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Abstract: Background: A fundamental grasp of the variability observed in healthy individuals holds
paramount importance in the investigation of neuropsychiatric conditions characterized by sex-
related phenotypic distinctions. Functional magnetic resonance imaging (fMRI) serves as a mean-
ingful tool for discerning these differences. Among deep learning models, graph neural networks
(GNNs) are particularly well-suited for analyzing brain networks derived from fMRI blood oxygen
level-dependent (BOLD) signals, enabling the effective exploration of sex differences during ado-
lescence. Method: In the present study, we introduce a multi-modal graph isomorphism network
(MGIN) designed to elucidate sex-based disparities using fMRI task-related data. Our approach
amalgamates brain networks obtained from multiple scans of the same individual, thereby enhanc-
ing predictive capabilities and feature identification. The MGIN model adeptly pinpoints crucial
subnetworks both within and between multi-task fMRI datasets. Moreover, it offers interpretability
through the utilization of GNNExplainer, which identifies pivotal sub-network graph structures
contributing significantly to sex group classification. Results: Our findings indicate that the MGIN
model outperforms competing models in terms of classification accuracy, underscoring the benefits
of combining two fMRI paradigms. Additionally, our model discerns the most significant sex-related
functional networks, encompassing the default mode network (DMN), visual (VIS) network, cogni-
tive (CNG) network, frontal (FRNT) network, salience (SAL) network, subcortical (SUB) network, and
sensorimotor (SM) network associated with hand and mouth movements. Remarkably, the MGIN
model achieves superior sex classification accuracy when juxtaposed with other state-of-the-art
algorithms, yielding a noteworthy 81.67% improvement in classification accuracy. Conclusion: Our
model’s superiority emanates from its capacity to consolidate data from multiple scans of subjects
within a proven interpretable framework. Beyond its classification prowess, our model guides our
comprehension of neurodevelopment during adolescence by identifying critical subnetworks of
functional connectivity.

Keywords: deep learning; graph neural network; interpretability; multi-modality; multi-paradigm;
sex differences

1. Introduction

The critical time period for the onset of mental illness is adolescence. Neuroimaging
can help to inform how aberrations in brain circuits might be present in psychiatric disor-
ders and their development during adolescence [1–5]. Utilizing functional neuroimaging
studies to understand sex differences in healthy brains can provide an important founda-
tion to guide sex-specific treatments [6–9]. Functional magnetic resonance imaging (fMRI)
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is a neuroimaging method that measures the hemodynamic changes in regional brain oxy-
genation. By enhancing the field’s understanding of sex differences in healthy individuals,
we can develop a more thorough understanding of neurodevelopmental disorders that
exhibit phenotypic differences between sexes [10,11]. Machine learning-based methods,
such as graph neural networks (GNNs), can be employed in the context of fMRI data to
proficiently unveil new biomarkers that underlie developmental differences in sex, age,
and cognition [12–21].

The graph isomorphism network (GIN) is a specialized type of graph neural network
that has been shown to achieve superior discriminative power among GNNs for classifica-
tion tasks. Ultimately, the node embeddings acquired through the GIN classifier serve the
purpose of generating the embedding for an entire graph. Additionally, GIN is regarded
as a dual representation of the convolutional neural network [22]. In the realm of graph
theory, the graph isomorphism problem is centered on the determination of whether two
graphs exhibit topological equivalence. Two graphs are considered isomorphic if a node
mapping exists that preserves node adjacencies, signifying that an edge connecting a pair
of nodes in the first graph is mirrored in the second graph in the same manner. Essentially,
isomorphic graphs share identical connectivity and vary solely due to node permutation.
The network enacts the aggregate and combine functions by summing the node features.
For the graph-level readout, the embedded node features from each layer are summated
and subsequently concatenated to yield the ultimate graph feature. The authors contend
that the proposed network architecture has the capacity to learn an injective mapping of
the function g, potentially endowing the model with similar capabilities to the Weisfeiler–
Lehman (WL) test for graph classification tasks [22]. In contrast to existing GNNs, which
utilize non-injective neighbor aggregation and thus possess limited discriminative power,
GIN employs injective neighbor aggregation and is as discriminative as the WL graph
isomorphism test [22].

In recent times, there has been an increasing interest in the utilization of graph-based
deep learning models in diverse fMRI investigations, encompassing areas such as disease
prediction [23] and biomarker identification [24]. The use of graph deep learning models
proves advantageous in brain network analysis due to their ability to directly process graph-
structured data as the input. This characteristic makes them well-suited for exploring and
understanding the intricate connectivity patterns within the brain. Li et al. proposed
the BrainGNN framework and utilized fMRI data and graph attention mechanisms to
discover novel biomarkers for autism spectrum disorder [24]. Some of the limitations of
the BrainGNN method include the extent of interpretability, computational complexity,
and generalizability.

Furthermore, Tang et al. developed a novel approach for brain network analysis using
contrastive learning and hierarchical signed graph pooling [25]. Their proposed method
aims to capture meaningful representations of brain networks by leveraging the inherent
structure and connectivity patterns in the data. Some of the limitations of the study include
challenges with interpretability, computational complexity, and a lack of comparison with
existing state-of-the-art deep learning techniques. In the contrastive learning approach,
the authors did not discuss the interpretability of the obtained features or their clinical
relevance. Understanding the underlying mechanisms driving the learned representations
could provide valuable insights into brain function and pathology. Additionally, Cui et al.
presented BrainGB, a benchmark dataset and evaluation framework for brain network
analysis using GNNs [26]. The authors addressed the need for standard evaluation in the
field by providing a comprehensive benchmark that covers multiple tasks and datasets. A
major limitation of the BrainGB framework is its simplified representation of brain networks,
which primarily focuses on using brain regions as nodes in the constructed brain networks.
However, brain connectivity is a complex and multi-modal phenomenon involving various
levels of granularity and different types of connections. Additionally, the authors of
BrainGB do not discuss the interpretability of the GNN models and the insights gained
from their predictions [26]. Understanding the underlying factors contributing to the
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model’s decisions as well as the meaningfulness of the learned representations would
enhance the practical utility of the benchmark.

