterial strain or obtaining a more
uniform plant development before their inoculation.

Consequently, the GreenTray®, as it is developed, is a good tool to propagate plants
in vitro at a lower cost and higher multiplication rates. Its design favors the in vitro growth
of plantlets in autotrophic conditions, like hydroponic cultures, but in a highly controlled
environment and with reduced space requirements. Bioassays performed in the GreenTray®

to characterize the responses of plants to biotic and abiotic stress agents are more reliable
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than those performed in semisolid medium because of the autotrophic plant development
conditions favored in this TIS bioreactor. Other plant in vitro culture methodologies applied
to plant breeding, such as immature embryo rescue, somatic embryo maturation, adventi-
tious regeneration, genetic transformation, physiological characterization, plant–pathogen
interactions, and plant growth-promoting microorganism interactions with plants, can be
studied under in vitro conditions with the GreenTray® as a tool [39,42].
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11. Klimek-Szczykutowicz, M.; Dziurka, M.; Blažević, I.; Ðulović, A.; Miazga-Karska, M.; Klimek, K.; Ekiert, H.; Szopa, A. Precursor-
Boosted Production of Metabolites in Nasturtium officinale Microshoots Grown in Plantform Bioreactors, and Antioxidant and
Antimicrobial Activities of Biomass Extracts. Molecules 2021, 26, 4660. [CrossRef] [PubMed]

12. Ozudogru, E.A.; Karlik, E.; Elazab, D.; Lambardi, M. Establishment of Direct Organogenesis Protocol for Arachis hypogaea cv.
Virginia in Liquid Medium by Temporary Immersion System (TIS). Horticulturae 2022, 8, 1129. [CrossRef]

13. Grzegorczyk-Karolak, I.; Staniewska, P.; Lebelt, L.; Piotrowska, D.G. Optimization of cultivation conditions of Salvia viridis L.
shoots in the Plantform bioreactor to increase polyphenol production. Plant Cell Tissue Organ Cult. 2022, 149, 269–280. [CrossRef]
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