Motivated by the above observations, we propose an interpretable end-to-end multi-
modal graph isomorphism network (MGIN) framework to integrate multiple paradigms of
fMRI, which incorporates information about signals in each brain region of interest and
functional connectivity. Existing GIN methods applied to fMRI connectivity networks do
not utilize data to understand the relation information both within and between modalities.
Previous methods utilizing GIN only use a single modality (e.g., resting state fMRI data)
for the classification tasks without discussing specific regions of interest and subnetwork
structures relevant to understanding the findings. To validate the model, we applied MGIN
to a large publicly accessible dataset, specifically, the Philadelphia Neurodevelopmental
Cohort (PNC). Our results show that the algorithm is robust and can extract important
subnetwork connections in multi-modal data. In our data analysis, we integrate multitask
data using our proposed algorithm and demonstrate better accuracy in classifying sex dif-
ferences than using a single task. Compared to other state-of-the-art models, our algorithm
achieves better accuracy and can detect important intra- and inter-network connections
during the different stages of adolescent neurodevelopment [27–29].

The main contributions of our proposed method include the following:

1. Our method alleviates the problem of predetermining the best features from connec-
tivity networks, which are often ambiguous due to the high-dimensional nature of
neuroimaging data. To overcome these challenges, our framework utilizes all connec-
tivity networks without pre-determining features in order to mitigate the impact of
high dimensionality.

2. We propose a generalizable model to accurately predict sex between the five different
stages of adolescence. Our method is robust, multi-task, multi-modal, and generaliz-
able to other applications and modalities.

3. Based on graph isomorphism, our graph neural network classifier can be employed for
multigraphs characterized by varying nodes and edges, all the while acquiring local
graph knowledge without being restricted to the entirety of the graph. By emphasizing
the learning of local graph information, the model can effectively leverage the inherent
structure and relationships within the graph to perform classification tasks.

4. Lastly, our MGIN model is interpretable by applying the GNNExplainer [30] method
to understand important subnetwork connections in the brain during the five stages of
adolescence, thereby providing an insight on brain network mechanisms underlying
development. Our framework illustrates important regions of interest as well as
subnetwork connections during neurodevelopment.

The subsequent sections of this manuscript are organized as follows. Section 2 reviews
the graph isomorphism network and introduces the proposed multi-modal graph isomor-
phism network method. In Section 3, we provide the experimental outcomes and engage in
discussions pertaining to the analysis of PNC data, aimed at elucidating the various phases
of adolescence. Finally, Section 4 serves as the concluding segment of this manuscript. It is
worth noting that a preliminary iteration of this research has been documented in a prior
conference proceeding [31].

2. Methodology
2.1. Data Collection and Pre-Processing

The dataset analyzed in this study is provided by the Philadelphia Neurodevelopmen-
tal Cohort (PNC). PNC is a collaboration between the Children’s Hospital of Philadelphia
and the University of Pennsylvania, funded by the National Institute of Mental Health
(NIMH) to characterize brain and behavioral interactions. The PNC consists of over
800 healthy subjects aged from 8 to 22 years. The fMRI tasks adopted in this study are
emotion identification (emoid) and working memory (nback) tasks. All MRI scans were
conducted using a single 3T Siemens TIM Trio whole-body scanner. During the task,
participants were instructed to categorize emotions depicted in facial expressions, encom-
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passing happiness, anger, sadness, fear, and neutrality. The total duration of the scanning
session was 10.5 min. The blood oxygenation level-dependent (BOLD) signal was cap-
tured utilizing a whole-brain, single-shot, multislice, gradient-echo echoplanar sequence
comprising 124 volumes (372 s) [32]. Standard pre-processing procedures were imple-
mented utilizing SPM12 (http://www.fil.ion.ucl.ac.UK/spm/software/spm12/ (accessed
on 1 March 2022)), including motion correction, spatial normalization to standard MNI
space, and spatial smoothing employing a 3 mm full width at half maximum Gaussian
kernel [33]. We adhered to a standard pre-processing pipeline as outlined in our previous
works [13,14] using SPM12.

The Power template [34] is used to divide the brain into 264 regions of interest (ROIs) to
parcellate the BOLD signal and build the connectivity matrix using the Pearson correlation.
Within the scope of this research, a sample of 622 subjects was selected from the overall
pool of 800 participants. This specific subset was chosen due to the availability of both
emotion identification (emoid) and working memory (nback) paradigms within the fMRI
scan. The male and female subjects were divided into five groups, each representing a stage
related to adolescent development as shown in Figure 1. The frequently used notation is
listed in Table 1, and the group division information is listed in Table 2 [35].

Table 1. Frequently used motation.

Notation Description

G = (V, E) Graph with V vertices and E edges

Xv Node feature vector for v ∈ V

yv Associated label to node v ∈ V

hv Representation vector of v ∈ V

{G1,. . . ,GN} ⊂ G Set of graphs

{y1,. . . ,yN} ⊂ Y Set of labels

hG Representation vector

yG = g(hG) Predicted label of an entire graph

k kth layer of a GNN (kth iteration)

hG = READOUT Summation or group-level pooling function

The MGIN model was compared to other state-of-the-art algorithms, i.e., SVM,
GIN [22], BrainGNN [24], M-GCN [36], MVGCN [37], MLP, and MGIN. SVM is a baseline
supervised machine learning algorithm that is commonly used for classification analysis,
which constructs a hyperplane in a high-dimensional space to separate data points into
different classes. GIN [22] is a deep learning architecture that consists of multiple graph
convolution layers followed by fully connected layers by applying a transformation to
each node’s features based on its neighborhood. BrainGNN [24] is a graph neural network
architecture designed for brain network analysis that incorporates brain-specific prior
knowledge into the neural network structure to improve the accuracy of the classification.
M-GCN [36] is a multi-modal deep learning architecture that integrates functional and
structural connectomics data to predict multidimensional phenotypic characterization to
capture the complex relationships between brain regions at different levels of organization.
MVGCN [37] is a graph convolutional network designed for multi-view data integration
that can learn a shared representation across multiple views of the data and perform classi-
fication on the integrated representation. MLP is a neural network architecture that consists
of multiple layers of neurons, where each neuron applies a non-linear function to the
weighted sum of its inputs. MGIN is our proposed multi-modal deep learning framework
used for understanding neurodevelopment.

http://www.fil.ion.ucl.ac.UK/spm/software/spm12/
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Figure 1. The distribution of sexes in the various stages of adolescence.

Table 2. Distribution of subjects in adolescence.

Adolescent Stage Age Range Total Subjects Sex Distribution

Pre 8–12 129 55 male/74 female

Early 12–14 113 58 male/55 female

Middle 14–16 109 54 male/55 female

Late 16–18 130 59 male/71 female

Post 18–22 141 53 male/88 female

2.2. Overview of the Pipeline

The summary of the analytic approach is provided in Figure 2. For each subject,
the fMRI time series data were pre-processed, and the whole brain was divided into
264 regions of interest (ROIs) based on the Power coordinates template [34]. The mean
BOLD time course data were extracted from each brain region, and the Pearson correlation
coefficient between ROIs was calculated and represented as a functional connectivity
matrix. Then, the functional network graph was input to our proposed MGIN model to
classify sex groups based on age. Lastly, the GNNExplainer method was applied to identify
critical subnetwork structures and to identify important connections between the functional
networks [30].

2.3. Graph Isomorphism Network (GIN)

The graph isomorphism network (GIN) is formulated to accept networks as its input.
Xu et al. introduced GIN as a specific instance of spatial GNN well-suited for tasks
involving graph classification [22]. The network operationalizes the aggregate and combine
functions by summing the node features, as depicted in Equation (1) below.

h(k)v = MLP(k)((1+ ∈(k)) · h(k−1)
v + ∑

uϵN(v)
h(k−1)

u ) (1)
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Figure 2. Overview of the proposed framework. The fMRI time-series data were preprocessed and
divided into 264 regions of interest (ROIs) based on the Power coordinates template. Then, the mean
BOLD time course data were extracted, and the Pearson correlation coefficient between ROIs was
calculated and represented as a functional connectivity matrix. Then, the functional network graph
was input to our MGIN model to classify sex. Lastly, the GNNExplainer method was applied to
identify critical subnetwork structures and to identify important ROIs.

In Equation (1), ϵ(k) represents a parameter that is adaptable at the kth layer, while MLP
denotes a multi-layer perceptron incorporating non-linearities. The notation h(k)v signifies
the feature vector at the kth layer for the vth node. The feature vector corresponds to layer
k, where it integrates the previous node feature h(k−1)

v with aggregated node features to
output the node feature of the current kth layer, denoted as h(k)v . For a graph-level readout,
the embedded node features from each layer are summed and subsequently concatenated
to derive the final graph feature hG, as illustrated in Equations (2) and (3) [38].

h(k)G = sum(h(k)0 , h(k)1 , . . . , h(k)N ) (2)

hG = concatenate(h(k)
G | k = 0, 1, . . . , K) (3)

Xu et al. asserted that the proposed network architecture has the capacity to acquire
an injective mapping of the function g, potentially endowing the model with comparable
effectiveness to the WL test for tasks involving graph classification [22,38].

h(k)v = ∅
(

h(k−1)
v , f

({
h(k−1)

u : u ϵ N(v)
}))

(4)

In Equation (4), h(k)v is the feature vector of node v at the kth layer or iteration. N(v)
is the set of nodes adjacent to v, and the equation aggregates and updates node features,
where the function f operates on a multiset of node features and ϕ is the injective function.
Furthermore, the WL test employs a pre-defined injective hash function g to update the
node labels lv:

l(k)v = g
(

l(k−1)
v ,

{
l(k−1)
u u ϵ N (v)

})
(5)
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2.4. Multi-Modal Graph Isomorphism Network (MGIN)

We next propose our multi-modal graph isomorphism network (MGIN) to combine the
complementary information from multiple fMRI paradigms, which is then used to classify
sex groups during adolescence. We proposed the MGIN framework for integrating the
multi-paradigm fMRI data to understand the interactome, as shown in Figure 3. The MGIN
model comprises multiple sets of nodes, referred to as modes, which individually represent
different types of entities. These modes are interconnected through edges, facilitating
connections between nodes within a mode as well as across different modes. The modes
in our model are emotion identification and working memory fMRI task. The nodes are
the functional connectivity networks for each subject [39]. In this study, each individual’s
brain network is considered a single graph. The connections between regions of interest
(ROIs) in the network are represented by the absolute value of the Pearson correlation
coefficient between the time- eries of each pair of ROIs. The graph is defined as an
undirected multigraph with G = {V, E}. In this study, a two-layer GIN is utilized to
acquire the graph embedding for an individual in each modality. For the vertices, we
concatenated the features and used the Pearson correlation-based functional connectivity
graph to construct the brain functional network. The Pearson correlation coefficient, which
assesses the relationship between two variables denoted as X and Y, is computed utilizing
the subsequent formula:

P =
cov(X, Y)

σX · σY
(6)

Figure 3. The proposed framework for integrating the multi-paradigm fMRI data to understand
the interactome.

After that, we applied the Box-Cox transformation to ensure each feature followed a
normal distribution. The edge attributes included the cosine similarity between the func-
tional connectivity features that were calculated using the distance between the centers of
the two ROIs. For each given node pair, their cosine similarity can be calculated as follows:

Si,j =
xT

i xj

∥ xi∥ ∥ xj ∥
(7)
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The cross entropy loss function was utilized for the binary classification of sex. In
Equation (8), N data points is where t is the truth value taking a value 0 or 1 and p is the
softmax probability for the ith data point.

L = − 1
N
[

N

∑
j=1

[tj log
(

pj
)
+

(
1 − tj

)
log(1 − pj)] (8)

2.5. Interpretability Using GNNExplainer

Furthermore, we applied GNNExplainer to interpret our model and identify signifi-
cant functional connectivity subnetworks that played an important role in classifying sex.
GNNExplainer is a model agnostic approach to providing explanations of classification
results of a GNN-based model [30]. The interpretability method can provide consistent
explanations of important node features that play a critical role in prediction. In order to
identify the node features that are most important for prediction, GNNExplainer considers
XF

S as a subset of features and learns a feature selector F, which acts as a feature mask,
for nodes in the explanation of Gs that are defined through the feature selector F ∈ {0, 1}
as follows:

XF
S =

{
xF

j

∣∣∣ vj ∈ GS

}
, xF

j =
[

xj,t1, . . . , xj,tk

]
f or Fti = 1 (9)

max MI (Y, (Gs, F)) = H(Y)− H(Y|G = Gs, X = XF
S ) (10)

In Equation (10) above, the explanation (Gs, Xs) is concurrently optimized to maximize
the mutual information objective of (Gs, F), signifying the adjusted objective function
that integrates structural and node feature data to elucidate the prediction yˆ at node
v [30]. The hyperparameters used for the method include prediction loss, feature size loss,
feature element loss, population size loss, population element loss, weight decay, training
epochs, and learning rate, with the values being 1, 200, 20, 0, 1000, 0, 150, and 5 × 10−1 .
After applying GNNExplainer and obtaining the results of the important subnetworks, we
further found the common connections related to sex differences in each subnetwork.

The loss functions used in the GNNExplainer method include prediction loss, feature
size loss, feature element loss, population size loss, and population element loss. Prediction
loss measures the difference between the predicted probability of a positive outcome and
the true label. For example, a common form of prediction loss is binary cross entropy
loss, which penalizes incorrect predictions more heavily and rewards accurate predictions.
Moreover, feature size loss is a loss term that penalizes changes in the size of the features
for each node in the graph, and it is calculated as the mean squared error between the
original feature size and the perturbed feature size after the GNNExplainer has made
changes to the graph. Similarly, feature element loss is a loss term that penalizes changes
to individual feature elements for each node in the graph. Population size loss is a loss
term that penalizes changes in the overall size of the graph, which is calculated as the mean
squared error between the original number of nodes and the perturbed number of nodes
after the GNNExplainer has made changes to the graph. Population element loss is a loss
term that penalizes changes to the edge weights or adjacency matrix of the graph, and it is
calculated as the mean squared error between the original edge weights and the perturbed
edge weights. The GNNExplainer algorithm iteratively minimizes these loss terms to find
the most salient features and edges that contribute to the prediction outcome or the overall
structure of the graph [30].

2.6. Experimental Setup and Sex Classification

In this study, the dataset was randomly divided into training, validation, and testing
subsets, maintaining proportions of 80%, 10%, and 10%, respectively. The model was
trained using the training set, and the hyperparameters were optimized using the validation
set. The performance of the model was evaluated by calculating the accuracy, F1-score,
and area under the curve (AUC) with standard deviation (std) values. To reduce sampling
bias and evaluate the robustness of the models, we utilized the bootstrap analysis method,
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conducting 10 repeated experiments. Each experiment involved the splitting of the dataset,
model training, and testing processes. We compared the results obtained from our proposed
model with those of other approaches using the outcomes of the repeated experiments.
A pairwise t-test was conducted, and p-values were reported to demonstrate any statistically
significant improvement.

We applied MGIN to both working memory and emotion task fMRI and compared
the performance with other models. After comparing the performance of our method, we
performed sex classification during the five stages of adolescence to check whether our
proposed framework can use functional connectivity as an effective brain fingerprint for
prediction. Each experiment was repeated using 10-fold cross validation.

3. Results
3.1. Hyperparameter Selection

In order to optimize the performance of the MGIN model, the hyperparameters were
tuned using the random search method on validation sets [40]. As shown in Table 3,
the hyperparameters for the experiments included the learning rate, optimizer, epochs,
weight decay, fMRI paradigms, and predictive task, with the values set as 1 × 10−5, Adam,
3000, 0.2, emoid/nback, and sex, respectively. The two-layer GINs in Equation (1) were
used for the graph embedding process. The activation layer for the two-layer MGIN
model is ReLU. The activation function was used to merge the graph embeddings of the
two modalities.

In terms of hyperparameters, the validation of the single modal GIN was performed
using emoid or nback fMRI datasets, utilizing the same hyperparameter selection that
was applied in the GIN component of MGIN. For SVM and MLP, the hyperparameters
were tuned using the random search method. For the MLP framework, we employed an
identical network structure as the MGIN. Specifically, the hyperparameters for the MLP
method consisted of 3000 training epochs, 1 × 10−2 as the L1 regularization parameter,
1 × 10−3 as the L2 regularization parameter, an Adam optimizer, and 1 × 10−4 as the
learning rate. For the M-GCN framework, the hyperparameters included 5000 training
epochs, 1 × 10−4 as the L2 regularization parameter, an Adam optimizer, and 1 × 10−4 as
the learning rate. Additionally, for the MVGCN method, the hyperparameters we used
were the Adam optimizer, a learning rate of 1 × 10−4, 3000 training epochs, and a L2
regularization parameter of 1 × 10−4.

The classification accuracy was evaluated using 10-fold cross validation and was run
10 times independently on the whole dataset. The p-values were calculated by the t-test
for repeated experiments between the classification results of our MGIN model and other
competing models. Our results showed that combining two paradigms of fMRI (emoid
and nback) yielded higher performance than using a single paradigm, demonstrating the
advantage of integrating multi-paradigm fMRIs.

Table 3. Hyperparameters for experiments.

Learning Rate 1 × 10−5

Optimizer Adam

Epochs 3000

Layer 1 Size 69,696

Layer 2 Size 100

Weight Decay 0.2

fMRI Paradigms Emoid, Nback

Predictive Task Sex
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3.2. Ablation Studies

For our ablation studies, we tested the effect of the number of modalities, number of
layers, and node features on our proposed MGIN framework. As shown in Table 4, we
compared the performance of MGIN with the use of different modalities. The accuracy
(0.8167 ± 0.0749), F1-score (0.8192 ± 0.0683), and AUC (0.8269 ± 0.0754) were highest
when utilizing both nback and emoid fMRI modalities. Additionally, we explored the
effect of the number of hidden layers in our proposed MGIN method. Our experiments
illustrated the optimum number of hidden layers is two with an accuracy of 0.8167 ± 0.074
and AUC of 0.8269 ± 0.075. Furthermore, our experimental results demonstrated the
effect of various types of node features on the MGIN framework, where we found that
the connection profile comprehensively captures the structural information of the brain
network and retains extensive information on pairwise connections with an accuracy of
0.7012 ± 0.041, and it outperforms structural features like degree or positional features
such as eigen decomposition.

Table 4. Ablation studies.

Method Accuracy (Mean± std) F1 (Mean± std) AUC (Mean± std)

Modalities
1 Modality Nback
1 Modality Emoid

2 Modality Nback+Emoid

0.7814 ± 0.0722
0.7621 ± 0.0501
0.8167 ± 0.0749

0.7801 ± 0.0568
0.7721 ± 0.0452
0.8192 ± 0.0683

0.7995 ± 0.0453
0.7861 ± 0.0834
0.8269 ± 0.0754

Layers
1 Hidden Layer
2 Hidden Layers
3 Hidden Layers

0.8152 ± 0.0537
0.8167 ± 0.0749
0.8092 ± 0.0438

0.8110 ± 0.0764
0.8192 ± 0.0683
0.8014 ± 0.0467

0.8237 ± 0.0472
0.8269 ± 0.0754
0.8137 ± 0.0564

Node Features
Eigen

Degree
Connection profile

0.5140 ± 0.0392
0.6389 ± 0.0227
0.7012 ± 0.0416

0.4934 ± 0.0562
0.6023 ± 0.0385
0.6621 ± 0.0476

0.5018 ± 0.0754
0.7025 ± 0.0437
0.7670 ± 0.0549

All of the p-values were p ≤ 0.05 for the test metrics and were computed using a t-test. The standard deviation is
represented by “std”.

3.3. Performance in Comparison to Other Methods

Table 5 summarizes the performance of the seven algorithms tested on the PNC dataset.
MGIN achieves the best classification performance in accuracy at 0.8167. MLP, a simple
multi-layer perceptron model, obtains the second-best accuracy at 0.8097. The multi-view
graph convolutional network, MVGCN, model achieves an accuracy of 0.8006, which is bet-
ter than the results of other algorithms, e.g., an accuracy of 0.7718 for single paradigm GIN,
an accuracy of 0.7501 for M-GCN, an accuracy of 0.6860 for BrainGNN, and an accuracy of
0.6753 for SVM. Compared to the other six algorithms, MGIN achieved the highest accuracy,
as shown in Figure 4. Therefore, the experimental results of the PNC data reveal that the
multi-modal graph isomorphism network indeed improves classification performance.

3.4. Model Explanation and Biomarker Identification

We interpreted our model and identified the top 5% of common functional connec-
tions as important subnetworks using GNNExplainer using both working memory and
emotion tasks for fMRI. In Table 6, we list the specific hyperparameters of GNNExplainer.
The following abbreviations of the functional networks were used: sensorimotor (SM Hand
and SM Mouth), visual (VIS), default mode (DMN), fronto-parietal task control (FRNT),
cerebellum (CB), and salience (SAL). The number of common functional connections varied
during each of the five stages of adolescence. In Table 7, we identified the top 5% of
most important connections for sex classification in adolescence. Additionally, in Figure 5,
the specific top 5% of important selected regions of interest can be visualized in the axial,
coronal, and sagittal views. Furthermore, in Figure 6, the critical subnetworks associated
with sex variation were identified. In Figure 7, we identified the number of top 5% of
common connections within and between MRI tasks during the various stages.
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Table 5. The comparison of the performance of different models on the PNC dataset.

Model Modalities Accuracy
(Mean± std) p-Value F1 (Mean± std) p-Value AUC (Mean± std) p-Value

SVM
SVM

Emoid fMRI
Nback fMRI

0.6801 ± 0.0824
0.6704 ± 0.0818

3.58 × 10−8

2.98 × 10−9
0.6912 ± 0.0542
0.6781 ± 0.0823

2.58 × 10−2

3.01 × 10−5
0.7091 ± 0.0643
0.6847 ± 0.0567

1.92 × 10−8

2.32 × 10−9

GIN
GIN

Emoid fMRI
Nback fMRI

0.7621 ± 0.0501
0.7814 ± 0.0722

0.0219
0.1380

0.7721 ± 0.0452
0.7801 ± 0.0568

0.0154
0.1125

0.7861 ± 0.0834
0.7995 ± 0.0453

0.0322
0.0929

MLP Emoid fMRI &
Nback fMRI 0.8097 ± 0.0944 0.1131 0.8085 ± 0.0756 0.1026 0.8109 ± 0.0985 0.0932

BrainGNN Emoid fMRI &
Nback fMRI 0.6860 ± 0.0829 0.1121 0.6899 ± 0.0756 0.1729 0.7022 ± 0.0563 0.2382

MVGCN Emoid fMRI &
Nback fMRI 0.8006 ± 0.0504 0.4730 0.8093 ± 0.0583 0.4372 0.8135 ± 0.0731 0.4572

M-GCN Emoid fMRI &
Nback fMRI 0.7501 ± 0.0504 0.1131 0.7525 ± 0.0431 0.1092 0.7721 ± 0.0621 0.1356

MGIN * Emoid fMRI &
Nback fMRI 0.8167 ± 0.0749 - 0.8192 ± 0.0683 - 0.8269 ± 0.0754 -

* The p-values were computed using a t-test to compare the regression performance of our MGIN model, in re-
peated experiments, with that of other competing models. The standard deviation is represented by “std”.

Figure 4. The comparison of classification accuracy by MGIN and six different algorithms.

Table 6. Hyperparameters for GNNExplainer.

Prediction Loss 1

Feature Size Loss 200

Feature Element Loss 20

Population Size Loss 0

Population Element Loss 1000

Weight Decay 0

Training Epochs 150

Learning Rate 5 × 10−1
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Figure 5. The top 5% of selected ROIs for female and male subjects based on the power264 template.
The ROIs with the same color indicate that they are in the same functional network. The figure
contains the different views of the brain (axial, coronal, and sagittal).

Figure 6. Important intra- and inter-network connections during the different stages of adolescence.
In pre-adolescence, females have additional connections between the default mode and visual
system. In early adolescence, males have intra-network connections in the salience network. In post-
adolescence, females have additional connections between the default mode and visual system,
subcortical and sensorimotor system, and fronto-parietal task control.
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Table 7. The top 5% of most important connections for sex classification in adolescence.

Modality Sex ROI ROI Region MNI Space FN

Nback

Female

2
35
44
79
84
85
90
91 *
111
199

Left Cerebrum | Limbic Lobe | Cingulate Gyrus
Right Cerebrum | Frontal Lobe | Precentral Gyrus
Left Cerebrum | Frontal Lobe | Precentral Gyrus
Right Cerebrum | Limbic Lobe| Cingulate Gyrus
Right Cerebrum | Frontal Lobe | Middle Frontal Gyrus
Left Cerebrum | Frontal Lobe | Superior Frontal Gyrus
Left Cerebrum | Frontal Lobe | Superior Frontal Gyrus
Left Cerebrum | Frontal Lobe | Superior Frontal Gyrus
Right Cerebrum | Limbic Lobe | Parahippocampa Gyrus
Left Cerebrum | Frontal Lobe | Superior Frontal Gyrus

−14 −18 40
66 −8 25
−45 0 9
8 −48 31
23 33 48
−10 39 52
−10 55 39
−20 −45 39
−26 −40 −8
−39 51 17

SM Hand
SM Mouth
CNG
DMN
DMN
DMN
DMN
DMN
DMN
SAL

Male

35
44
65
70
79
102
111
142
164
177

Right Cerebrum | Frontal Lobe | Precentral Gyrus
Left Cerebrum | Frontal Lobe | Precentral Gyrus
Right Cerebrum | Frontal Lobe | Medial Frontal Gyrus
Left Cerebrum | Temporal Lobe | Superior Temporal Gyrus
Right Cerebrum | Limbic Lobe | Cingulate Gyrus
Left Cerebrum | Frontal Lobe | Medial Frontal Gyrus
Left Cerebrum | Limbic Lobe | Parahippocampa Gyrus
Left Cerebrum | Occipital Lobe | Lingual Gyrus
Right Cerebrum | Frontal Lobe | Middle Frontal Gyrus
Left Cerebrum | Frontal Lobe | Middle Frontal Lobule

66 −8 25
−45 0 9
8 48 −15
−44 12 −34
8 −48 31
−8 48 23
−26 40 −8
15 −77 31
34 54 −13
−42 45 −2

SM Mouth
CNG
DMN
DMN
DMN
DMN
DMN
VIS
FRNT
FRNT

Emoid

Female

3
47
49
83
91 *
93
191
195
202
233
234

Left Cerebrum | Frontal Lobe | Paracentral Lobule
Left Cerebrum | Temporal Lobe | Superior Temporal Gyrus
Right Cerebrum | Sub-lobar | Insula
Right Cerebrum | Parietal Lobe | Angular Gyrus
Left Cerebrum | Frontal Lobe | Superior Frontal Gyrus
Left Cerebrum | Frontal Lobe | Medial Frontal Gyrus
Left Cerebrum | Limbic Lobe | Anterior Cingulate
Right Cerebrum | Frontal Lobe | Cingulate Gyrus
Left Cerebrum | Sub-lobar | Thalamus
Left Cerebellum | Cerebellum Posterior Lobe | Declive
Left Cerebellum | Cerebellum Posterior Lobe | Culmen

0 −15 47
−51 8 −2
36 10 1
52 −59 36
−20 45 39
6 64 22
−11 26 25
5 23 37
−10 −18 7
−16 −65 −20
−32 −55 −25

SM Hand
CNG
CNG
DMN
DMN
DMN
SAL
SAL
SUB
CB
CB

Male

3
49
136
139
184
198
202
211
233
234

Left Cerebrum | Frontal Lobe | Paracentral Lobule
Right Cerebrum | Sub-lobar | Insula
Right Cerebrum | Occipital Lobe | Inferior Occipital Gyrus
Right Cerebrum | Parietal Lobe | Precuneus
Right Cerebrum | Frontal Lobe | Middle Frontal Gyrus
Right Cerebrum | Frontal Lobe | Superior Frontal Gyrus
Left Cerebrum | Sub-lobar | Thalamus
Right Cerebrum | Sub-lobar | Extra-Nuclear
Left Cerebellum | Cerebellum Posterior Lobe | Declive
Left Cerebellum | Cerebellum Anterior Lobe | Culmen

0 −15 47
36 10 1
43 −78 −12
15 −87 37
42 0 47
26 50 27
−10 −18 7
15 5 7
−16 −65 −20
−32 −55 −25

SM Hand
CNG
VIS
VIS
SAL
SAL
SUB
SUB
CB
CB

CNG: cingulo-opercular task control; SM Hand Mouth: sensorimotor; DMN: default mode network; VIS: visual;
FRNT: fronto-parietal task control; SAL: salience; SUB: subcortical; CB: cerebellum; UNK: unknown * Represents
the ROIs common to both nback and emoid fMRI tasks

Figure 7. Top 5 percent number of common connections within and between MRI tasks.



Appl. Sci. 2024, 14, 4144 14 of 19

4. Discussion

In our work, we proposed an interpretable MGIN framework in order to classify
the sex of a subject during the various stages of adolescence using both the emoid and
nback fMRI tasks, which can help us understand the sex differences in brain development.
We ultimately validated our model using the PNC dataset, and our results demonstrated
that MGIN had improved performance compared to state-of-the-art algorithms in deep
learning. Based on our ablation experiment, we found that the accuracy decreases when
the number of layers is increased. Several plausible explanations exist for the observed
decline in accuracy upon increasing the number of hidden layers to three. One potential
rationale revolves around overfitting, wherein augmenting the neural network’s layers
may escalate its capacity, particularly when confronted with a small and noisy dataset.
The consequential surge in hidden layers beyond an optimal threshold can precipitate
a decline in test set accuracy, indicative of the network’s propensity to overfit to the
training set. Consequently, while the network may adeptly learn the intricacies of the
training data, its ability to generalize to novel and unseen data diminishes. Moreover,
each additional layer exacerbates the computational burden of training and inference,
potentially prolonging training times and heightening computational resource requisites,
particularly if the network architecture surpasses the requisite complexity for the designated
task. Hence, to optimize the performance of the MGIN model in our experiments, we
undertook hyperparameter optimization through the random search method on validation
sets [36,37,40,41].

Next, we applied GNNExplainer to interpret our model as well as to identify the
significant ROIs and subnetworks for functional connectivity that played a critical role
in classifying sex. Based on the important ROIs we identified, we were able to identify
the critical subnetworks related to sex variability. Sex-related differences in the functional
subnetworks have been identified by previous studies utilizing fMRI [7,42,43]. Previous
approaches have utilized multivariate pattern analysis using support vector machines [7,42]
and a parameter-free centralized multi-task learning method [43] to understand the resting
state functional connectivity (RFSC) patterns that are predictive for brain development to
aid in understanding sex differences.

4.1. Differences in Intra-Network Connections

• Default Mode Network (DMN)
According to previous studies, DMN is a signature intrinsic network that is frequently
linked to sex differences [44]. For example, in the DMN, the basal configuration
exhibits distinct sex-specific dynamics, and it diverges between the sexes during early
adulthood. There is a globally age-modulated reconfiguration in men but not women,
where the reconfiguration correlates with measures of personality traits. In women,
the basal reconfiguration likely exhibits a strong dependence on the menstrual cy-
cle [45].

• Sensorimotor (SM Hand Mouth)
Based on previous studies, females spend more time than males in two transient
network states that spatially overlap with the sensory motor network and dorsal
attention network [46].

• Cingulo-Opercular Task Control (CNG)
Additionally, men and women have different functional connectivity patterns. For the
regulation of emotion, a better suppression of negative emotion in women was associ-
ated with stronger functional connectivity in CNG [46–48].

• Subcortical (SUB)
Studies have shown substantial functional connectivity differences between the sexes
in several subcortical regions including the amygdala, caudate, thalamus, and cortical
regions such as the inferior frontal gyrus [47].

• Visual System (VIS)
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Previous research has shown various differences in the visual system across the sexes,
as females tend to prioritize the utilization of low spatial frequencies, which convey
information regarding the overall structure of objects, while males exhibit a segregative
approach that emphasizes individual objects and intricate details [49].

• Fronto-Parietal Task Control (FRNT)
In the FRNT, women have shown higher connectivity than men in the left middle
frontal gyrus (MFG) for the anterior network, and another cluster is found in the
right MFG right dorsal network. Previous resting state fMRI studies have shown that
women have higher connectivity in prefrontal regions for cognitive networks, which
includes the IFG, MFG, and medial prefrontal regions [50].

• Salience (SAL)
The salience network, a network associated with helping direct attention to the most
relevant stimuli in one’s environment, has differences between male and female
subjects. For example, in male patients with autism, they had increased connectivity
between the salience and primary sensory networks [51].

4.2. Differences in Inter-Network Connections

• Visual System (VIS)←→ Default Mode Network (DMN)
In our study, we found that females have additional inter-network connections be-
tween the visual system and default mode network during the pre-adolescent stage.
Specifically, there are 94 connections between these subnetworks in pre-adolescence.
Based on previous studies, females have shown greater hyperconnectivity in the
DMN compared to males [44,45,49]. Our work provides further insight into where the
subnetwork connections exist during different stages of adolescence.

• Subcortical (SUB)←→ Sensorimotor (SM Hand Mouth)
During post-adolescence, females have additional connections between the subcortical
and sensorimotor networks. In particular, there are 65 connections between these
subnetworks that are not seen in males. Previous research has shown the substantial
differences in sex for the SUB network and SM Hand Mouth [46–48], but our work
provides further knowledge about the types of connections that exist.

4.3. Limitations

Our approach possesses several limitations that warrant consideration. First, al-
though our model adeptly captures the intricate non-linear relationships between variables
and labels, it neglects to incorporate dimensionality reduction techniques to address the
diverse nature of high-dimensional datasets within the population. To remedy this de-
ficiency, we intend to implement various dimensionality reduction methods in future
iterations of our research. Second, within our graphical learning framework, the features
are predicated upon the Pearson correlation coefficient, while the edge weights are de-
rived from the cosine similarity between functional connectivity features among nodes.
While these choices render our graphical network amenable to learning, we recognize
the potential for improvement through the exploration of alternative feature learning and
sparsity techniques, aiming to diversify edge weights and mitigate redundancy in high-
order relationships. Third, in the context of our neurodevelopmental application, our
study concentrates on delineating significant subnetworks and crucial ROIs contributing to
sex-based distinctions. In forthcoming investigations, we plan to extend our inquiry to en-
compass variances in connectomes across age cohorts, developmental stages, and cognitive
groupings, thereby augmenting our understanding of neurodevelopmental processes and
associated biological pathways.

Furthermore, despite the generalizability of our framework to analyze diverse neu-
roimaging data and disease contexts, it is imperative to acknowledge the potential in-
fluence of factors such as demographic heterogeneity, variability in disease phenotypes,
and variations in data acquisition protocols on generalization performance. Our model
may encounter challenges in extending its predictive capacity to populations characterized
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by dissimilar demographic compositions, disease prevalence rates, or cultural influences
not adequately represented in the training dataset. Additionally, the inherent heterogeneity
of multi-modal datasets, encompassing a breadth of information types including imaging,
clinical, genetic, and demographic data, poses a notable challenge in ensuring the equitable
contribution and relevance of each modality across diverse populations. To address this,
we propose the application of graph fusion techniques, facilitating the amalgamation of
information derived from multiple graphs representing distinct modalities. This entails the
exploration of methods such as learning separate embeddings for each modality and subse-
quently integrating them via concatenation, summation, or attention mechanisms. In the
future, we aim to develop a unified representation capable of encapsulating information
from all modalities concurrently [52–55].

Zhang et al. conducted a comprehensive examination of recent advancements in
theranostics tailored for MRI-guided therapy, with a particular focus on the integration
of therapeutic and diagnostic facets within MRI-guided procedures. While our current
research is centered on the utilization of fMRI data exclusively, the potential synergy
between theranostics for MRI-guided therapy and fMRI offers several compelling prospects
for both research and clinical practice. One such prospect involves harnessing fMRI for
the real-time monitoring of therapeutic interventions. By amalgamating MRI-guided
therapy with fMRI, investigators and clinicians can evaluate alterations in brain activity
or physiological responses during treatment, thereby facilitating personalized treatment
optimization. Moreover, fMRI can serve as a valuable tool for probing the underlying
mechanisms of therapeutic interventions through the longitudinal monitoring of changes
in brain activity patterns or connectivity subsequent to treatment. This integrated approach
offers the potential to deepen our understanding of brain function, disease pathology,
and treatment responses, ultimately paving the way for more efficacious personalized
interventions tailored to neurological and psychiatric disorders [56].

5. Conclusions

In this work, we proposed an interpretable MGIN model for the joint analysis of multi-
paradigm fMRI data. Our MGIN model can achieve better performance in understanding
sex differences and identifying important underlying functional networks when compared
to other baseline methods. We applied the MGIN model to a brain imaging cohort to classify
individuals by sex during different stages of adolescence, and our experimental results
showed that our multi-modal model can deliver improved accuracy over the use of single
modality when classifying sex groups. Our model identified the most important sex-related
functional networks, which include DMN, VIS, CNG, FRNT, SAL, SUB, and SM Hand
Mouth. By investigating the common connections among the multi-paradigm data, our
study reveals important subnetworks related to sex differences across adolescence [57–66].
Therefore, the method offers a way of understanding sex differences in neurodevelopment
and providing guidance on early intervention [2,4,24]. Finally, our framework is generic
and generalizable to the analysis of other neuroimaging data and diseases.
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